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Abstract
We determine the geometric monodromy groups attached to various families, both one-parameter and multi-
parameter, of exponential sums over finite fields, or, more precisely, the geometric monodromy groups of the
ℓ-adic local systems on affine spaces in characteristic 𝑝 > 0 whose trace functions are these exponential sums.
The exponential sums here are much more general than we previously were able to consider. As a byproduct, we
determine the number of irreducible components of maximal dimension in certain intersections of Fermat surfaces.
We also show that in any family of such local systems, say parameterized by an affine space S, there is a dense open
set of S over which the geometric monodromy group of the corresponding local system is a fixed known group.
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1. Introduction

For V a finite dimensional C vector space, 𝐺 ≤ GL(𝑉) a Zariski closed subgroup whose identity
component 𝐺◦ is semisimple, and (𝑎, 𝑏) a pair of non-negative integers, the (𝑎, 𝑏)-moment of G acting
on V, denoted

𝑀𝑎,𝑏 = 𝑀𝑎,𝑏 (𝐺,𝑉),

is defined to be the dimension of the space (𝑉 ⊗𝑎 ⊗ (𝑉∗)⊗𝑏)𝐺 of G-invariants.
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2 N. M. Katz and P. H. Tiep

By Larsen’s Alternative [Ka3, 1.1.6], one knows that if 𝑀2,2 (𝐺,𝑉) = 2, then either G is finite or
𝐺◦ = SL(𝑉). If V is endowed with an orthogonal autoduality and 𝐺 ≤ 𝑂 (𝑉), and if 𝑀2,2 = 3, then
either G is finite or 𝐺◦ = SO(𝑉).1 If V is endowed with a symplectic autoduality, dim(𝑉) ≥ 4, and
𝐺 ≤ Sp(𝑉), then 𝑀2,2 = 3 implies that either G is finite or 𝐺 = Sp(𝑉).

The cases of Larsen’s Alternative in which G is finite and dim(𝑉) ≥ 5 are completely determined
in [GT2, Theorem 1.5]. Two natural questions then occur. Which of these finite groups can be obtained
as the geometric monodromy group of a hypergeometric sheaf on G𝑚 in characteristic 𝑝 > 0? Which
of these finite groups can be obtained as the geometric monodomy group of a family of one-variable
exponential sums?

The kinds of families of one-variable exponential sums in a given characteristic 𝑝 > 0 we have in
mind are these. We fix a prime ℓ ≠ 𝑝 and a nontrivial additive character 𝜓 : F𝑝 → 𝜇𝑝 (Qℓ). [In down
to earth terms, we embed Q(𝜁𝑝) into Qℓ , which amounts to choosing a place of Q(𝜁𝑝) over ℓ. The
expressions we will write down will lie in Q(𝜁𝑝), but we need to view them as lying in Qℓ in order to
apply ℓ-adic cohomology.]

We are given a finite extension 𝑘/F𝑝 , a polynomial 𝑓 (𝑥) ∈ 𝑘 [𝑥], say

𝑓 (𝑥) =
∑
𝑖

𝐴𝑖𝑥
𝑖 ,

of degree 𝑑 ≥ 1 which is Artin-Schreier reduced (meaning that 𝐴𝑖 = 0 whenever 𝑝 |𝑖). Let

1 ≤ 𝑎 < 𝑏

be prime-to-p integers. Suppose that either deg( 𝑓 ) > 𝑏 or that deg( 𝑓 ) < 𝑏. In the case when deg( 𝑓 ) < 𝑏,
we require that f is not a constant multiple of 𝑥𝑎. Another way of expressing this last condition is that
the polynomial 𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥) contains monomials of least 3 different degrees, a condition which is
automatic if deg( 𝑓 ) > 𝑏.

Let 𝜒 be a multiplicative character of 𝑘×. When deg( 𝑓 ) > 𝑏, consider the local system

F ( 𝑓 , 𝑎, 𝑏, 𝜒)

on A2/𝑘 whose trace function is given as follows: for 𝐿/𝑘 a finite extension, and 𝑠, 𝑡 ∈ 𝐿,

Trace(Frob(𝑠,𝑡) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥))𝜒𝐿 (𝑥),

with the usual convention that 𝜒𝐿 (0) = 0 for 𝜒 ≠ 1, but 𝜒𝐿 (0) = 1 for 𝜒 = 1. When deg( 𝑓 ) < 𝑏, we
consider the same local system, but on A1 × G𝑚, since we need t to be invertible in this deg( 𝑓 ) < 𝑏
case. These families are pure of weight zero, and lisse of rank max(deg( 𝑓 ), 𝑏) − 1 when 𝜒 = 1 and of
rank max(deg( 𝑓 ), 𝑏) when 𝜒 ≠ 1. They are geometrically irreducible precisely when

gcd(𝑎, 𝑏, {𝑖 with 𝐴𝑖 ≠ 0}) = 1,

which we will assume in what follows.
As we will see in Theorems 2.3 and 2.6, the 𝑀2,2 for the 𝐺geom of this local system is given by

the answer to what should be an easy question about intersections of Fermat surfaces in P3, with
homogeneous coordinates 𝑥, 𝑦, 𝑧, 𝑤, or equivalently about intersections of their affine cones in A4.
Although this question is motivated by its applications to the determination of monodromy groups, it
turns out that its answer comes from the a priori determination of certain monodromy groups.

1If dim(𝑉 ) = 2 in this orthogonal case, G must be finite, because SO2 is not semisimple.
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Let us first elaborate the Fermat surfaces intersection question, and then make explicit the local
systems to whose monodromy this question is related. For an integer 𝑛 ≥ 1, denote by Σ𝑛,proj ⊂ P3 the
locus

Σ𝑛,proj := {𝑥𝑛 + 𝑦𝑛 − 𝑧𝑛 − 𝑤𝑛 = 0} ⊂ P3

and denote by Σ𝑛 := Σ𝑛,aff ⊂ A4 the locus

Σ𝑛 := {𝑥𝑛 + 𝑦𝑛 − 𝑧𝑛 − 𝑤𝑛 = 0} ⊂ A4.

In what follows, when no confusion is possible, we also denote the polynomial 𝑥𝑛 + 𝑦𝑛 − 𝑧𝑛 −𝑤𝑛 by Σ𝑛.
The intersection Σ𝑎 ∩Σ𝑏 has dimension two. [Equivalently, Σ𝑎,proj ∩Σ𝑏,proj has dimension one. Here is
one argument. Because each of 𝑎, 𝑏 is prime to p, each of Σ𝑎,proj and Σ𝑏,proj is a smooth, geometrically
connected surface. The intersection, viewed as lying in Σ𝑏,proj, is either one-dimensional or it is all of
Σ𝑏,proj. The second case could only occur if the polynomial Σ𝑎 is divisible by Σ𝑏 , which cannot happen,
because 𝑎 < 𝑏. A second argument is this. If the intersection had dimension 2, it would be equal to both
Σ𝑎,proj and to Σ𝑏,proj, and we would get the conclusion that Σ𝑎,proj = Σ𝑏,proj, impossible because their
Qℓ Euler characteristics differ.]

Denote by Σ( 𝑓 , 𝑎, 𝑏) the intersection in A4/F𝑝 of the following affine Fermat threefolds:

Σ𝑎, Σ𝑏 , and every Σ𝑖 with 𝐴𝑖 ≠ 0.

We define Σproj( 𝑓 , 𝑎, 𝑏) to be the intersection in P3 of the projective Fermat surfaces Σ𝑎,proj,Σ𝑏,proj
and every Σ𝑖,proj with 𝐴𝑖 ≠ 0. Then 𝑀2,2 is the number of reduced irreducible components of dimension
one of Σproj( 𝑓 , 𝑎, 𝑏) or, equivalently, the number of reduced irreducible components of dimension two
of Σ( 𝑓 , 𝑎, 𝑏).

The loci Σ( 𝑓 , 𝑎, 𝑏) and Σproj( 𝑓 , 𝑎, 𝑏) depend only on the set S of degrees of the Fermat surfaces
being intersected. Given a set S of prime-to-p positive integers with #𝑆 ≥ 2, let us denote

Σproj(𝑆) :=
⋂
𝑖∈𝑆

Σ𝑖,proj, Σ(𝑆) :=
⋂
𝑖∈𝑆

Σ𝑖 . (1.0.1)

Recall that by assumption, the set S of degrees occurring in Σproj( 𝑓 , 𝑎, 𝑏) satisfies gcd(𝑆) = 1: this is
equivalent to the geometric irreducibility of the family.

Every Fermat surface Σ𝑎,proj contains the two lines (𝑥 = 𝑧, 𝑦 = 𝑤) and (𝑥 = 𝑤, 𝑦 = 𝑧). If a is odd,
Σ𝑎,proj contains the third line (𝑥 = −𝑦, 𝑧 = −𝑤). One knows that in any odd characteristic, the intersection
Σ1,proj ∩ Σ2,proj consists precisely of the two lines (𝑥 = 𝑧, 𝑦 = 𝑤) and (𝑥 = 𝑤, 𝑦 = 𝑧); cf. [Ka3, p. 117].
And one knows that in any characteristic 𝑝 ≠ 3, the intersection Σ1,proj ∩Σ3,proj consists precisely of the
three lines (𝑥 = 𝑧, 𝑦 = 𝑤), (𝑥 = 𝑤, 𝑦 = 𝑧), and (𝑥 = −𝑦, 𝑧 = −𝑤); cf. [Ka4, 3.11.3].

Thus, the question breaks into two natural parts: First, for which sets S with gcd(𝑆) = 1 consisting
only of odd degrees will Σproj(𝑆) have precisely three reduced irreducible components of dimension
one (which would necessarily be the three known lines). There may also be zero-dimensional reduced
irreducible components (i.e., finitely many closed points) outside these lines; these do not affect 𝑀2,2.
Second, for which sets S with gcd(𝑆) = 1 of degrees, at least one of which is even, will Σproj(𝑆) have
precisely two reduced irreducible components of dimension one (which would necessarily be the two
known lines). Again, having finitely many points outside the two known lines does not affect 𝑀2,2.

Our original idea was to attack directly this algebro-geometric question about intersections of Fermat
surfaces, and then use its solution to help determine monodromy groups. But in fact, we turn this
idea on its head: after a good deal of work, we determine the monodromy groups and then use their
determination to give a complete solution to the algebro-geometric question; cf. Theorem 9.2. As one
can see from the solution, the ‘generic’ value of 𝑀2,2 – equivalently, of the number of one-dimensional
irreducible components of the corresponding intersection of Fermat surfaces – is 2 or 3. Nonetheless,
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there are still infinitely many cases with a different value of 𝑀2,2: each of these cases comes out of
specific representations of specific finite groups of Lie type and would have looked mysterious (perhaps
even hidden) had one tried to approach the problem only by algebro-geometric means.

Let us explain how this works. Given a set S of prime to p integers with #𝑆 = 𝑟+1 ≥ 3 and gcd(𝑆) = 1,
enumerate the elements of S, say

𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1, 𝑝 � 𝐴
∏
𝑖

𝐵𝑖 , gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1, (1.0.2)

and consider the corresponding universal family of monic one-variable polynomials whose allowed
degrees are precisely S:

𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 .

We obtain a local system F (𝑆) on A𝑟/F𝑝 whose trace function is given as follows. For 𝑘/F𝑝 a finite
extension, and (𝑡1, . . . , 𝑡𝑟 ) ∈ A𝑟 (𝑘),

Trace(Frob(𝑡1 ,...,𝑡𝑟 ) ,𝑘 |F (𝑆)) = −1
√

#𝑘

∑
𝑥∈𝑘

𝜓𝑘 (𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 ).

Given a multiplicative character 𝜒 of some finite extension 𝑘0/F𝑝 , we also have the local system
F (𝑆, 𝜒) onA𝑟/𝑘0 whose trace function is given as follows. For 𝑘/𝑘0 a finite extension, and (𝑡1, . . . , 𝑡𝑟 ) ∈
A𝑟 (𝑘),

Trace(Frob(𝑡1 ,...,𝑡𝑟 ) ,𝑘 |F (𝑆, 𝜒)) = −1
√

#𝑘

∑
𝑥∈𝑘

𝜓𝑘 (𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 )𝜒𝑘 (𝑥).

In this notation, the above F (𝑆) is just F (𝑆,1).
The local system F (𝑆, 𝜒) is geometrically irreducible, lisse of rank

𝐷 := 𝐴 − 𝛿1,𝜒,

and pure of weight 0. Its geometric monodromy group 𝐺geom,F (𝑆,𝜒) is a Zariski closed subgroup
of GL𝐷/Qℓ whose identity component is semisimple. On the one hand, 𝑀2,2 of the local system
F (𝑆, 𝜒) is the number of reduced irreducible 2-dimensional components of Σ(𝑆) over F𝑝 , on which
L𝜒 (𝑥𝑦) ⊗ L𝜒 (𝑧𝑤) is geometrically trivial; cf. Theorem 2.4. On the other hand, 𝑀2,2 is the 𝑀2,2 for the
given D dimensional representation 𝑉 := F (𝑆, 𝜒)𝜂 of 𝐺 := 𝐺geom,F (𝑆,𝜒) .

The key point is that we can explicitly determine the group 𝐺geom,F (𝑆,𝜒) . This task, in the case the
group is finite, was done in [KT6, Theorem 11.2.3]. One of the main results of this paper, Theorem 7.8,
completes the task in the infinite case. In turn, this allows us to determine 𝑀2,2 for 𝐺geom,F (𝑠,𝜒) , and
thus solve the aforementioned algebro-geometric question about intersections of Fermat hypersurfaces,
in Theorem 9.2.

