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EQUATIONAL COMPACTNESS OF G-SETS 

BY 

B. BANASCHEWSKI 

This paper deals with the notion of equational compactness and related concepts 
in the special case of G-sets for an arbitrary group G. It provides characterizations 
of pure extensions, pure-essential extensions, and equational compactness in terms 
of the stability groups of a G-set, proves the general existence of equationally 
compact hulls, and gives an explicit description of these. Further, it establishes, 
among other results, that all G-sets are equationally compact iff all subgroups of 
the group G are finitely generated, that every equationally compact G-set is a 
retract of a topologically compact one, and that for free groups G with infinite 
basis there are homogeneous G-sets which are not equationally compact. 

Some helpful advice from Evelyn Nelson, especially concerning the proof in 
Section 4, is gratefully acknowledged. 

1. Background. Recall the following familiar notions regarding arbitrary 
(universal) algebras, relative to some fixed equational class: A free extension of an 
algebra A by a set X (of indeterminates) is an extension E of A generated over A by 
X such that every map from X into any extension B of A lifts to a (necessarily 
unique) homomorphism E-+B over A, i.e. mapping A identically. One readily sees 
that such extensions exist for any given A and X (disjoint from A), and in the 
following, A[X] will always be a free extension of A by the set X. For a pair (w, v) 
in A[X]2, a solution of the equation u=v in an extension B of A is a homomorphism 
h: A[X]-+B over A such that h(u)=h(v). 

An extension B of A is called pure iff for any finite set %^A[X]2 the equations 
u=v, for (w, v) E 2 , have a common solution in A whenever they have a common 
solution in B. Apure embedding of A into B is a monomorphism A->B such that B 
is a pure extension of the image of A. An algebra A is called equationally compact 
iff for any set H^A[X]2, the equations u=v, for (u, v) e 2 , have a common solution 
in A whenever this is the case for every finite subset of 2 . 

Concerning these concepts one has the following basic results for finitary 
algebras : 

(1) An algebra A is equationally compact iff it is a retract of every pure extension 
B of A, i.e. there exists a homomorphism B->A over A. 

(2) If an algebra A has an equationally compact pure extension then it also has 
an essentially unique equationally compact hull, i.e. an equationally compact pure 
extension C ^ A which is pure-essential in the sense that the identity congruence on 
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C is the only congruence 0 on C for which the natural map A-+C/® is a pure 
embedding. 

The first of these assertions is due to Weglorz [4], and the second can be ob­
tained by a slight modification of the discussion of relative injectivity outlined in 
Banaschewski [1], based on the further fact that equational compactness is the 
same as injectivity relative to pure embeddings. 

For any equational class A one has, then, the obvious question whether every 
algebra in A has an equationally compact pure extension. This is the case, for 
instance, in the class of all modules over a ring (Warfield [3]), and will among 
other things be shown here for the class GEns of all G-sets for any group G. 

2. Pure extensions. In the following, all algebras A, B, C,. .. are G-sets, i.e. of 
the form (X, (fs)seo) where the unary operations fs : X-^X satisfy the conditions 
fst=fsft a n d / i = l x for all s, t eG and the unit 1 of G. As usual, we let sx=fs(x). 

Note that for any A and the set X the free extension of A by X is AU.JJ_Gx(x e X) 
where coproducts are merely disjoint unions, and each orbit Gx is a free G-set 
with x as single basis element, i.e. Gx^G, the latter taken as G-set by means of 
multiplication on the left. To describe the pure extensions of A, the only pairs in 
A[X] relevant are those of the forms 

O, a), (sx,y), (sz,z) 

where w, x, y, z e X, a e A, and s e G. Call two finite sets 2 and 2 ' of such pairs 
equivalent iff, for any extension B of A, the equations u=v, for (u, v) e 2 , have a 
common solution in B whenever the equations given by 2 ' do, and conversely. Now, 
if 2 contains a pair (s0x0, j 0 ) then the set 2 ' obtained from 2 by omitting (s0x0, y0) 
and first replacing y0 wherever it occurs in any of the remaining pairs by s0x0i and 
then multiplying, where necessary, by s^1 (e.g. transition from (sx, s0x0) to 
(s^sx, x0)) to arrive at pairs of the above form, is evidently equivalent to 2 : y0 no 
longer occurs in 2 ' , and given any common solution h of the equations determined 
by 2 ' this can be modified to map y0 to s0(x0), which produces a common solution 
for the equations given by 2 . Now, as 2 ' contains one element less of the form 
(sx, y) than 2 , it follows that 2 is equivalent to a set of pairs of the form (w, a) and 
(sz, z), and for the consideration of pure extensions one only has to take sets of the 
latter type into account. 