Once we have these results in hand, a new question arises. Suppose given an S as in (1.0.2),
𝐴 > 𝐵1 > . . . > 𝐵𝑟 , with 𝑟 ≥ 3. Pick two indices in {𝐵1, . . . , 𝐵𝑟 }, say 𝑎 := 𝐵𝑖 < 𝑏 := 𝐵 𝑗 < 𝐴, and
denote by

C := {𝐴, 𝐵1, . . . , 𝐵𝑟 } \ {𝐵𝑖 , 𝐵 𝑗 }

with C enumerated as

𝐴 > 𝐶1 > . . . > 𝐶𝑟−2.
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Suppose further given a finite extension 𝑘/𝑘0 and elements 𝑐𝑖 ∈ 𝑘× for 𝑖 = 1, . . . , 𝑟 − 2. Consider the
local system on A2/𝑘 obtained from F (𝑆, 𝜒) by specializing the coefficient of 𝑥𝐶𝑖 to 𝑐𝑖 . Call it

F ( 𝑓 , 𝑎, 𝑏, 𝜒) = F ( 𝑓 , 𝐵𝑖 , 𝐵 𝑗 , 𝜒),
where 𝑓 (𝑥) := 𝑥𝐴 +

∑𝑟−2
𝑖=1 𝑐𝑖𝑥

𝐶𝑖 , with 𝑐𝑖 ≠ 0, 1 ≤ 𝑖 ≤ 𝑟 − 2.
(1.0.3)

This is the local system on A2/𝑘 whose trace function is given as follows. For 𝐾/𝑘 a finite extension,
and (𝑠, 𝑡) ∈ A2 (𝐾),

Trace
(
Frob(𝑠,𝑡) ,𝐾 |F ( 𝑓 , 𝑎, 𝑏, 𝜒)

)
=

−1
√

#𝐾

∑
𝑥∈𝐾

𝜓𝐾 ( 𝑓 (𝑥) + 𝑠𝑥𝑎 + 𝑡𝑥𝑏)𝜒𝐾 (𝑥),

subject to (1.0.3).
(1.0.4)

By Theorem 2.3 and Corollary 2.5, each such system F ( 𝑓 , 𝐵𝑖 , 𝐵 𝑗 , 𝜒) has the same 𝑀2,2 as the system
F (𝑆, 𝜒). Because F ( 𝑓 , 𝐵𝑖 , 𝐵 𝑗 , 𝜒) is a pullback of F (𝑆, 𝜒), we have the a priori inclusion

𝐺geom,F ( 𝑓 ,𝐵𝑖 ,𝐵 𝑗 ,𝜒) ≤ 𝐺geom,F (𝑆,𝜒) .

In the case when 𝐺geom,F (𝑆,𝜒) is a (known!) finite group, we wish to classify those of its subgroups
which in the given D-dimensional representation have the same 𝑀2,2. We succeed entirely when the
known finite group is (the image of) one of Sp2𝑛 (𝑞), 𝑛 ≥ 1, or SU𝑛 (𝑞), 𝑛 ≥ 3, in a Weil representation,
by showing that, with very few exceptions, the only subgroups with the same 𝑀2,2 are the whole group
itself; see Theorems 8.2 and 8.4. This gives Theorem 11.9. A striking aspect of part (ii) of Theorem
11.9 is that it applies to the relevant F ( 𝑓 , 𝑎, 𝑏, 𝜒) for any f all of whose coefficients are nonzero and
any (𝑎, 𝑏).

We also consider one-parameter specializations of such F (𝑆, 𝜒) – that is, systems F ( 𝑓 , 𝑎, 𝜒) with
trace function as follows: for 𝐾/𝑘 a finite extension and 𝑡 ∈ 𝐾 ,

Trace
(
Frob𝑡 ,𝐾 |F ( 𝑓 , 𝑎, 𝜒)

)
=

−1
√

#𝐾

∑
𝑥∈𝑘

𝜓𝐾 ( 𝑓 (𝑥) + 𝑡𝑥𝑎)𝜒𝐾 (𝑥), subject to (1.0.3). (1.0.5)

In Theorem 11.9, we prove that for given a, the local system F ( 𝑓 , 𝑎, 𝜒) will have the same 𝐺geom as
F (𝑆, 𝜒) for f in a dense open set of the affine space of allowed f ’s.

In the cases when 𝜒 = 1, and𝐺geom,F (𝑆,1) is an extraspecial normalizer, we do not classify subgroups
with the same 𝑀2,2. Nonetheless, we prove that for given (𝑎, 𝑏), the local system F ( 𝑓 , 𝑎, 𝑏,1) will have
the same𝐺geom as F (𝑆,1) for f in a dense open set of the affine space of allowed f ’s; see Theorems 11.7
and 11.8. Again, in this case, we have the same ‘dense open set’ result for one-parameter specializations
F ( 𝑓 , 𝑎,1), with the added wrinkle that the case 𝑎 = 1 behaves quite differently in the extraspecial
normalizer case. In each of the Theorems 11.7, 11.8 and 11.9, there are unknown dense open sets.
It would be of some interest to determine them explicitly.

The main results of this paper include Theorems 7.8, 9.2, 10.1, 11.7, 11.8, 11.9.

2. Moments and point counting

We begin this section with the basic fact about approximating moments by large L limits.

Theorem 2.1. Let k be a finite field of characteristic p, ℓ a prime ℓ ≠ 𝑝, 𝑋/𝑘 a smooth, geometrically
connected scheme of dimension 𝑑 ≥ 1, and F a lisse Qℓ sheaf on X which is 𝜄-pure of weight zero for a
chosen field embedding 𝜄 : Qℓ ↩→ C. For integers 𝑎, 𝑏 ≥ 0, the moment 𝑀𝑎,𝑏 of 𝐺geom,F is

𝑀𝑎,𝑏 = lim sup
finite extensions 𝐿/𝑘

��� 1
#𝑋 (𝐿)

∑
𝑥∈𝑋 (𝐿)

(Trace(Frob𝑥,𝐿 |F))𝑎 (Trace(Frob𝑥,𝐿 |F∨))𝑏
���.

https://doi.org/10.1017/fms.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10062


6 N. M. Katz and P. H. Tiep

Proof. In terms of the auxiliary sheaf

G := (F)⊗𝑎 ⊗ (F∨)⊗𝑏,

which is 𝜄-pure of weight zero, and hence geometrically semisimple (cf. [De2, 3.4.1(iii)]), we have

𝑀𝑎,𝑏 = dim𝐻2𝑑
𝑐 (𝑋𝑘 ,G).

Our asserted formula for this dimension is

lim sup
finite extensions 𝐿/𝑘

��� 1
#𝑋 (𝐿)

∑
𝑥∈𝑋 (𝐿)

Trace(Frob𝑥,𝐿 |G)
���.

By the Lefschetz trace formula, this is

lim sup
finite extensions 𝐿/𝑘

��� 1
#𝑋 (𝐿)

2𝑑∑
𝑖=0

(−1)𝑖Trace(Frob𝐿 |𝐻𝑖
𝑐 (𝑋𝑘 ,G))

���.
By Deligne’s fundamental estimate [De2, 3.4], 𝐻𝑖

𝑐 is 𝜄-mixed of weight ≤ 𝑖, while 𝐻2𝑑
𝑐 is 𝜄-pure of

weight 2𝑑. But #𝑋 (𝐿) = (#𝐿)𝑑 + 𝑂 ((#𝐿)𝑑−1/2), and hence, the 𝐻𝑖
𝑐 summands with 𝑖 < 2𝑑 contribute

0 to the lim sup. So we must prove that dim𝐻2𝑑
𝑐 (𝑋𝑘 ,G) is

lim sup
finite extensions 𝐿/𝑘

��� 1
#𝑋 (𝐿)Trace(Frob𝐿 |𝐻2𝑑

𝑐 (𝑋𝑘 ,G))
���.

If this 𝐻2𝑑
𝑐 vanishes, we are done.

If 𝐻2𝑑
𝑐 is nonzero, the eigenvalues of Frob𝑘 on this 𝐻2𝑑

𝑐 are each of the form (#𝑘)𝑑𝛼𝑖 , for
𝑖 = 1, . . . , dim𝐻2𝑑

𝑐 , and each of these 𝛼𝑖 has complex absolute value |𝛼𝑖 | = 1. Thus, for 𝐿/𝑘 a finite
extension, we have

1
#𝑋 (𝐿)Trace(Frob𝐿 |𝐻2𝑑

𝑐 (𝑋𝑘 ,G)) =
(#𝐿)𝑑
#𝑋 (𝐿)

dim 𝐻 2𝑑
𝑐∑

𝑖=1
(𝛼𝑖)deg(𝐿/𝑘) .

For any 𝐿/𝑘 , this last expression visibly has absolute value at most

(1/#𝑋 (𝐿)) (#𝐿)𝑑dim𝐻2𝑑
𝑐 .

As 𝐿/𝑘 grows, the tuple (𝛼deg(𝐿/𝑘)
1 , . . . , 𝛼

deg(𝐿/𝑘)
dim 𝐻 2𝑑

𝑐
) will, infinitely often, come arbitrarily close to

(1, . . . , 1), while the ratio #𝑋 (𝐿)/(#𝐿)𝑑 has limit 1 as L grows. �

We next give a lemma on counting geometrically irreducible components.

Lemma 2.2. Let k be a finite field, and 𝑋/𝑘 a separated k-scheme of finite type, of dimension 𝑑 ≥ 0. Then

lim sup
finite extensions 𝐿/𝑘

#𝑋 (𝐿)/(#𝐿)𝑑

is the number of geometrically irreducible components of 𝑋𝑘 of dimension d.

Proof. Each geometrically irreducible component of 𝑋𝑘 is defined over some finite extension of k,
so at the expense of replacing k by a finite extension of itself, we reduce to the case where each
geometrically irreducible component Z is defined over k (i.e., is a geometrically irreducible k-scheme of
dimension 𝑒𝑍 ≤ 𝑑). The result then follows from the Lang-Weil estimate, that for each such component
Z, #𝑍 (𝐿) = (#𝐿)𝑒𝑍 +𝑂 ((#𝐿)𝑒𝑍−1/2). �
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Theorem 2.3. Let k be a finite field of characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 , of

degree 𝑑 ≥ 3 which is Artin-Schreier reduced. Let 1 ≤ 𝑎 < 𝑏 < deg( 𝑓 ) be prime to p integers, 𝜒 a
multiplicative character of 𝑘×, and consider the local system F𝜒 on A2/𝑘 whose trace function is given
as follows: for 𝐿/𝑘 a finite extension, and 𝑠, 𝑡 ∈ 𝐿,

Trace(Frob(𝑠,𝑡) ,𝐿 |F𝜒) =
−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥))𝜒𝐿 (𝑥),

with the convention that 1𝐿 (0) = 1, but 𝜒𝐿 (0) = 0 for 𝜒 nontrivial. Consider the set E of exponents
which occur in f:

E := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0}

and the affine locus Σ(𝑆) as defined in (1.0.1) with 𝑆 := {𝑎, 𝑏} ∪ E . Then

𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1) = lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

Moreover, if 𝜒2 ≠ 1 and all integers in S are odd, then

𝑀2,2 (F𝜒) < 𝑀2,2 (F1).

More precisely, 𝑀2,2 (F1) is the number of geometrically irreducible components of dimension one in
Σproj(𝑆), while 𝑀2,2 (F𝜒) is the number of those components on which 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically
trivial.

Proof. Recall that Σ𝑑 denotes the Fermat form 𝑥𝑑 + 𝑦𝑑 − 𝑧𝑑 − 𝑤𝑑 for any 𝑑 ∈ Z≥1. By Theorem 2.1,
𝑀2,2 (F𝜒) is the limsup over L of the sums

1
(#𝐿)2

∑
(𝑥,𝑦,𝑧,𝑤) ∈A4 (𝐿) , Σ𝑎=Σ𝑏=0

𝜓𝐿 ( 𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑧) − 𝑓 (𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤)

=
1

(#𝐿)2

∑
(𝑥,𝑦,𝑧,𝑤) ∈A4 (𝐿) , Σ𝑎=Σ𝑏=0

𝜓𝐿 (
∑
𝑖∈E

𝐴𝑖Σ𝑖 (𝑥, 𝑦, 𝑧, 𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤).

The key observation is that the affine variety

Σ𝑎,𝑏 := {Σ𝑎 = Σ𝑏 = 0}

in A4 is homogeneous, the affine cone over the projective variety Σ𝑎,𝑏,proj ⊂ P3 defined by these same
equations. We may omit the origin (0, 0, 0, 0) ∈ A4 without changing the large L limit. Then we choose,
for each point in Σ𝑎,𝑏,proj(𝐿), a representative (𝑥0, 𝑦0, 𝑧0, 𝑤0) ∈ Σ𝑎,𝑏 (𝐿). Then every point (𝑥, 𝑦, 𝑧, 𝑤)
in Σ𝑎,𝑏 (𝐿) \ {0} is uniquely of the form (𝑟𝑥0, 𝑟 𝑦0, 𝑟𝑧0, 𝑟𝑤0) with 𝑟 ∈ 𝐿× and (𝑥0, 𝑦0, 𝑧0, 𝑤0) ∈ Σ𝑎,𝑏 (𝐿)
a chosen representative. Moreover,

𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤) = 𝜒𝐿 (𝑥0𝑦0) 𝜒̄𝐿 (𝑧0𝑤0).

Thus, we are looking at the limsup over L of the sums

1
(#𝐿)2

∑
(𝑥0, 𝑦0, 𝑧0, 𝑤0)

chosen rep. over 𝐿

𝜒𝐿 (𝑥0𝑦0) 𝜒̄𝐿 (𝑧0𝑤0)
∑
𝑟 ∈𝐿×

𝜓𝐿
(∑
𝑖∈E

𝐴𝑖Σ𝑖 (𝑥0, 𝑦0, 𝑧0, 𝑤0)𝑟 𝑖
)
.
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The innermost sum is 𝑂 (#𝐿)1/2 so long as the polynomial∑
𝑖∈E

𝐴𝑖Σ𝑖 (𝑥0, 𝑦0, 𝑧0, 𝑤0)𝑟 𝑖

in r is not Artin-Schreier trivial. The number of L-valued points on Σ𝑎,𝑏,proj is 𝑂 (#𝐿), so the Artin-
Schreier nontrivial cases contribute 𝑂 ((#𝐿)3/2)/(#𝐿)2 to the sum, and hence contribute 0 to the large
L limit.

Because 𝑓 (𝑥) is Artin-Schreier reduced, the only way the polynomial∑
𝑖∈E

𝐴𝑖Σ𝑖 (𝑥0, 𝑦0, 𝑧0, 𝑤0)𝑟 𝑖

in r can be Artin-Schreier trivial is for every Σ𝑖 (𝑥0, 𝑦0, 𝑧0, 𝑤0) with 𝑖 ∈ E to vanish, in which case the
inner sum is #𝐿 − 1. Thus, our large L limiting sum is

1
(#𝐿)2

∑
(𝑥, 𝑦, 𝑧, 𝑤) ∈ P3 (𝐿),

Σ𝑎 = Σ𝑏 = 0, Σ𝑖 = 0, ∀𝑖 ∈ E

(#𝐿 − 1)𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤).

We break the domain of summation into finitely many closed points and the one-dimensional
geometrically irreducible components Z of the projective variety Σproj(𝑆) defined by

Σ𝑎 = Σ𝑏 = 0, Σ𝑖 = 0, ∀𝑖 ∈ E ,

each of which is defined over some finite extension of k. At the expense of enlarging k, we may assume
each Z is defined over k. Then

#𝑍 (𝐿) = #𝐿 +𝑂 (
√

#𝐿).

So our lim sup is the lim sup of the sum∑
1-dim irred. compt’s 𝑍

1
(#𝐿)2

∑
(𝑥,𝑦,𝑧,𝑤) ∈𝑍 (𝐿)

(#𝐿 − 1)𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤).

When 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically trivial on (the dense open set where 𝑥𝑦𝑧𝑤 ≠ 0 of) Z, this sum over
Z contributes 1 to the lim sup, while if 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically nontrivial on (the dense open set
where 𝑥𝑦𝑧𝑤 ≠ 0 of) Z, it contributes 0 to the limsup. Thus, we have

𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1) = lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

So 𝑀2,2 (F1) is the number of geometrically irreducible components of dimension one in Σproj(𝑆),
while 𝑀2,2 (F𝜒) is the number of those components on which 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically trivial.

Now assume that all integers in S are odd. Then Σproj(𝑆) contains the line 𝑥 + 𝑦 = 0 = 𝑧 + 𝑤. For any
character 𝜒 of 𝑘×, the sum of 𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤) over this line is #𝐿 − 1 if 𝜒2 = 1 and 0 otherwise. Thus,
if 𝜒2 ≠ 1, this line is an irreducible component on which 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically nontrivial, and
hence the asserted inequality

𝑀2,2 (F𝜒) < 𝑀2,2 (F1)

if 𝜒2 ≠ 1. �

For ease of later reference, we given a slight generalization of this last result.
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Theorem 2.4. Let k be a finite field of characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 , of

degree 𝑑 ≥ 3 which is Artin-Schreier reduced (meaning that 𝐴𝑖 = 0 if 𝑝 |𝑖). Let 𝑛 ≥ 2, and let

1 ≤ 𝑏1 < 𝑏2 < . . . < 𝑏𝑛 < deg( 𝑓 )

be prime to p integers, 𝜒 a multiplicative character of 𝑘×, and consider the local system F𝜒 on A𝑛/𝑘
whose trace function is given as follows: for 𝐿/𝑘 a finite extension, and (𝑡1, . . . , 𝑡𝑛) ∈ 𝐿𝑛,

Trace(Frob(𝑡1 ,...,𝑡𝑛) ,𝐿 |F𝜒) =
−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (Σ𝑖𝑡𝑖𝑥
𝑏𝑖 + 𝑓 (𝑥))𝜒𝐿 (𝑥),

with the convention that 1𝐿 (0) = 1, but 𝜒𝐿 (0) = 0 for 𝜒 nontrivial. Consider the set E of exponents
which occur in f:

E := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0}

and the affine locus Σ(𝑆) as defined in (1.0.1) with 𝑆 := {𝑏1, . . . , 𝑏𝑛} ∪ E . Then

𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1) = lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

Moreover, if 𝜒2 ≠ 1 and all integers in S are odd, then

𝑀2,2 (F𝜒) < 𝑀2,2 (F1).

More precisely, 𝑀2,2 (F1) is the number of geometrically irreducible components of dimension one in
Σproj(𝑆), while 𝑀2,2 (F𝜒) is the number of those components on which 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is geometrically
trivial.

Proof. The proof is essentially identical to that of the previous Theorem 2.3, which is the case 𝑛 = 2.
Let us denote

𝐵 := {𝑏1, . . . , 𝑏𝑛}.

The role of Σ𝑎,𝑏 there is played by Σ𝐵 := ∩𝑖Σ𝑏𝑖 here. The affine variety Σ𝐵 is homogeneous, the
affine cone over the projective variety Σ𝐵,proj defined by the same equations. Because 𝑛 ≥ 2, the
projective variety Σ𝐵,proj has dimension at most one (i.e., all its geometrically irreducible components
have dimension ≤ 1), so over any finite extension, 𝐿/𝑘 has 𝑂 (#𝐿)𝐿-valued points. From here on, the
proof is identical. �

Corollary 2.5. In the setting of Theorem 2.3, with 𝑆 := E ∪ {𝑎, 𝑏}, write S as

𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1

with 𝑟 ≥ 2. Consider the local system F (𝑆, 𝜒) onA𝑟 , whose trace function is given as follows: For 𝑘/𝑘0
a finite extension, and (𝑡1, . . . , 𝑡𝑟 ) ∈ A𝑟 (𝑘),

Trace(Frob(𝑡1 ,...,𝑡𝑟 ) ,𝑘 |F (𝑆, 𝜒)) = −1
√

#𝑘

∑
𝑥∈𝑘

𝜓𝑘 (𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 )𝜒𝑘 (𝑥).

It is lisse of rank 𝐷 := 𝐴 − 𝛿1,𝜒 and pure of weight zero. [It is geometrically irreducible if and only if
gcd(𝑆) = 1, but that is irrelevant here.] Then F ( 𝑓 , 𝑎, 𝑏, 𝜒) has the same 𝑀2,2 as F (𝑆, 𝜒).

Proof. That F (𝑆, 𝜒) has its 𝑀2,2 given by the same recipe, purely in terms of the data (𝑆, 𝜒), as did
F ( 𝑓 , 𝑎, 𝑏, 𝜒), is the special case 𝑓 (𝑥) = 𝑥𝐴, 𝑛 = 𝑟 , and 𝑏𝑖 = 𝐵𝑟+1−𝑖 , of Theorem 2.4. �
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Theorem 2.6. Let k be a finite field of characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 ,

of degree 𝑑 ≥ 1 which is Artin-Schreier reduced. Let 1 ≤ 𝑎 < 𝑏 be prime to p integers, and suppose
deg( 𝑓 ) < 𝑏. For 𝜒 a character of 𝑘×, consider the local system F𝜒 on (A1 × G𝑚)/𝑘 whose trace
function is given as follows: for 𝐿/𝑘 a finite extension, and 𝑠 ∈ 𝐿, 𝑡 ∈ 𝐿×,

Trace(Frob(𝑠,𝑡) ,𝐿 |F𝜒) =
−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥))𝜒𝐿 (𝑥),

with the convention that 1𝐿 (0) = 1, but 𝜒𝐿 (0) = 0 for 𝜒 nontrivial. Consider the set E of exponents
which occur in f:

E := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0}

and the affine locus Σ(𝑆) as defined in (1.0.1) with 𝑆 := {𝑎, 𝑏} ∪ E .

(i) Suppose that 𝑓 (𝑥) is not of the form (nonzero constant)𝑥𝑎. Then

𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1) = lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

Moreover, if 𝜒2 ≠ 1 and all integers in S are odd, then

𝑀2,2 (F𝜒) < 𝑀2,2 (F1).

More precisely, 𝑀2,2 (F1) is the number of geometrically irreducible components of dimension
one in Σproj(𝑆), while 𝑀2,2 (F𝜒) is the number of those components on which 𝜒(𝑥𝑦) 𝜒̄(𝑧𝑤) is
geometrically trivial.

(ii) Suppose that 𝑓 (𝑥) = (nonzero constant)𝑥𝑎. If 𝜒 = 1, then

𝑀2,2 (F1) = −1 + lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 ,

while for 𝜒 ≠ 1, we have

𝑀2,2 (F𝜒) ≤ lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

Moreover, if 𝑎, 𝑏 are both odd, and 𝜒2 ≠ 1, we have

𝑀2,2 (F𝜒) < lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

Proof. By Theorem 2.1 and the argument of Theorem 2.3, 𝑀2,2 forF𝜒 is the lim sup over L of 1
(#𝐿) (#𝐿−1)

times ∑
𝑠∈𝐿,𝑡 ∈𝐿×

1
(#𝐿)2

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿

𝜓𝐿 (𝑠Σ𝑎 + 𝑡Σ𝑏 + 𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑧) − 𝑓 (𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤).

If the summation were over all (𝑠, 𝑡) ∈ 𝐿2, this would be

1
(#𝐿) (#𝐿 − 1)

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿, Σ𝑎=Σ𝑏=0

𝜓𝐿 ( 𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑧) − 𝑓 (𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤),

https://doi.org/10.1017/fms.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10062


Forum of Mathematics, Sigma 11

and just as in the proof of Theorem 2.3, we would get

𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1) = lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

However, the summation is only over (𝑠, 𝑡) ∈ 𝐿× 𝐿×. So we must subtract, for each 𝐿/𝑘 , the expression

1
(#𝐿) (#𝐿 − 1)

∑
𝑠∈𝐿

1
(#𝐿)2

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿

𝜓𝐿 (𝑠Σ𝑎 + 𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑧) − 𝑓 (𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤)

=
1

(#𝐿)2 (#𝐿 − 1)

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿, Σ𝑎=0

𝜓𝐿 ( 𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑧) − 𝑓 (𝑤))𝜒𝐿 (𝑥𝑦) 𝜒̄𝐿 (𝑧𝑤).

So long as 𝑓 (𝑥) contains monomials of degree 𝑒𝑖 ≠ 𝑎, the ray calculation used in the proof of
Theorem 2.3 shows that this limit (not just lim sup) vanishes. The assertion about 𝜒2 ≠ 1 is proven
exactly as in Theorem 2.3.

Suppose now that 𝑓 (𝑥) is a constant multiple of 𝑥𝑎 and 𝜒 = 1. Then the term we are subtracting is
equal to

1
(#𝐿)2 (#𝐿 − 1)

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿, Σ𝑎=0

𝜓𝐿 (0) = #Σ𝑎 (𝐿)/((#𝐿)2 (#𝐿 − 1)),

which tends to 1 as L grows, simply because Σ𝑎 is the affine cone over the smooth surface Σ𝑎,proj.
Suppose finally that 𝑓 (𝑥) is a constant multiple of 𝑥𝑎 and 𝜒 ≠ 1. Then the sum we are subtracting is

1
(#𝐿)2 (#𝐿 − 1)

∑
𝑥,𝑦,𝑧,𝑤 ∈𝐿, 𝑥𝑦𝑧𝑤≠0, Σ𝑎=0

𝜒𝐿 (𝑥𝑦/𝑧𝑤).

This sum will be 𝑂 (1/
√

#𝐿), and thus have large L limit zero, if the Kummer sheaf L𝜒 (𝑥𝑦/𝑧𝑤) is
geometrically nontrivial on the dense open set U of Σ𝑎,proj where 𝑥𝑦𝑧𝑤 is invertible. Thus, U is the
open set in the affine surface 𝑥𝑎 + 𝑦𝑎 = 𝑧𝑎 + 1 where 𝑥𝑦𝑧 is invertible, and our sheaf is L𝜒 (𝑥𝑦/𝑧) on U.
We will show that this sheaf has a geometrically nontrivial pullback.

Choose an element 𝛼 ∈ F𝑝2 \ F𝑝 , and 𝛽 with 𝛽𝑎 = 𝛼. It suffices to show the pullback of L𝜒 (𝑥𝑦/𝑧) to
the closed subscheme 𝑦 = 𝛽 of U is geometrically nontrivial. This pullback is L𝜒 (𝛽𝑥/𝑧) , on the open set
of the curve

C : 𝑥𝑎 + 𝛼 = 𝑧𝑎 + 1

where 𝑥𝑧 is invertible. But the function 𝛽𝑥/𝑧 on C has a simple zero at each point (0, 𝛾) with 𝛾 one of
the a distinct roots of the polynomial 𝑇𝑎 = 𝛼 − 1. Hence, L𝜒 (𝛽𝑥/𝑧) is geometrically nontrivial on C.

So in this case when 𝑓 (𝑥) is a constant multiple of 𝑥𝑎 and 𝜒 ≠ 1, we have

𝑀2,2 (F𝜒) ≤ lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 .