LEMMA 1. An extension B of A is pure iff any su . . . , sne G with common fixed 
point in B also have a common fixed point in A. 

Proof. The "only if" part is obvious from the definition of purity. For the con­
verse, let the finitely many equations 

Wi = at and sjzj = zi 

have a common solution in B. For this, the image of ŵ  must of course be ^ which 
already belongs to A ; also any Zj is mapped to a common fixed point of some of the 
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sl9 s2,... , and by mapping ii to a common fixed point in A of these sk one obtains 
a common solution, of the given equations, in A. 

It is useful to reformulate this criterion for pure extensions as follows : For any 
element x of a G-set A, let S(x)={t | t e G, tx=x} be its stability group, and let 
SA be the set of all subgroups of all S(x), xeA. Also, for any subgroup H of G, 
let %H be the set of all finitely generated subgroups of H. Now, if sl9 . . . , sn G G 
have a common fixed point b G B then sl9... , sn e 5(Z>) and conversely; it follows 
from this that B is a pure extension of A iff ^S{b)^ SA for all 6 G B. Finally, let 
%A be the set of all subgroups H of G such that g i / ^ S^4 ; then one has that B is a 
pure extension of A iff S(b) G XAfor all b e B. 

Next, we derive a criterion for pure-essential extensions. First, a pure extension 
B of A is evidently pure-essential iff for any pure extension C of A, any onto 
homomorphism/:i?—>C over A is an isomorphism. 

LEMMA 2. Apure extension B of A is pure-essential iff (I) no two distinct orbits in 
B\A are isomorphic, (2) no S(b), b e B\A, belongs to SA, and (3) each S(b), b G B\A, 
is maximal in XA. 

Proof. Let B be pure-essential. Re(l), suppose there are distinct isomorphic 
orbits Gx and Gy in B\A ; then let C be the extension of A obtained from B by re­
moving Gy and map B->C by mapping all orbits distinct from Gy identically 
and Gy to Gx by an isomorphism. C is still a pure extension of A, and this homo-
morphism thus violates the pure-essentialness of B. Similarly, re(2), if S(b) e (SA, 
say S(b)^ S(a) for a G A, where b G B\A then Gb, which is isomorphic to G/S(b), 
can be mapped homomorphically to G/S(a)^Ga via the natural map from S(b)-
cosets to 5(a)-cosets, and this produces a homomorphism B-+C of the excluded 
kind, C obtained from B by removing Gb. Finally, re(3), if there exists a b G B\A for 
which one has an H=> S(b) in XA then one can take C, obtained from B by replacing 
Gb by GjH, and a homomorphism B-+C which maps all orbits other than Gb 
identically, and Gb onto GjH via the natural map GjS{b)->GjH. Since HGXA, 

C is still a pure extension of A, and thus, again, the pure-essentialness of B is 
contradicted. 

Conversely, if the given three conditions are satisfied, and one has a homo­
morphism/: B->C of the crucial type then, by (2), no orbit of B\A is mapped into 
A. Also, by (3), every orbit of B\A is mapped one-one, for if Gb is not mapped one-
one then, since S(b)^S(f(b)), one has S(b)^S(f(b)), hence S(f(b)) $ X4,and 
this contradicts the purity of C. Finally, by (1), no two distinct orbits of B\A are 
mapped to the same orbit of C, and in all this shows fis an isomorphism. 

3. Equational Compactness. It is clear that a (7-set A is a retract of an extension 
B of A iff every orbit of B\A can be mapped homomorphically into A, or equi-
valently, iff S(b) G SA for all b G B\A. 
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PROPOSITION 1. A G-set A is equationally compact iffXA = (5A, i.e. any subgroup 
H of G for which every finitely generated subgroup is contained in some stability group 
of A is itself contained in a stability group of A. 

Proof. If A is equationally compact then, for any H e XA, AUG/H is a pure ex­
tension of A, and hence A is a retract of it, i.e. H e (5 A. This shows XA ç SA, and 
the other inclusion is obvious. Conversely, if XA = QA and B is a pure extension 
then, for each b e B\A, S(b) e XA by purity and thus S(b) e QA, which shows, as 
remarked, that A is a retract of B. The characterization of equational compactness 
mentioned in Section 1 then completes the proof. 