[Of course, in this case, the set 𝑆 = {𝑎, 𝑏}.] The argument in the proof of Theorem 2.3 shows that if 𝑎, 𝑏
are both odd, but 𝜒2 ≠ 1, then

𝑀2,2 (F𝜒) < lim sup
#𝐿→∞

#Σ(𝑆) (𝐿)
(#𝐿)2 . �

The following result explains the moment drop for some local systems.
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Theorem 2.7. Let k be a finite field of odd characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 ,

of degree 𝑑 ≥ 1 which is Artin-Schreier reduced. Let 1 ≤ 𝑎 < 𝑏 be prime to p integers, and suppose
deg( 𝑓 ) ≠ 𝑏. Consider the local system F on (A1 ×G𝑚)/𝑘 whose trace function is given as follows: for
𝐿/𝑘 a finite extension, and 𝑠 ∈ 𝐿, 𝑡 ∈ 𝐿×,

Trace(Frob(𝑠,𝑡) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥)).

Suppose further that f is odd (i.e., that 𝑓 (−𝑥) = − 𝑓 (𝑥)), that f is not a constant multiple of 𝑥𝑎, and
that both 𝑎, 𝑏 are odd. Let 𝑔(𝑥) ∈ 𝑘 [𝑥], say 𝑔(𝑥) =

∑
𝑖 𝐵𝑖𝑥

𝑖 , of degree 𝑒 ≥ 1 which is Artin-Schreier
reduced. Consider the local system G on (A1 ×G𝑚)/𝑘 whose trace function is given as follows: for 𝐿/𝑘
a finite extension, and 𝑠 ∈ 𝐿, 𝑡 ∈ 𝐿×,

Trace(Frob(𝑠,𝑡) ,𝐿 |G) =
−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥) + 𝑔(𝑥2)).

Then 𝑀2,2 (G) ≤ 𝑀2,2 (F) − 1.

Proof. Consider the set E 𝑓 of exponents which occur in f :

E 𝑓 := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0}

and 𝑆 𝑓 := {𝑎, 𝑏} ∪ E 𝑓 .
Consider also the set E 𝑓 ,+ of exponents with occur in 𝑓 (𝑥) + 𝑔(𝑥2):

E 𝑓 ,+ := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0} ∪ {2 𝑗 , 𝐵 𝑗 ≠ 0}

and 𝑆 𝑓 ,+ := {𝑎, 𝑏} ∪ E 𝑓 ,+. Then from Theorems 2.3 and 2.6, we know that

𝑀2,2 (F) = lim sup
#𝐿→∞

#Σ(𝑆 𝑓 ) (𝐿)
(#𝐿)2 .

𝑀2,2 (G) = lim sup
#𝐿→∞

#Σ(𝑆 𝑓 ,+)(𝐿)
(#𝐿)2 .

As 𝑆 𝑓 ⊂ 𝑆 𝑓 ,+, we trivially have 𝑀2,2 (G) ≤ 𝑀2,2 (F). Because 𝑆 𝑓 consists entirely of odd integers,
among the two-dimensional geometrically irreducible components ofΣ(𝑆 𝑓 ) is the locus 𝑥+𝑦 = 0 = 𝑧+𝑤.

It suffices to show that this locus 𝑥 + 𝑦 = 0 = 𝑧 + 𝑤 does not lie in Σ(𝑆 𝑓 ,+). Indeed, 𝑆 𝑓 ,+ contains
some nonzero even integer 2 𝑗 , and hence, Σ(𝑆 𝑓 ,+) lies inside the hypersurface of equation 𝑥2 𝑗 + 𝑦2 𝑗 =
𝑧2 𝑗 + 𝑤2 𝑗 . So it suffices to show that the locus 𝑥 + 𝑦 = 0 = 𝑧 + 𝑤 does not lie in this hypersurface. The
intersection of this hypersurface with the locus 𝑥 + 𝑦 = 0 = 𝑧 + 𝑤 is the locus in (𝑥, 𝑧) space defined
by 𝑥2 𝑗 + (−𝑥)2 𝑗 = 𝑧2 𝑗 + (−𝑧)2 𝑗 . As we are in odd characteristic, this intersection is the locus 𝑥2 𝑗 = 𝑧2 𝑗 ,
which is the union of 2 𝑗 lines. �

3. 𝑀2,2 and resultants

We will need the following property of resultants, which is well known:

Lemma 3.1. Let R, S be commutative rings, 𝑓 , 𝑔 ∈ 𝑅[𝑥], and let 𝜑 : 𝑅 → 𝑆 be a ring homomorphism.

(i) If 𝜑(Res( 𝑓 , 𝑔)) ≠ 0, then Res(𝜑( 𝑓 ), 𝜑(𝑔)) (computed as the resultant of two polynomials in 𝑆[𝑥])
is also nonzero.

(ii) If 𝜑 preserves the degree of each of f and g, then Res(𝜑( 𝑓 ), 𝜑(𝑔)) ≠ 0 implies 𝜑(Res( 𝑓 , 𝑔)) ≠ 0.
(iii) If S is an integral domain and 𝜑 preserves the degree of at least one of f and g, then

Res(𝜑( 𝑓 ), 𝜑(𝑔)) ≠ 0 if and only if 𝜑(Res( 𝑓 , 𝑔)) ≠ 0.
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Proof. (i) Assume that 𝜑(Res( 𝑓 , 𝑔)) ≠ 0. Let 𝑓 (𝑥) be of degree d and with leading term 𝑎𝑥𝑑 , and let
𝑔(𝑥) be of degree e and with leading term 𝑏𝑥𝑒. Suppose that 𝜑(𝑎) = 𝜑(𝑏) = 0, so that 𝜑( 𝑓 ) ∈ 𝑆[𝑥] has
degree < 𝑑 and 𝜑(𝑔) ∈ 𝑆[𝑥] has degree < 𝑒. In this case, 𝜑(Res( 𝑓 , 𝑔)) = 0, a contradiction. So we
may assume that 𝜑(𝑎) ≠ 0, so that 𝜑( 𝑓 ) ∈ 𝑆[𝑥] has degree d. Now, if 𝜑(𝑔) has degree 𝑒′ ≤ 𝑒, then

𝜑(Res( 𝑓 , 𝑔)) = ±𝜑(𝑎)𝑒−𝑒′Res(𝜑( 𝑓 ), 𝜑(𝑔)), (3.1.1)

and hence, Res(𝜑( 𝑓 ), 𝜑(𝑔)) ≠ 0.
(ii) follows from (3.1.1) (with 𝑒′ = 𝑒).
(iii) follows from (i), (3.1.1), and the assumption that S is an integral domain. �

Fix a prime p. First we look at any set Q := {𝑞1 < . . . < 𝑞𝑛} of 𝑛 ≥ 1 positive powers of p, and
consider

𝜇𝑡𝑜𝑡𝑎𝑙 (Q) :=
⋂

1≤𝑖≤𝑛
{𝜁 ∈ F𝑝 |𝜁𝑞𝑖−1 = (−1) 𝑝}. (3.1.2)

In the special case of characteristic 𝑝 = 2, we have (−1) 𝑝 = 1, and so

𝜇𝑡𝑜𝑡𝑎𝑙 (Q) = 𝜇gcd𝑛𝑖=1 (𝑞𝑖−1) . (3.1.3)

The following observation is helpful in computing 𝜇𝑡𝑜𝑡𝑎𝑙 (Q).

Lemma 3.2. Let 𝑛 ≥ 2, p any prime, 𝑞 = 𝑝 𝑓 , 𝑞𝑖 = 𝑞𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛, and 𝑚1 < . . . < 𝑚𝑛. Also let
𝑒 := gcd(𝑚1, . . . , 𝑚𝑛). Then

#𝜇𝑡𝑜𝑡𝑎𝑙 (Q) =
⎧⎪⎪⎨⎪⎪⎩
𝑞𝑒 − 1, 𝑝 = 2,
𝑞𝑒 − 1, 𝑝 > 2 and 2 � (𝑚𝑖/𝑒) for all 𝑖,
0, 𝑝 > 2 and 2| (𝑚𝑖/𝑒) for some 𝑖.

Proof. The statement is obvious when 𝑝 = 2, so we will assume 𝑝 > 2. Replacing q by 𝑞𝑒, we may
assume that gcd(𝑚1, . . . , 𝑚𝑛) = 𝑒 = 1. Suppose 2|𝑚𝑖 , 2 � 𝑚 𝑗 , and 𝜁 ∈ 𝜇𝑡𝑜𝑡𝑎𝑙 (Q). Since 𝜁𝑞

𝑚𝑗−1 = −1
and 𝑚 𝑗 is odd, we see that the 2-part 2 𝑓 of the order of 𝜁 is 2(𝑞𝑚 𝑗 − 1)2 = 2(𝑞 − 1)2, twice the 2-part of
𝑞 − 1. As 𝑝 > 2, 2 𝑓 divides (𝑞2 − 1)2, which in turn divides 𝑞𝑚𝑖 − 1 because 2|𝑚𝑖 , and this contradicts
the equality 𝜁𝑞𝑚𝑖−1 = −1.

Assume now that 2 � 𝑚𝑖 for all i, so that 2 � (𝑞𝑚𝑖 − 1)/(𝑞 − 1), and choose a primitive (2𝑞 − 2)th

root of unity 𝜃 ∈ F𝑝 . Then −1 = 𝜃𝑞−1 = 𝜃𝑞
𝑚𝑖−1, and hence, 𝜁 ∈ 𝜇𝑡𝑜𝑡𝑎𝑙 (Q) if and only if (𝜁𝜃)𝑞𝑚𝑖−1 = 1

for all i. There are exactly

gcd
(
𝑞𝑚1 − 1, . . . , 𝑞𝑚𝑛 − 1

)
= 𝑞gcd(𝑚1 ,...,𝑚𝑛) − 1 = 𝑞 − 1

possibilities for such 𝜁𝜃. �

For any 𝑎 ∈ Z≥2, let

M𝑝 (𝑎) :=
{
𝐴 ∈ F𝑝

× | ∀ 𝑗 , 2 ≤ 𝑗 ≤ 𝑎,
(
𝑎

𝑗

) (
(𝐴 + 1) 𝑗 − 𝐴 𝑗 − 1

)
= 0

}
. (3.2.1)

Note that M𝑝 (𝑎) is finite (by looking at the condition at 𝑗 = 𝑎) if 𝑝 � 𝑎. In fact, M𝑝 (2) = ∅ if 𝑝 > 2,
M𝑝 (3) = ∅ if 𝑝 > 3; more generally, M𝑝 (𝑎) = ∅ if 2 ≤ 𝑎 < 𝑝 or if 𝑝 � 𝑎(𝑎 − 1). As we will see in
the proof of Proposition 3.3 (see (3.3.6)), for 𝑞 = 𝑝 𝑓 , we have

M𝑝 (𝑞 + 1) = 𝜇𝑡𝑜𝑡𝑎𝑙 ({𝑞}) = {𝐴 ∈ F𝑝
× | 𝐴𝑞−1 = −1}.
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We also set

𝐹𝑎 (𝐴, 𝑣) :=
(
(𝐴 + 1)𝑣 + 1

)𝑎 − (𝐴𝑣 + 1)𝑎 − (𝑣 + 1)𝑎 + 1
𝐴𝑣2 ∈ F𝑝 [𝐴, 𝑣] .

Keep the notation

Σ𝑎 := 𝑥𝑎 + 𝑦𝑎 − 𝑧𝑎 − 𝑤𝑎 ∈ F𝑝 [𝑥, 𝑦, 𝑧, 𝑤] .

Recall that for a positive integer n, its prime to p part 𝑛𝑝′ is the prime to p integer such that 𝑛 = 𝑝𝑒𝑛𝑝′

for some 𝑒 ≥ 0.

Proposition 3.3. Let 2 ≤ 𝑏 < 𝑐 be integers coprime to p. For finite extensions 𝐿/F𝑝 , the following
statements hold for the set Σ(𝐿) of L-points of the surface

Σ : Σ1 = Σ𝑏 = Σ𝑐 = 0

of A4 (𝑥, 𝑦, 𝑧, 𝑤).

(i) lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 ≥ 2 + #
(
M𝑝 (𝑏) ∩M𝑝 (𝑐)

)
.

(ii) If the resultant 𝑅(𝐴) := Res𝑣 (𝐹𝑏 (𝐴, 𝑣), 𝐹𝑐 (𝐴, 𝑣)) of the polynomials 𝐹𝑏 (𝐴, 𝑣) and 𝐹𝑐 (𝐴, 𝑣) in
the variable v is not identically zero as a function of A, then

lim
#𝐿→∞

#Σ(𝐿)/(#𝐿)2 = 2 + #
(
M𝑝 (𝑏) ∩M𝑝 (𝑐)

)
.

(iii) If 𝑏 = 2 < 𝑝, then lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 = 2.
(iv) If 𝑏 = 3 < 𝑝, then lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 equals 2 when 2|𝑐 and 3 when 2 � 𝑐.
(v) The equality in (ii) holds if 𝑏 = 𝑝 𝑓 + 1.

(vi) Suppose gcd
(
(𝑏 − 1)𝑝′ , (𝑐 − 1)𝑝′

)
= 1. Then 𝑅(𝐴) � 0, and hence, the equality in (ii) holds.

(vii) If gcd(𝑏 − 1, 𝑐 − 1) = 1, then lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 = 2.
(viii) If gcd

(
(𝑏 − 1)𝑝′ , (𝑐 − 1)𝑝′

)
= 1, 𝑝 > 2, and (𝑏 − 1)𝑝 = 𝑝 𝑓 𝑚, (𝑐 − 1)𝑝 = 𝑝 𝑓 𝑛 with 𝑓 , 𝑚, 𝑛 ∈ Z≥1,

gcd(𝑚, 𝑛) = 1, and 2|𝑚𝑛, then we also have lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 = 2.