COROLLARY 1. Every free G-set is equationally compact. 

Proof. If A is free then S(a)={l} for each ae A, hence A consists just of {1}, and 
then the same holds for XA. 

COROLLARY 2. For abelian G, all GjH are equationally compact. 

Proof. For A = G/H, QA is just the set of all subgroups of H, and if all finitely 
generated subgroups of some subgroup S of G belong to QA S is obviously itself a 
subgroup of H. 

Another immediate consequence of Proposition 1 is that every G-set is equation-
ally compact whenever all subgroups of G are finitely generated, for in that case 
XA is evidently equal to <5A9 no matter what A is. Actually, one has: 

PROPOSITION 2. All G-sets are equationally compact iff all subgroups of G are 
finitely generated. 

Proof. We merely have to prove the "only if" part; consider then, a group G such 
that all G-sets are equationally compact, and assume G has subgroups which are not 
finitely generated. Since the union of a chain of subgroups of G, each of which is 
not finitely generated, is itself not finitely generated, let H be a subgroup of G which 
is not finitely generated and maximal such. For the G-set A=UGIS(S e %H), one 
then has H e XA = QA, and hence there exist S e %H and ae G such that H^ 
aScr1. Now, by the choice of H, one first has the strict inclusions S<=- H<^ aSar^1^ 
aHarY, hence aHarx is finitely generated, and thus H is finitely generated, a con­
tradiction. 

REMARK. The above argument also lends itself to showing that a union of an up-
directed set of equationally compact sub-G-sets need not be equationally compact: 
Take G above to be abelian; then, for each S e %H, As=UGlT(S^Te gff) is 
equationally compact, and these ^ form an up-directed set of sub-G-sets of A with 
A=AS, but A is not equationally compact. 

PROPOSITION 3. Every G-set has an equationally compact hull. 

Proof. For any A, consider B=AIIT TG/H(HG XA). This is, by the reformulation 
of Lemma 1, a pure extension of A : Every stability group of GjH is conjugate to 
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H and XA is stable under conjugation since SA is. Moreover, SB=XA since any 
subgroup of an H eXA agains belongs to XA by the definition of XA. Also, if 
i$H^ XA for some subgroup H of G then H eXA since S e XA implies S e SA for 
finitely generated S so that %H^XA implies %H^ <5A. It follows that XB=XA = 
SB, and thus B is equationally compact. This provides A with an equationally 
compact pure extension, and the general theory referred to in Section 1 provides the 
rest. 

Actually, though, since we have an explicit characterization of pure-essential 
extensions, an explicit description of equationally compact hulls can readily be 
given as follows: Let 9ft be any subset of XA with the following properties: (1) 
Each H e 9ft is maximal in XA, (2) no H e 9ft belongs to SA, (3) every SeXA 
maximal in XA and not in SA is conjugate to exactly one H e 9ft. With this one 
now has : 

PROPOSITION 4. C=AUU.GIH(H e 9ft) is an equationally compact hull of A, 

Proof. Since S R ç ï i C is a pure extension of A, and by Lemma 2 it is a pure-
essential extension in view of the properties of 9ft. Also, SC=XA, for clearly 
SA^SC^XA, and if SeXA does not belong to SA then it has a conjugate 
contained in some H e 9K since XA is inductive (partially ordered by inclusion). 
From the proof of Proposition 3 it now follows that XC= SC, i.e. C is equationally 
compact. 

Given any G-set A, let (3A be the G-set whose elements are the ultrafilters on the 
set underlying A and whose G-action is induced by the action in A. Since the ultra-
filters have a natural topology with which they constitute a compact Hausdorff 
space, and since the s e G provide continuous maps on this, /L4 is the underlying 
G-set of a compact Hausdorff G-space. 

The natural map from a set to the set of its ultrafilters which assigns to each point 
x the fixed ultrafilter at x evidently provides an embedding of G-sets, rj:A->pA. 
For this, the following holds: 

PROPOSITION 5. The embedding rj is pure, and hence a G-set A is equationally 
compact iff it is a retract, by rj, of(3A. 