Proof. For (i), consider any point 𝑃 = (𝑥, 𝑦, 𝑧, 𝑤) ∈ Σ(𝐿). Then 𝑥 + 𝑦 = 𝑧 + 𝑤. Certainly, Σ contains
the two planes

(𝑥 = 𝑧, 𝑦 = 𝑤) and (𝑥 = 𝑤, 𝑦 = 𝑧)

which contribute 2(#𝐿)2 − #𝐿 points to Σ(𝐿). So we have to count the points 𝑃 ∈ Σ(𝐿) for which
𝑧 ≠ 𝑥, 𝑦. For these points, we can use the parametrization

𝑥 = (𝐴 + 1)𝑧 − 𝐴𝑦 = (𝐴 + 1)𝑢 + 𝑦, 𝑧 = 𝑦 + 𝑢, 𝑤 = 𝐴𝑧 − (𝐴 − 1)𝑦 = 𝐴𝑢 + 𝑦, (3.3.1)

for P in terms of 𝐴, 𝑢, 𝑦, where 𝑢 := 𝑧 − 𝑦 ≠ 0 and 𝐴 := (𝑥 − 𝑧)/(𝑧 − 𝑦) ≠ 0. The condition Σ𝑏 (𝑃) = 0
now reads (

(𝐴 + 1)𝑢 + 𝑦
)𝑏 + 𝑦𝑏 − (𝑦 + 𝑢)𝑏 − (𝐴𝑢 + 𝑦)𝑏 = 0. (3.3.2)

First, we look at such points P with 𝑦 = 0. Since 𝑢 ≠ 0, (3.3.2) implies (𝐴 + 1)𝑏 − 𝐴𝑏 − 1 = 0. The
leading term of this polynomial equation in A is 𝑏𝐴𝑏−1. Since 𝑝 � 𝑏, there are at most 𝑏 − 1 such A’s,
which contributes at most (𝑏 − 1)#𝐿 points to Σ(𝐿). This dies in the large L-limit.

So we may now assume 𝑦 ≠ 0, and replace (𝐴, 𝑦, 𝑢) by (𝐴, 𝑦, 𝑣), where 𝑣 := 𝑢/𝑦 ≠ 0. Since 𝑦 ≠ 0,
now (3.3.2) becomes (

(𝐴 + 1)𝑣 + 1
)𝑏 − (𝐴𝑣 + 1)𝑏 − (𝑣 + 1)𝑏 + 1 = 0. (3.3.3)
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Note that the coefficient for 𝑣 𝑗 in the left-hand side of (3.3.3) is(
𝑏

𝑗

) (
(𝐴 + 1) 𝑗 − 𝐴 𝑗 − 1

)
when 2 ≤ 𝑗 ≤ 𝑏, and 0 if 𝑗 = 0, 1. So the condition 𝑃 ∈ Σ(𝐿) now reads

𝐹𝑏 (𝐴, 𝑣) = 𝐹𝑐 (𝐴, 𝑣) = 0. (3.3.4)

Furthermore, if 𝐴 ∈ M𝑝 (𝑏), then (3.3.3) is vacuously true. Hence, if

𝐴 ∈ M𝑝 (𝑏) ∩M𝑝 (𝑐),

then (3.3.4) is vacuously true, and each A contributes (#𝐿 − 1)2 points to Σ(𝐿) with 𝑦, 𝑣 ≠ 0, which do
not belong to the two planes (𝑥 = 𝑧, 𝑦 = 𝑤) and (𝑥 = 𝑤, 𝑦 = 𝑧). This yields the lower bound in (i).

Now we look at 𝐴 ∉ M𝑝 (𝑏) ∩ M𝑝 (𝑐), and assume that 𝑅(𝐴) � 0 as a function of A. Applying
Lemma 3.1 to the specialization homomorphism 𝐴 ↦→ 𝛾 at any point 𝛾 where 𝑅(𝛾) ≠ 0, we see
that (3.3.4) has no solution v when 𝐴 = 𝛾. Thus, (3.3.4) can have solutions in v only at 𝐴 = 𝛾 with
𝑅(𝛾) = 0. This implies that the number of A for which (3.3.4) has a common solution in v is bounded
independently of L (in fact by 2𝑏𝑐, an upper bound for the degree of 𝑅(𝐴)). If 𝐴 ∉ M𝑝 (𝑏) for instance,
then 𝐹𝑏 (𝐴, 𝑣) is a nonzero polynomial in v, and hence has at most b zeros once A is fixed. Thus, each
such A contributes at most max(𝑏, 𝑐) (#𝐿 − 1) points to Σ(𝐿) (with y running), and again this dies in the
large L-limit. This proves the equality in (ii).

Suppose 𝑏 = 2 < 𝑝. Then 𝐹2 (𝐴, 𝑣) = 2, and hence, (3.3.4) has no solutions. Furthermore,
M𝑝 (2) = ∅, proving (iii).

Suppose 𝑏 = 3 < 𝑝. Then 𝐹3 (𝐴, 𝑣) = 3((𝐴 + 1)𝑣 + 2). Hence, (3.3.4) is equivalent to (𝐴 + 1)𝑣 = −2
and (−1)𝑐 − (−𝑣 − 1)𝑐 − (𝑣 + 1)𝑐 + 1 = 0. If 2|𝑐, this shows that (𝑣 + 1)𝑐 = 1. Thus, there are at most c
pairs (𝐴, 𝑣) that satisfy (3.3.4), contributing at most 𝑐(#𝐿 − 1) points to Σ(𝐿), and this dies in the large
L-limit. Suppose 2 � 𝑐. This argument then shows that there are exactly #𝐿 − 2 pairs (𝐴, 𝑣) that satisfy
(3.3.4) and 𝐴, 𝑣 ≠ 0 (namely, one for each 𝑣 ≠ 0,−2). This gives (#𝐿 − 1) (#𝐿 − 2) more points to Σ(𝐿),
proving (iv).

Next, suppose that 𝑏 = 𝑞 + 1 with 𝑞 := 𝑝 𝑓 ≥ 𝑝. Then (3.3.3) becomes

(𝐴𝑞 + 𝐴)𝑣𝑞+1 = 0, (3.3.5)

which shows that

𝐴 ∈ M𝑝 (𝑞 + 1) if and only if 𝐴𝑞−1 = −1, (3.3.6)

that is, 𝐴 ∈ 𝜇𝑡𝑜𝑡𝑎𝑙 ({𝑞}). Now, if 𝐴 ∉ M𝑝 (𝑏), then (3.3.5) has no solution since 𝑣 ≠ 0, and hence,
(3.3.3), respectively (3.3.4), has no solution. If 𝐴 ∈ M𝑝 (𝑏) \M𝑝 (𝑐), then we have at most 𝑏−2 = 𝑞−1
possibilities for A, for each of which 𝐹𝑐 (𝐴, 𝑣) = 0 yields at most c possibilities for v. This contributes at
most (𝑏 − 2)𝑐(#𝐿 − 1) points to Σ(𝐿), and this dies in the large L-limit. Hence, we have to count only
the A’s in M𝑝 (𝑏) ∩M𝑝 (𝑐), and hence, (v) holds.

For (vi), note that the coefficient for 𝑣 𝑗−2 in 𝐹𝑏 (𝐴, 𝑣) is

1
𝐴

(
𝑏

𝑗

) (
(𝐴 + 1) 𝑗 − 𝐴 𝑗 − 1

)
≡ 𝑗

(
𝑏

𝑗

)
= 𝑏

(
𝑏 − 1
𝑗 − 1

)
(mod 𝐴)

when 2 ≤ 𝑗 ≤ 𝑏. Hence,

𝐹𝑏 (0, 𝑣) = 𝑏
𝑏∑
𝑗=2

(
𝑏 − 1
𝑗 − 1

)
𝑣 𝑗−2 = 𝑏

(𝑣 + 1)𝑏−1 − 1
𝑣

.
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Thus, the only roots of 𝐹𝑏 (0, 𝑣) are the elements of 𝜇 (𝑏−1)𝑝′ \ {1} (subtracted by 1). Similarly, the set
of roots of 𝐹𝑐 (0, 𝑣) is 𝜇 (𝑐−1)𝑝′ \ {1} (translated by −1). So the assumption gcd

(
(𝑏 − 1)𝑝′ , (𝑐 − 1)𝑝′

)
= 1

implies that 𝐹𝑏 (0, 𝑣) and 𝐹𝑐 (0, 𝑣) have no common root. Furthermore, the specialization 𝐴 ↦→ 0
preserves the degree 𝑏 − 2 of 𝐹𝑏 (𝐴, 𝑣) (as 𝑝 � 𝑏). It follows from Lemma 3.1 that 𝑅(0) ≠ 0, and so
𝑅(𝐴) � 0.

Note that (vi) implies (iii) and (v), since (𝑏 − 1)𝑝′ = 1 when 𝑏 = 𝑝 𝑓 + 1 with 𝑓 ≥ 0.
Assume now that gcd(𝑏 − 1, 𝑐 − 1) = 1. If 𝑝 � 𝑏(𝑏 − 1), then the 𝑗 = 2 condition in the definition of

M𝑝 (𝑏) is the vanishing of (
𝑏

2

) (
(𝐴 + 1)2 − 𝐴2 − 1

)
= 𝑏(𝑏 − 1)𝐴,

and hence, M𝑝 (𝑏) = ∅, implying lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 = 2 by (vi). If 𝑝 � 𝑐(𝑐 − 1), the same 𝑗 = 2
condition shows that M𝑝 (𝑐) = ∅, with the same conclusion that lim#𝐿→∞ #Σ(𝐿)/(#𝐿)2 = 2 by (vi).

For (viii), note that (𝑏 − 1)𝑝 = 𝑝 𝑓 𝑚 implies that 𝑝 �
(𝑏
𝑗

)
for 𝑗 = 𝑝 𝑓 𝑚 + 1. Now(

𝑏

𝑗

) (
(𝐴 + 1) 𝑗 − 𝐴 𝑗 − 1

)
=

(
𝑏

𝑗

) (
𝐴𝑞

𝑚 + 𝐴
)
,

where 𝑞 := 𝑝 𝑓 . Thus, M𝑝 (𝑏) is contained in {𝐴 | 𝐴𝑞𝑚−1 = −1}. Similarly, M𝑝 (𝑐) is contained in
{𝐴 | 𝐴𝑞𝑛−1 = −1}. By Lemma 3.2, the set {𝐴 | 𝐴𝑞𝑚−1 = 𝐴𝑞

𝑛−1 = −1} is empty, and so we are done
by (vi). �

We will need the following well-known observation:

Lemma 3.4. Let p be a prime and 𝑛 =
∑

𝑖≥0 𝑛𝑖 𝑝
𝑖 and 𝑚 =

∑
𝑖≥0 𝑚𝑖 𝑝

𝑖 be the base p expansions of
integers 𝑛, 𝑚 ≥ 1. Suppose that 𝑚𝑖 ≤ 𝑛𝑖 for all i. Then 𝑝 �

( 𝑛
𝑚

)
.

Proof. The hypothesis implies that 𝑛 −𝑚 =
∑

𝑖≥0(𝑛𝑖 −𝑚𝑖)𝑝𝑖 is the base p expansion of 𝑛 −𝑚. Now for
any 𝑗 ≥ 0, we have

� 𝑚
𝑝 𝑗

� + � 𝑛 − 𝑚
𝑝 𝑗

� =
∑
𝑖≥ 𝑗

𝑚𝑖 𝑝
𝑖− 𝑗 +

∑
𝑖≥ 𝑗

(𝑛𝑖 − 𝑚𝑖)𝑝𝑖− 𝑗 =
∑
𝑖≥ 𝑗

𝑛𝑖 𝑝
𝑖− 𝑗 = � 𝑛

𝑝 𝑗
� .

Since
∑

𝑗≥0� 𝑛
𝑝 𝑗 � is the exponent of the highest power of p that divides 𝑛!, and similarly for 𝑚! and

(𝑛 − 𝑚)!, the above equalities imply the claim. �

Proposition 3.5. Fix a prime p, integers 𝑛, 𝑟 ≥ 1, and consider prime to p integers

𝑎 = 𝑝𝑛 + 1 > 𝑏1 > 𝑏2 > . . . > 𝑏𝑟 ≥ 2.

For finite extensions 𝐿/F𝑝 , consider the set Σ(𝐿) of L-points of the surface

Σ : Σ1 = Σ𝑎 = Σ𝑏1 = . . . = Σ𝑏𝑟 = 0

of A4 (𝑥, 𝑦, 𝑧, 𝑤). Then exactly one of the following statements holds for

𝑀 := lim sup
#𝐿→∞

#Σ(𝐿)/(#𝐿)2.