Proof. We use the criterion for purity given in Lemma 1. For any s e G, we use a 
device from Wenzel [6] to split the underlying set X of A as follows: If the Cy)-
orbit 0 of an element a e A, for the subgroup (s) of G generated by s, is infinite let 

Oi = {s*ka \keN}, 02 = {s^a \keN), 03 = 0 ; 

for finite 0 of even cardinality 2m, let 

Oj = {s2ka | k = 0 , . . . , m - 1 } , 02 = {s2k+1a \ k = 0 , . . . , m - 1 } , 

0 3 = 0 ; 

2 

https://doi.org/10.4153/CMB-1974-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-003-2


16 B. BANASCHEWSKI [March 

finally, for finite 0 of odd cardinality 2m +1 > 1, let 

Oi = {s2ka | k = 0, . . . , m - 1 } , 02 = {s2k+1a \ k = 0, . . . , m - 1 } , 

03 = {22ma}. 

Now take the decomposition X=X0 U Xx U Z2 U X3 where Z0 is the set of fixed 
points of s, and for the (s)-orbits 0 of more than one element Zt- is the union of all 
0;. It is then clear that Xt n sX~0 for i=l, 2, 3; hence, for any ultrafilter % 
with s2I=3I one has X{ $ % for i= 1,2,3 and thus X0 e 21 by the basic properties of 
ultrafilters. It follows immediately from this that any su .. . , sn e G for which 
^51=21 for some ultrafilter 21 have a common fixed point in A. The remainder of 
the proposition is now an obvious consequence of what has already been stated. 

4. A counterexample. The second corollary of Proposition 1 states that all 
homogeneous G-sets are equationally compact for an abelian group G. We shall 
now show that this does not hold for groups in general. To this end, note that a 
G-set GjH, H a subgroup of G, is equationally compact iff a subgroup K of G 
belongs to some conjugate sHs"1 of H whenever each finite subset belongs to some 
conjugate of H. 

The desired counterexample is then obtained as follows: Let X be any infinite 
set, and Z a set disjoint from X with a fixed one-one correspondence F >z>, 
z-^y Fz between Z and the collection of all finite subsets F of X. Let G be the free 
group with basis X U Z, H the subgroup of G generated by the set T=\JZ FJ1 

(finite F^X), and K the subgroup of G generated by X. Clearly, F^z^HzF for 
each finite F^ X, and therefore every finite subset of K also lies in some conjugate 
of H. We have to show that there is no s G G for which X^ sHs"1. 

Suppose there is such an s; then take any x e X and let 

(*) x = sz^z? • • • z / x V 1 ( W T 1 e r , ei = ±1) 

where the product is chosen, among all such products for x, with the least possible 
n. Note that x^x for some /, since otherwise one could substitute all xt by 1 and 
would obtain x= 1, a contradiction. We want to show, moreover, that there is only 
one such /. Let ix<i2<' ' '<im t>e the indices / for which x~x, and write the 

product in (*) as ^ x V ' 2 , * ' V i ^ ' X - Now, if m > l there must be some 
k E {I,. . . , m—l} for which Et =—si and ak=l. To see this we argue via the 
reduced factorizations of elements in G with respect to the basis X U Y, assuming 

£i 

no such k exists : the reduced factorization of a0x
 1a1 clearly has one factor x^ ; 

assume, then, that the reduced factorization of c=a0x ^x*2- • 'at_xx
ltau 1< 

Km—1, has factors x±x and consider ex t+1at+1. Here, if at=l then ei =si by 

assumption, and the reduced factorization of c ends with the factor x * so that no 

cancellation occurs in the product cxtt+1at+1; on the other hand, for atj£\ it is 

clear there is no such cancellation, and it follows that a0x
 1- • -atx

 t+1at+1 has 

https://doi.org/10.4153/CMB-1974-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-003-2


1974] EQUATIONAL COMPACTNESS 17 

t+l factors x±x in its reduced factorization. This proves this assertion for all t= 
1 , . . . , m—l, a contradiction for t=m— 1. 

We now have, for some k, 

zi zi+lxi+l zi+l ' ' ' zhxh zh zh+l = 1 

where i=ik, h=ik+1—1, and eh+1=--si. Here, if h=i then zt=zi+1, and hence 
xi+1 e Z U Z""1, a contradiction; similarly, if A>/ then for one of the occurring 
indices r one has zr=zr+1, xr=xr+1, er=—sr+l so that zrxlrz~1zr+1x

e
r
r^z~l1=l 

which reduces the number n in (*), contrary to the choice of that product. 
This establishes there is only one / such that x~x, and hence x=aQxa1. It follows 

that a0=l, and this shows that \—suzi for some ueH, so that sH=zJ1H and 
hence sHs~1=zJ1Hzi. 