(a) 𝑝 > 2 and 𝑀 = 2.
(b) 𝑝 = 2 and 𝑀 = 3.
(c) 𝑝 > 2 and 𝑀 = 𝑝𝑒 +1 ≥ 4, where 𝑏𝑖 = 𝑝𝑚𝑖 +1 for 1 ≤ 𝑖 ≤ 𝑟 , and the integers 𝑛/𝑒, 𝑚1/𝑒, . . . , 𝑚𝑟/𝑒

are all odd for 𝑒 := gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ).
(d) 𝑝 = 2 and 𝑀 = 2𝑒 + 1 ≥ 5, where 𝑏𝑖 = 2𝑚𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑟 , and 𝑒 := gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) ≥ 2.
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Proof. We will follow the proof of Proposition 3.3 and count the points

𝑃 = (𝑥, 𝑦, 𝑧, 𝑤) ∈ Σ(𝐿)

that lie outside of the two planes (𝑥 = 𝑧, 𝑦 = 𝑤) and (𝑥 = 𝑤, 𝑦 = 𝑧), for which we can use the
parametrization (3.3.1). For these points, the condition 𝑃 ∈ Σ reads

𝐹𝑎 (𝐴, 𝑣) = 𝐹𝑏1 (𝐴, 𝑣) = . . . = 𝐹𝑏𝑟 (𝐴, 𝑣) = 0;

cf. (3.3.4). Since Σ𝑎 (𝑃) = 0 and 𝑎 = 𝑝𝑛 + 1, we have 𝐴𝑝𝑛−1 = −1; see (3.3.5). Now the proof of
Proposition 3.3(v) can be repeated verbatim to show that

𝑀 = 2 + #
(
M𝑝 (𝑎) ∩

𝑟⋂
𝑖=1

M𝑝 (𝑏𝑖)
)
,

where M𝑝 (𝑎) and M𝑝 (𝑏𝑖) are defined in (3.2.1).
We will assume that 𝑀 > 2 if 𝑝 > 2, 𝑀 > 3 if 𝑝 = 2, and aim to show that we are in (c) with

𝑀 = 𝑝𝑒 + 1 ≥ 4 or in (d) with 𝑀 = 2𝑒 + 1 ≥ 5. Note that when 𝑝 = 2, 1 ∈ M𝑝 (𝑏) for any integer
𝑏 ≥ 3. Hence, our assumption implies that

For all 𝑖, M𝑝 (𝑏𝑖) ≠ ∅ if 𝑝 > 2, and M𝑝 (𝑏𝑖) ⊃ {1} if 𝑝 = 2. (3.5.1)

Consider the base p expansion

𝑐 =
∑
𝑖≥0

𝑐𝑖 𝑝
𝑖

of 𝑐 := 𝑏1. We already noted that M𝑝 (𝑐) = ∅ if 2 < 𝑝 � 𝑐(𝑐 − 1), contrary to (3.5.1). However, if
𝑝 = 2, then 2 � 𝑐 and so 𝑝 | (𝑐 − 1). Henceforth, we may assume that 𝑝 | (𝑐 − 1), whence 𝑐0 = 1.

Consider any digit 𝑐𝑖 ≥ 1 of c, with 𝑖 ≥ 1. By Lemma 3.4, 𝑝 �
( 𝑐
𝑝𝑖+1

)
. Taking 𝑗 := 𝑝𝑖 + 1 in the

definition (3.2.1) of M𝑝 (𝑐), we get

0 = (𝐴 + 1) 𝑝𝑖+1 − 𝐴𝑝𝑖+1 − 1 = (𝐴𝑝𝑖 + 1) (𝐴 + 1) − 𝐴𝑝𝑖+1 − 1 = 𝐴𝑝𝑖 + 𝐴

for 𝐴 ∈ M𝑝 (𝑐). As 𝐴 ≠ 0, we get

𝐴𝑝𝑖−1 = −1, (3.5.2)

in particular,

𝐴𝑝𝑖
= −𝐴, 𝐴2𝑝𝑖+1 = 𝐴3. (3.5.3)

Assume in addition that 𝑐𝑖 ≥ 2 (and so 𝑝 > 2 as 𝑐𝑖 ≤ 𝑝 − 1.) Then by Lemma 3.4, we have 𝑝 �
( 𝑐
2𝑝𝑖+1

)
.

Taking 𝑗 := 2𝑝𝑖 + 1 in the definition (3.2.1) of M𝑝 (𝑐), we get

0 = (𝐴 + 1)2𝑝𝑖+1 − 𝐴2𝑝𝑖+1 − 1

= (𝐴𝑝𝑖 + 1)2(𝐴 + 1) − 𝐴2𝑝𝑖+1 − 1
= (−𝐴 + 1)2(𝐴 + 1) − 𝐴3 − 1
= −𝐴(𝐴 + 1),

and so 𝐴 = −1. But this is impossible by (3.5.2) (since 𝑝𝑖 ≥ 3 is odd in the case under consideration),
and so M𝑝 (𝑐) = ∅, again contradicting (3.5.1).
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We have shown that any positive digit 𝑐𝑖 of c must be equal to 1. Suppose now that 𝑐𝑖 = 1 = 𝑐 𝑗 for
some 𝑖 > 𝑗 ≥ 1. Then (3.5.2) holds for both 𝐴𝑝𝑖 and 𝐴𝑝 𝑗 , and so

𝐴𝑝𝑖
= 𝐴𝑝 𝑗

= −𝐴, 𝐴𝑝𝑖+𝑝 𝑗+1 = 𝐴3.

Furthermore, by Lemma 3.4, we have 𝑝 �
( 𝑐
𝑝𝑖+𝑝 𝑗+1

)
. Taking 𝑗 := 𝑝𝑖 + 𝑝 𝑗 + 1 in the definition (3.2.1) of

M𝑝 (𝑐), we now get

0 = (𝐴 + 1) 𝑝𝑖+𝑝 𝑗+1 − 𝐴𝑝𝑖+𝑝 𝑗+1 − 1

= (𝐴𝑝𝑖 + 1) (𝐴𝑝 𝑗 + 1) (𝐴 + 1) − 𝐴𝑝𝑖+𝑝 𝑗+1 − 1
= (−𝐴 + 1)2(𝐴 + 1) − 𝐴3 − 1
= −𝐴(𝐴 + 1),

and so 𝐴 = −1. If 𝑝 > 2, then this is again impossible by (3.5.2), and so M𝑝 (𝑐) = ∅, contrary to
(3.5.1). If 𝑝 = 2, then M𝑝 (𝑐) ⊆ {1}, contradicting (3.5.1).

We have shown that 𝑏1 = 𝑐 has only two positive digits, 𝑐0 and 𝑐𝑚1 , and both are equal to 1. Thus,
𝑏1 = 𝑝𝑚1 + 1. Applying the same argument to any 𝑏𝑖 , we see that 𝑏𝑖 = 𝑝𝑚𝑖 + 1. Hence,

M𝑝 (𝑏𝑖) = {𝐴 ∈ F𝑝 | 𝐴𝑝𝑚𝑖−1 = −1}.

Let 𝑒 := gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ). If 𝑝 > 2, then it follows from Lemma 3.2 that

#
(
M𝑝 (𝑎) ∩

𝑟⋂
𝑖=1

M𝑝 (𝑏𝑖)
)

equals 𝑝𝑒 + 1 if all 𝑛/𝑒 and 𝑚𝑖/𝑒 are odd, and 0 otherwise, and thus, we arrive at (c). Similarly, if 𝑝 = 2,
then using Lemma 3.2, we arrive at (d). �

Corollary 3.6. Fix a prime p, a power 𝑞 = 𝑝 𝑓 , an integer 𝑟 ≥ 1, and consider 𝑞𝑖 := 𝑞𝑚𝑖 with
1 ≤ 𝑚1 < . . . < 𝑚𝑟 and gcd(𝑚1, . . . , 𝑚𝑟 ) = 1. If 𝑝 > 2, assume in addition that 2 � 𝑚1𝑚2 . . . 𝑚𝑟 . For
finite extensions 𝐿/F𝑝 , consider the set Σ(𝐿) of L-points of the surface

Σ : Σ1 = Σ𝑞1+1 = . . . = Σ𝑞𝑟+1 = 0

of A4 (𝑥, 𝑦, 𝑧, 𝑤). Then

lim sup
#𝐿→∞

#Σ(𝐿)/(#𝐿)2 = 𝑞 + 1.

Proof. Arguing as in the proof of Proposition 3.5, we have

lim sup
#𝐿→∞

#Σ(𝐿)/(#𝐿)2 = 2 + # ∩𝑟
𝑖=1 M𝑝 (𝑞𝑖 + 1).

According to (3.3.6), ∩𝑟
𝑖=1M𝑝 (𝑞𝑖 + 1) is precisely 𝜇𝑡𝑜𝑡𝑎𝑙 (Q) for Q := {𝑞1, . . . , 𝑞𝑟 }. The statement now

follows from Lemma 3.2. �

In hindsight, Corollary 3.6 is a reflection of [KT6, Theorem 16.7(i-bis), (ii)] and the fact that SU𝑁 (𝑞)
acting on the natural module F𝑁

𝑞2 , respectively Ω−
2𝑁 (𝑞) acting on the natural module F2𝑁

𝑞 when 𝑝 = 2,
has at least 𝑞 + 1 orbits. (Also see Theorem 1.5 and Lemma 5.1 of [GT2].)

Theorem 3.7. Let k be a finite field of characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 , of

degree 𝑑 ≥ 1 which is Artin-Schreier reduced. Let 1 ≤ 𝑎 < 𝑏 be prime to p integers. Suppose that we
are in one of the following two situations.
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(a) We have 1 ≤ 𝑎 < 𝑏 < deg( 𝑓 ). We consider the local system F on A2/𝑘 whose trace function is
given as follows: for 𝐿/𝑘 a finite extension, and 𝑠, 𝑡 ∈ 𝐿,

Trace(Frob(𝑠,𝑡) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥)).

(b) We have 1 ≤ 𝑎 < 𝑏, deg( 𝑓 ) < 𝑏, 𝑓 (𝑥) is not of the form (nonzero constant)𝑥𝑎. We consider the
local system F on (A1 ×G𝑚)/𝑘 whose trace function is given as follows: for 𝐿/𝑘 a finite extension,
and 𝑠, 𝑡 ∈ 𝐿 × 𝐿×,

Trace(Frob(𝑠,𝑡) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 ( 𝑓 (𝑥) + 𝑠𝑥𝑎 + 𝑡𝑥𝑏).

Consider the set E of exponents which occur in f:

E := {𝑖 ∈ Z | 𝐴𝑖 ≠ 0},

and denote by S the set

𝑆 := {𝑎, 𝑏} ∪ E .

Choose two elements 𝐴 ≠ 𝐵 in S, and enumerate the set S:

𝑆 = {𝐴, 𝐵, 𝐶1, . . . , 𝐶𝑟 }.

Suppose that

gcd(𝐴, 𝐵, 𝐶1, . . . , 𝐶𝑟 ) = 1.

Then we have the following results.

(i) Suppose 𝐵 = 2𝐴. Then 𝑀2,2 (F) = 2.
(ii) Suppose 𝐵 = 3𝐴. Then 𝑀2,2 (F) = 3 if every 𝑠 ∈ 𝑆 is odd, and 𝑀2,2 (F) = 2 if some 𝑠 ∈ 𝑆 is even.

Proof. The idea is to make use of the limsup formulas of Theorems 2.3 and 2.6 to compute 𝑀2,2.
Consider first the case when 𝐵 = 2𝐴. Then the two equations

Σ𝐴 = 0, Σ2𝐴 = 0,

which we view as the equations Σ1 = Σ2 = 0 applied to the variables 𝑥𝐴, 𝑦𝐴, 𝑧𝐴, 𝑤𝐴, show that we have
an equality of sets

{𝑥𝐴, 𝑦𝐴} = {𝑧𝐴, 𝑤𝐴}.

If any of 𝑥, 𝑦, 𝑧, 𝑤 vanishes, this equality of sets has 𝑂 (#𝐿) solutions, so we may assume that each of
𝑥, 𝑦, 𝑧, 𝑤 is nonzero. Then we are in one of 2𝐴2 cases, as follows. For each ordered pair 𝜁, 𝜂 of 𝐴th roots
of unity in 𝜇𝐴(𝑘), either

[𝑧, 𝑤] = [𝜁𝑥, 𝜂𝑦] or [𝑤, 𝑧] = [𝜁𝑥, 𝜂𝑦] .

In this first case of [𝑧, 𝑤] = [𝜁𝑥, 𝜂𝑦], we use the various Σ𝐶𝑖 equations, that 𝑥𝐶𝑖 + 𝑦𝐶𝑖 = 𝑧𝐶𝑖 + 𝑤𝐶𝑖 ,
to get

𝑥𝐶𝑖 + 𝑦𝐶𝑖 = 𝜁𝐶𝑖𝑥𝐶𝑖 + 𝜂𝐶𝑖 𝑦𝐶𝑖 (i.e., we have (𝜁𝐶𝑖 − 1)𝑥𝐶𝑖

𝑖 + (𝜂𝐶𝑖 − 1)𝑦𝐶𝑖 = 0).
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This equation has 𝑂 (#𝐿) solutions unless we have 𝜁𝐶𝑖 = 𝜂𝐶𝑖 = 1. But gcd(the 𝐶𝑖 , 𝐴, 2𝐴) = 1, and
hence, gcd(the 𝐶𝑖 , 𝐴) = 1. So in order to have more than 𝑂 (#𝐿) solutions, we must have

𝜁𝐶𝑖 = 𝜂𝐶𝑖 = 1 for each 𝐶𝑖 .

As both 𝜁, 𝜂 are 𝐴th roots of unity, and gcd(the 𝐶𝑖 , 𝐴) = 1, these equalities force 𝜁 = 1 = 𝜂, Thus, in
this first case, we have the solution [𝑧, 𝑤] = [𝑥, 𝑦], with its (#𝐿)2 points, and 𝐴2 − 1 other solutions,
each with #𝐿 points. The treatment of the second case, [𝑤, 𝑧] = [𝜁𝑥, 𝜂𝑦], is identical.

Consider now the case when 𝐵 = 3𝐴. Then the two equations

Σ𝐴 = 0, Σ3𝐴 = 0,

which we view as the equations Σ1 = Σ3 = 0 applied to the variables 𝑥𝐴, 𝑦𝐴, 𝑧𝐴, 𝑤𝐴, show that either
we have an equality of sets

{𝑥𝐴, 𝑦𝐴} = {𝑧𝐴, 𝑤𝐴}

or we have the relations

𝑥𝐴 + 𝑦𝐴 = 0 = 𝑧𝐴 + 𝑤𝐴.