Thus we have obtained that X^ zrxHz for some ZGZ. Now, take xeX such that 
x$Fz, and let x^z-^x^z^1- • -znx*nt£z (Z^ZT1 e T, si=±l) again be a 
representation of x as element oîzrxHz with least possible «. In this, x~x for all /, 
for otherwise the product can be shortened by substituting 1 for an xi9 but then, 
from the argument above, «=1 so that x=z-1z1xz^1a. Finally, zxxz~^ G T shows 
that x eFz ; hence we have z^zx since x $ Fz, but this clearly implies z"xzxxz~^z^x, 
a contradiction. 

In all this proves: 

PROPOSITION 6. There exists a group G with a subgroup H such that the G-set 
G/H is not equationally compact. 

5. Remarks on Af-sets. We conclude with a couple of observations regarding 
Af-sets for monoids M. To begin with, equationally compact hulls do not generally 
exist even though every M-set has equationally compact extensions, the latter 
being, for instance, a consequence of the fact that M-sets have enough injectives 
(Berthiaume [2]), but of course also readily obtained with the aid of ultrafilter 
spaces. A monoid M with an M-set A which does not have an equationally compact 
hull is the free monoid with two basis elements x and y, A having the set N of 
natural numbers as its underlying set, with the action of x and y given such that 
k*> (xk, yk) maps N one-one onto N2—{(k, k)\ k e N}. (Weglorz-Wojciechowska 
[5]). 

Another fact which does not carry over from G-sets to M-sets is Corollary 1 of 
Proposition 1 ; this is an immediate consequence of the following generalization of a 
result of Weglorz [4]. 

PROPOSITION 7. Any left-cancellative monoid M which is equationally compact as 
left M-set is a group. 

Proof. We first show that n snM(n e N) is non-void for any s e M. This is 
obvious if sh=l for some h^O, since s is then invertible, and hence we only have 
to consider s such that sn^l for all n^O. Let S be the submonoid of M generated 
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by s, and take A to be the S-set whose elements are the integers and whose ^-action 
is defined by sm=m+l. For the S-subset B^ A determined by the natural numbers, 
one then has that any finitely generated ^-subset of A can be mapped homomorphi-
cally into B, and this readily implies that the canonical embedding B->AUB is pure. 
Now, M is also an equationally compact 5-set, and hence the homomorphism 
f:B-+M by f(k)=sk extends to a homomorphism g:AUB->M. From the effect of 
g on A, one sees that sng(—n)=g(0) for all n eN, and this shows that g(0) e 
n snM(n e N). 

Next, for any s e M, let (sx) be a sequence in M, defined on all ordinals by 
transfinite induction, such that sxM^. s^M whenever A < / J , s0=s, sx+1 e n sxM(n e 
M), and sx e n s^M^KX) for any limit ordinal A. That the latter intersection is 
indeed always non-void results from equational compactness and the fact that the 
s^M, /^<A, are totally ordered by inclusion : Any finite subset of the set of equations 
SpX^x, (i<2., has a solution, provided by any element of s^M for the largest 
occurring /^, hence the whole set has a solution. It now follows that s^s^ for 
some A>/J,. This implies that sx e 5,

/i+1M= n s^M(n e N), hence sx e slM=s2
xM so 

that 1 e sxM, thus also 1 e sM, i.e. s has a right inverse. Since Mis left-cancellative, 
this shows M is a group. 

Since an equationally compact monoid M is also equationally compact as left 
M-set, it follows from Proposition 5 that any left-cancellative equationally compact 
monoid is a group, which was proved in Weglorz [4]. 

REFERENCES 

1. B. Banaschewski, Injectivity and essential extensions in equational classes of algebras. Pro­
ceedings of the Conference on Universal Algebra, October 1969. Queens University, Kingston, 
Ontario, 1970 (131-147). 

2. P. Berthiaume, The injective envelope ofS-sets. Can. Math. Bull. 10 (1967), 261-274. 
3. R. B. Warfield, Purity and algebraic compactness for modules. Pac. J. Math. 28 (1969), 

699-719. 
4. B. Weglorz, Equationally compact algebras I and III. Fund. Math. 59 (1966), 289-298, and 

Fund. Math. 60 (1967), 89-93. 
5. B. Weglorz and A. Wojciechowska, Summability of pure extensions of relational structures. 

Coll. Math. 19 (1968), 27-35. 
6. G. H. Wenzel, Subdirect irreducibility and equational compactness in unary algebras (A;f). 

Arch. Math. 21 (1970), 256-264. 

MCMASTER UNIVERSITY. 

https://doi.org/10.4153/CMB-1974-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1974-003-2