Exactly as in the 𝐵 = 2𝐴 discussion above, we use the fact that

gcd(the 𝐶𝑖 , 𝐴) = 1

to show that from the equality of sets {𝑥𝐴, 𝑦𝐴} = {𝑧𝐴, 𝑤𝐴} we get, up to 𝑂 (#𝐿), the (#𝐿)2 solutions
{𝑥, 𝑦} = {𝑧, 𝑤}.

It remains to deal with with the equation 𝑥𝐴 + 𝑦𝐴 = 0 = 𝑧𝐴 + 𝑤𝐴. Fix an 𝐴th root 𝜏 of −1. Then this
breaks into the 𝐴2 cases 𝑦 = 𝜏𝜁𝑥, 𝑧 = 𝜏𝜂𝑤, for each pair 𝜁, 𝜂 of 𝐴th roots of unity. We then use the Σ𝐶𝑖

equations to obtain the relations

𝑥𝐶𝑖 (1 + (𝜏𝜁)𝐶𝑖 ) = 0, 𝑧𝐶𝑖 (1 + (𝜏𝜂)𝐶𝑖 ) = 0.

In order to get more than 𝑂 (#𝐿) solutions, we must have

1 + (𝜏𝜁)𝐶𝑖 = 0, 1 + (𝜏𝜂)𝐶𝑖 = 0 for each 𝐶𝑖 .

Suppose first that A is odd. Then we take 𝜏 := −1, and our equations become

𝜁𝐶𝑖 = −(−1)𝐶𝑖 = 𝜂𝐶𝑖 for each 𝐶𝑖 .

If all 𝐶𝑖 are odd, these are the equations

𝜁𝐶𝑖 = 1 = 𝜂𝐶𝑖 for each 𝐶𝑖 .

In order to get more than 𝑂 (#𝐿) solutions, we must have 𝜁 = 1 = 𝜂.
Suppose next that A is odd but some 𝐶𝑖 is even, say 𝐶1 is even. (This can only happen if we are in

odd characteristic, as f is Artin-Schreier reduced, and 𝑝 � 𝑎𝑏.) Then we have the equation

𝜁𝐶1 = −1 = 𝜂𝐶1 .

But 𝜁 and 𝜂 are roots of unity of odd order, so no powers of either can be −1. So in this case, we have
only 𝑥 = 𝑦 = 𝑧 = 𝑤 = 0.
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Finally, consider the case when A is even. Then gcd(the 𝐶𝑖 , 𝐴) = 1, so there is some odd 𝐶𝑖 , say 𝐶1
is odd. Then the two equations

1 + (𝜏𝜁)𝐶1 = 0, 1 + (𝜏𝜂)𝐶1 = 0,

rewritten as

(𝜏𝜁)𝐶1 = −1 = (𝜏𝜂)𝐶1

and raised to the A power, give

(𝜏𝜁)𝐴𝐶1 = (−1)𝐴 = 1, (𝜏𝜂)𝐴𝐶1 = (−1)𝐴 = 1.

But 𝜁 𝐴 = 𝜂𝐴 = 1, so we get 𝜏𝐴𝐶1 = 1 = 𝜂𝐴𝐶1 . But 𝜏𝐴 = −1 and 𝐶1 is odd, so we get −1 = 1, which is
nonsense. Thus, in this case as well, the only solution is 𝑥 = 𝑦 = 𝑧 = 𝑤 = 0. �

Theorem 3.8. Let k be a finite field of characteristic 𝑝 > 0, and 𝑓 (𝑥) ∈ 𝑘 [𝑥], say 𝑓 (𝑥) =
∑

𝑖 𝐴𝑖𝑥
𝑖 , of

degree 𝑑 ≥ 3 which is Artin-Schreier reduced (meaning that 𝐴𝑖 = 0 if 𝑝 |𝑖). Let 1 ≤ 𝑎 < 𝑏 < deg( 𝑓 ) be
prime to p integers, and consider the local system F on A2/𝑘 whose trace function is given as follows:
for 𝐿/𝑘 a finite extension, and 𝑠, 𝑡 ∈ 𝐿,

Trace(Frob(𝑠,𝑡) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑠𝑥𝑎 + 𝑡𝑥𝑏 + 𝑓 (𝑥)).

Consider the set E of exponents which occur in f:

E := {𝑖 ∈ Z, 𝐴𝑖 ≠ 0}.

Suppose that the set {𝑎, 𝑏} ∪ E contains 1, c, and d, where 1 < 𝑐 < 𝑑 and either of the following
conditions is satisfied.
(i) gcd(𝑐 − 1, 𝑑 − 1) = 1.

(ii) 𝑝 > 2, gcd
(
(𝑐 − 1)𝑝′ , (𝑑 − 1)𝑝′

)
= 1, and (𝑐 − 1)𝑝 = 𝑝 𝑓 𝑚, (𝑑 − 1)𝑝 = 𝑝 𝑓 𝑛 with 𝑓 , 𝑚, 𝑛 ∈ Z≥1,

gcd(𝑚, 𝑛) = 1, and 2|𝑚𝑛.
Then 𝑀2,2 (F) = 2.
Proof. The local system F is pure of weight zero, so geometrically semisimple, and of rank

deg( 𝑓 ) − 1 ≥ 2,

so has 𝑀2,2 (F) ≥ 2. Thus, it suffices to show that 𝑀2,2 (F) ≤ 2 under the stated hypotheses. Now apply
Theorem 2.3 and Proposition 3.3(vii), (viii). �

4. p-finite and strongly p-finite data

In this and the next section, we consider local systems F on A𝑟/F𝑝 defined as follows. We are given a
list of integers

𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1, 𝑝 � 𝐴
∏
𝑖

𝐵𝑖 , gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1. (4.0.1)

For 𝐿/F𝑝 a finite extension, and (𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐿𝑟 ,

Trace(Frob(𝑡1 ,...,𝑡𝑟 ) ,𝐿 |F) = −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 (𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 ).
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Here, we make a choice of √𝑝 ∈ Qℓ , and define
√

#𝐿 := √
𝑝deg(𝐿/F𝑝) . We will name this F as

F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1)

when confusion about ‘whichF?’ is possible. Recall from [KT4, 2.5, 2.6] that such anF is geometrically
irreducible.

When 𝑟 = 1, these local systems were the main subject of study in Chapter 10 of [KT6]. In general, the
local systems F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with finite 𝐺geom (and their 𝐺geom) have been classified in Chapter
11 of [KT6], some of whose results can be stated using the following notion.
Definition 4.1. Data (𝐴, 𝐵1, . . . , 𝐵𝑟 ) with 𝑟 ≥ 1 subject to (4.0.1) is said to be p-finite if one of the
following conditions holds.

(i) 𝑝 > 2, 𝑞 = 𝑝 𝑓 , 𝐴 = (𝑞𝑛 + 1)/2, and 𝐵𝑖 = (𝑞𝑚𝑖 + 1)/2 for 1 ≤ 𝑖 ≤ 𝑟 and 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0
are integers such that 2|𝑛𝑚1 . . . 𝑚𝑟 and gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1.

(ii) 𝑞 = 𝑝 𝑓 and 𝐴 = 𝑞𝑛 + 1. Furthermore, either (𝑟, 𝐵1, 𝑛) = (1, 1, 1), or 𝑟 ≥ 2 and 𝐵𝑖 = 𝑞𝑚𝑖 + 1,
1 ≤ 𝑖 ≤ 𝑟 − 1, where 𝑛 > 𝑚1 > . . . > 𝑚𝑟−1 ≥ 0 are integers with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟−1) = 1, and
𝐵𝑟 = 1.

(iii) 𝑝 = 2, 𝑞 = 2 𝑓 , 𝐴 = 𝑞𝑛 + 1, 𝐵𝑖 = 𝑞𝑚𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑟 , where the integers 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1
are such that 2|𝑛𝑚1 . . . 𝑚𝑟 and gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1.

(iv) 𝑞 = 𝑝 𝑓 , 𝐴 = (𝑞𝑛 + 1)/(𝑞 + 1), 𝐵𝑖 = (𝑞𝑚𝑖 + 1)/(𝑞 + 1), 1 ≤ 𝑖 ≤ 𝑟 , where 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1
are odd integers with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1.

(v) 𝑝 = 2, (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (13, 3) or (13, 3, 1).
(vi) 𝑝 = 3, 1 ≤ 𝑟 ≤ 3, 𝐴 = 7, {𝐵1, . . . , 𝐵𝑟 } ⊆ {4, 2, 1}.

(vii) 𝑝 = 3, 1 ≤ 𝑟 ≤ 3, 𝐴 = 5, {𝐵1, . . . , 𝐵𝑟 } ⊆ {4, 2, 1}.
(viii) 𝑝 = 5, 1 ≤ 𝑟 ≤ 2, 𝐴 = 3, {𝐵1, . . . , 𝐵𝑟 } ⊆ {2, 1}.

(ix) 𝑝 = 5, 𝑟 = 1, 𝐴 = 7, 𝐵1 = 1.
(x) 𝑝 = 7, 𝑟 = 1, 𝐴 = 5, 𝐵1 = 2.

Definition 4.2. Data (𝐴, 𝐵1, . . . , 𝐵𝑟 ) with 𝑟 ≥ 1 subject to (4.0.1) is said to be strongly p-finite, if it
satisfies 4.1(i) with 𝑞 ∈ {3, 5}, 4.1(ii) with 𝑟 ≥ 2 and either 𝑞 = 2, or 2 � 𝑞 but 2|𝑛𝑚1 . . . 𝑚𝑟−1, 4.1(iii)
with 𝑞 = 2, 4.1(iv) with 𝑞 = 2, or one of (v)–(x) of 4.1.
Theorem 4.3. A local system F = F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) in characteristic p subject to (4.0.1) has finite
𝐺geom if and only if (𝐴, 𝐵1, . . . , 𝐵𝑟 ) is p-finite. If the data is strongly p-finite, then 𝑀2,2 (F) equals 2 if
2|𝐴𝐵1 . . . 𝐵𝑟 , and 3 otherwise.
Proof. The first statement summarizes Theorems 10.2.6, 10.3.13 and 11.2.3 of [KT6]. The second
statement follows from the explicit determination of 𝐺geom and [GT2, Theorem 1.5], if we assume in
addition that 𝐴 > 9 in the cases of 4.1(ii), (iii) with 𝑞 = 2. Assume we are in the cases of 4.1(ii), (iii)
with 𝑞 = 2 and 𝐴 = 2𝑛 + 1 ≤ 9. Now if 𝐵𝑟 = 1 (so we are in 4.1(ii) with 𝑟 ≥ 2), then 𝑀2,2 = 3 by
Corollary 3.6. Thus, we are left with the cases where 𝑝 = 2 and, moreover, (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (5, 3),
(9, 5), (9, 5, 3). The third case has 𝑀2,2 = 3 by Theorem 3.7. The two remaining local systems of rank
8 and 4, with 𝑟 = 1 and (𝐴, 𝐵1) = (9, 5), (5, 3), are dealt with in the next result, which also resolves
some open cases left in [KT6, Chapter 8]. �

Theorem 4.4. Suppose 𝑝 = 2. Then the following statements hold.
(i) Each of the following local systems F531 := F (5, 3, 1,1), F53 := F (5, 3,1), and H53 :=

H𝑦𝑝(Char×5 ,Char×3 ) has geometric monodromy group 21+4
− · A5, which is also the arithmetic mon-

odromy group over any finite extensions of F4. For each of them, the arithmetic monodromy group
over F2 is 21+4

− · S5.
(ii) Each of the local systems F9531 := F (9, 5, 3, 1,1), F953 := F (9, 5, 3,1), F951 := F (9, 5, 1,1),

F95 := F (9, 5,1), and H95 := H𝑦𝑝(Char×9 ,Char×5 ) has geometric monodromy group 21+6
− ·Ω−

6 (2),
which is also the arithmetic monodromy group over any finite extensions of F4. For each of them,
the arithmetic monodromy group over F2 is 21+6

− · O−
6 (2).
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(iii) The local system F931 := F (9, 3, 1,1) has geometric monodromy group 21+6
− · SU3 (2), which is

also the arithmetic monodromy group over any finite extensions of F4. Over F2, the arithmetic
monodromy group is 21+6

− · SU3(2) · 2.

Furthermore, all the local systems considered in this theorem have 𝑀2,2 = 3.

Proof. (a) First, we note that both H95 and H53 satisfy (S+) by [KT3, Theorem 3.13]. Furthermore,
each of F531, F9531, F951, F931 has 𝑀2,2 = 3 by Corollary 3.6. We also use the facts that if 𝜑 denotes the
character of the underlying representation for the arithmetic monodromy group 𝐺arith,F2 of any of the
listed sheaves over F2, then 𝜑 is irreducible of symplectic type; in particular, Z(𝐺arith,F2 ) ≤ 𝐶2. (Indeed,
𝜑 is visibly real-valued, and its restriction to𝐺geom of H95, respectively H53, is symplectically self-dual
by [Ka2, 8.8.1-2].) Furthermore, the restriction of 𝜑 to the arithmetic monodromy group 𝐺arith,F4 of any
of the listed sheaves over F4 is rational-valued by [KT6, Theorem 7.1.2].

(b) Let F̃ denote any of the systems F9531, F951, F953, and let 𝐺̃ denote its geometric monodromy
group. By the above, 𝐺̃ is a finite irreducible subgroup of Sp8 (C) with 𝑀2,2 = 3. Now we can apply
[GT2, Theorem 1.5] to 𝐺̃, and note that case (B) cannot occur because the dimension 𝐷 = 8, whereas
case (D) cannot occur because 𝜑 is of symplectic type. It follows that we are in case (C) of [GT2,
Theorem 1.5]:

21+6
− � 𝐸 � 𝐺̃ ≤ NSp8 (C) (𝐸) = 𝐸 · O−

6 (2), (4.4.1)

and 𝐺̃/𝐸 ≤ O−
6 (2) acts transitively on 27 (nonzero) singular vectors and on 36 nonsingular vectors of

the natural module F6
2 for O−

6 (2). In particular, 27 divides |𝐺̃/𝐸 |. In fact, the observations in (a) imply
that (4.4.1) also holds for 𝐺arith,F2 ,F̃ , the arithmetic monodromy group of F̃ over F2.

Next, observe that a pullback of F̃ yields F95, which is a Kummer pullback of H95. In particular, if
G denotes the geometric monodromy group of F95 and H denotes that of H95, then𝐺 �𝐻, 𝐻/𝐺 ↩→ 𝐶9,
and 𝐺 ↩→ 𝐺̃. Clearly, 5 divides |𝐻 |, so it also divides |𝐺̃ | and |𝐺̃/𝐸 |. Thus, 27 · 5 divides |𝐺̃/𝐸 |.
Using the list of maximal subgroups of O−

6 (2) [Atlas], we deduce that 𝐺̃/𝐸 is either Ω−
6 (2) or O−

6 (2).
In the latter case, [KT6, Proposition 8.2.4] implies, however, that |𝜑(𝑔) | =

√
2 for some 𝑔 ∈ 𝐺̃, which is

impossible by (a). Hence, we conclude that 𝐺̃ = 𝐸 ·Ω−
6 (2), and the same holds for 𝐺arith,F4 ,F̃ . However,

the Frobenius at (1, 0, . . . , 0) over F2 (where 1 is the coefficient for 𝑥5) has trace −2/
√

2 and hence does
not belong to 𝐺arith,F4 ,F̃ . Together with (4.4.1), this implies that 𝐺arith,F2 ,F̃ = 𝐸 · O−

6 (2).
(c) To identify H, the 𝐺geom for H95, we recall that H satisfies (S+) by (a). First, suppose that H is

an extraspecial normalizer. Together with (a), this implies that

21+6
− � 𝐸1 � 𝐻 ≤ NSp8 (C) (𝐸1) = 𝐸1 · O−

6 (2). (4.4.2)

We already mentioned that each of 𝐶9 and 𝐶5 injects in H, hence also in 𝐻/𝐸1 ≤ O−
6 (2). Again using

the list of maximal subgroups of Ω−
6 (2) [Atlas], we deduce that 𝐻/𝐸1 is either Ω−

6 (2) or O−
6 (2). In

the latter case, [KT6, Proposition 8.2.4] implies, however, that |𝜑(𝑔) | =
√

2 for some 𝑔 ∈ 𝐻, which is
impossible by (a). Hence, we conclude that 𝐻 = 𝐸1 · Ω−

6 (2) (in fact, the same holds for 𝐺arith,F4 ,H95

because it normalizes O2(𝐻) = 𝐸1 and hence also satisfies (4.4.2)). In particular, H is perfect. Since
𝐻/𝐺 ↩→ 𝐶9, we also have 𝐺 = 𝐻. Knowing now that

𝐺 ≤ 𝐺arith,F4 ,F95 ≤ 𝐺arith,F4 ,F951 = 𝐺,

we conclude that 𝐺arith,F4 ,F95 = 𝐺. Next, again using the Frobenius at 𝑠 = 1 of F95 with trace −
√

2,
we see that this Frobenius is in 𝐺arith,F2 ,F951 but not in its subgroup G of index 2. This shows that
𝐺arith,F2 ,F95 = 𝐺arith,F2 ,F951 = 𝐸 ·O−

6 (2). As 𝐺arith,F2 ,F95 is a subgroup of 𝐺arith,F2 ,H95 , which normalizes
O2 (𝐻) = 𝐸1 and hence satisfies (4.4.2), we deduce that 𝐺arith,F2 ,H95 = 21+6

− · O−
6 (2).
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Assume now that H is almost quasisimple, with R the unique non-abelian composition factor. Then
𝐺 (∞) = 𝐻 (∞) is a cover of R with center

Z(𝐻 (∞) ) ≤ Z(𝐻) ≤ 𝐶2 = Z(𝐸1) = Z(𝐸);

cf. (4.4.1), (4.4.2). However, 𝐸 ∩ 𝐺 (∞) is a normal 2-subgroup of 𝐺 (∞) , so

𝐸 ∩ 𝐺 (∞) ≤ Z(𝐸) ∩ 𝐺 (∞) = Z(𝐺 (∞) ).

We also know from 𝐺 ≤ 𝐺̃ = 𝐸 · 𝑆 that

𝐺 (∞)/(𝐸 ∩ 𝐺 (∞) ) � 𝐺 (∞)𝐸/𝐸 ≤ 𝐺̃/𝐸 = 𝑆 � SU4(2).

It follows that R is a simple subquotient of SU4 (2). Using [Atlas], we readily see that 𝑅 = A5, A6, or
SU4 (2); in particular, Out(𝑅) is a 2-group. Recalling that

𝑅 � 𝐻/Z(𝐻) ≤ Aut(𝑅), Z(𝐻) ≤ 𝐶2, 𝐶9 ↩→ 𝐻,

we have that 𝐶9 ↩→ 𝑅. This rules out the possibilities A5 and A6, and so 𝑅 = SU4(2). But H acts
irreducibly on H95 of dimension 8, so we must have that 𝐻 � Sp4 (3) · 2. This is, however, impossible
because 𝐻 = O2 (𝐻).

(d) In dimension 8, it remains to determine 𝐺1, the 𝐺geom for F931, which also has 𝑀2,2 = 3. As in
the case of 𝐺̃, this equality implies by [GT2, Theorem 1.5] that

21+6
− � 𝐸2 � 𝐺1 ≤ NSp8 (C) (𝐸2) = 𝐸2 · O−

6 (2). (4.4.3)

Moreover, 𝐺1/𝐸2 ≤ O−
6 (2) still acts acts transitively on 27 (nonzero) singular vectors and on 36 non-

singular vectors of the natural module 𝑊 = F6
2 for O−

6 (2); in particular, 27 divides |𝐺1/𝐸2 |. Using the
list of maximal subgroups of O−

6 (2) [Atlas], we deduce that 𝐺1/𝐸2 is either O−
6 (2), Ω

−
6 (2), a subgroup

of 𝑀 := O−
2 (2) � S3, or a subgroup of 𝑁 := GU3 (2) · 2 � 31+2

+ � 2S4. The first case is impossible since
|𝐺1 | ≤ |𝐺̃ | = |𝐸2 | · |Ω−

6 (2) |. To rule out the second possibility, we make use of [KT6, Corollary 7.1.5],
which shows that

𝜑(𝑥) ≡ −1 (mod 3) (4.4.4)

for any odd-order element 𝑥 ∈ 𝐺1. Indeed, in this case, we have 𝐺1 = 𝐺̃ since |𝐺1 | = |𝐺̃ | and 𝐺1 ≤ 𝐺̃;
in particular, 𝐺1 contains an element 𝑔1 of order 5 which has rational trace. The latter condition implies
that 𝜑(𝑔1) ∈ {−2, 3}, violating (4.4.4). In the third possibility, we can realize M as the stabilizer of the
decomposition

𝑊 = 〈𝑒1, 𝑒2〉F2 ⊕ 〈𝑒3, 𝑒4〉F2 ⊕ 〈𝑒5, 𝑒6〉F2 ,

where the quadratic form Q on W takes value

𝑥2
1 + 𝑥1𝑥2 + 𝑥2

2 + 𝑥
2
3 + 𝑥3𝑥4 + 𝑥2

4 + 𝑥
2
5 + 𝑥5𝑥6 + 𝑥2

6

at the vector
∑6

𝑖=1 𝑥𝑖𝑒𝑖 . But then the vectors 𝑢 := 𝑒1 + 𝑒2 and 𝑣 :=
∑6

𝑖=1 𝑒𝑖 have 𝑄(𝑢) = 𝑄(𝑣) = 1 and
belong to different M-orbits, showing that M is not transitive on the non-singular vectors of W. This
leaves only the fourth possibility: 𝐺1/𝐸2 ≤ 𝑁 . In particular, 𝐺1 is solvable.

Now we use the embedding 𝐺1 ↩→ 𝐺̃ = 𝐺geom,F9531 = 𝐸 · Ω−
6 (2). Then

3 = 𝑀2,2 (𝐺1) ≥ 𝑀2,2 (𝐸𝐺1) ≥ 𝑀2,2 (Sp8(C)) = 3,
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showing that 𝑀2,2 (𝐸𝐺1) = 3. Thus, 𝐸𝐺1/𝐸 is a solvable subgroup of Ω−
6 (2) which acts transitively

on 27 singular vectors and on 36 non-singular vectors of F6
2. Using the list of maximal subgroups of

Ω−
6 (2) as in the preceding paragraph, we see that 𝐸𝐺1/𝐸 is contained in 𝑁1 � GU3(2). Recalling E is

a 2-group and 𝐺1 = O2′ (𝐺1) (as the 𝐺geom for a local system on A2/F2), we then have

𝐸𝐺1/𝐸 ≤ O2′ (𝑁1) � SU3(2) � 31+2
+ �𝑄8.

Moreover, 27 and 36 both divide |𝐺1/𝐸2 | = |𝐺1 |/|𝐸 |, so in fact, we have

31+2
+ � 𝐶4 ≤ 𝐸𝐺1/𝐸 ≤ 31+2

+ �𝑄8. (4.4.5)

Suppose that 𝐸𝐺1/𝐸 = 31+2
+ � 𝐶4 in (4.4.5). Note that we can turn the quadratic space 𝑊 = F6

2 into
the Hermitian space 𝑊1 := F3

4 for SU3 (2) in such a way that the set 𝑁 (𝑊) of 36 non-singular vectors
of W is exactly the set 𝑁 (𝑊1) of 36 non-singular vectors of 𝑊1. Since 𝐸𝐺1/𝐸 acts transitively on
𝑁 (𝑊) = 𝑁 (𝑊1), the stabilizer of any 𝑤 ∈ 𝑁 (𝑊1) has order 3, which implies that a fixed involution j in
𝐸𝐺1/𝐸 does not fix any 𝑤 ∈ 𝑁 (𝑊1). The Sylow 2-subgroups of SU3(2) are isomorphic to 𝑄8, so any
involution in SU3(2) is conjugate to j and hence does not fix any 𝑤 ∈ 𝑁 (𝑊1). But this is a contradiction,
since the stabilizer of any 𝑤 ∈ 𝑁 (𝑊1) in SU3(2) is SU2(2) � S3, which clearly contains an involution.
We have therefore shown that

𝐸𝐺1/𝐸 � SU3(2). (4.4.6)

Recall that a pullback of F931 contains the Pink-Sawin system F (9, 1,1) which has 21+6
− as its

𝐺geom by [KT6, Theorem 7.3.8]. This implies that 𝐺1 contains Z(𝐸) � 𝐶2. As [𝐸, 𝐸] = Z(𝐸), in the
conjugation action on 𝐸/Z(𝐸) � F6

2 the subgroup E acts trivially, whereas SU3 (2) acts irreducibly
(indeed, no proper parabolic subgroup of GL6 (2) can contain 31+2

+ = O3(SU3 (2)) as a subgroup). So
(4.4.6) shows that 𝐺1 acts irreducibly on 𝐸/Z(𝐸). It follows that 𝐸 ∩ 𝐺1 = Z(𝐸) or E. In the former
case, (4.4.6) implies that |𝐺1 | = 2|SU3 (2) | = 24 · 33, which is impossible since 𝐺1 contains 𝐸2 of
order 27. We conclude that 𝐺1 � 𝐸 , and

𝐺1 � 𝐸 · SU3 (2)

by (4.4.6).
To identify the group 𝐺arith,F2 ,F931 , we note that 𝐺arith,F2 ,F931 = 〈𝐺1, 𝑔1〉, where 𝑔1 = Frob(0,1) ,F2 .

The pullback 𝑠 = 0 of F931 is the Pink-Sawin system F (9, 1,1), so by [KT6, Theorem 7.3.8], 𝑔2
1 is

contained in its 𝐺geom, which is contained in 𝐺1. Moreover, 𝑔1 has trace −
√

2, showing 𝑔1 ∉ 𝐺1. Thus
𝐺1 has 2 in 𝐺arith,F2 ,F931 , whence we also have 𝐺arith,F4 ,F931 = 𝐺1.

(e) Now we work in dimension 4. Let 𝐺̃ denote the geometric monodromy group of F531. Since it has
𝑀2,2 = 3 and is of symplectic type, the restriction of Sym2 (𝜑) to 𝐺̃ is irreducible, whence 𝐺̃ satisfies
(S+) by [GT3, Lemma 2.1].

First, we consider the case where 𝐺̃ is almost quasisimple. Then 𝐺̃ (∞) is a quasisimple irreducible
subgroup of Sp4(C). Using [HM], we then deduce that 𝐺̃ (∞) is 2 · A5 or 2 · A6. Potentially 𝐺̃ could still
have index 2 over 𝐺̃ (∞) . But using the rationality of the restriction of 𝜑 to 𝐺̃, we get 𝐺̃ = 𝐺̃ (∞) ≤ 2 · A6.
However, a pullback of F531 is the Pink-Sawin system F (5, 1,1) which has 21+4

− as its 𝐺geom by [KT6,
Theorem 7.3.8]. This yields a contradiction, since 21+4

− cannot embed in 2 · A6.
We have therefore shown that 𝐺̃ is an extraspecial normalizer, and so

21+4
− � 𝐸 � 𝐺̃ ≤ NSp4 (C) (𝐸) = 𝐸 · O−

4 (2); (4.4.7)

note that O−
4 (2) � S5. Now let H denote the 𝐺geom for H53 and let G denote the 𝐺geom for F53, so that

𝐻/𝐺 ↩→ 𝐶5. Recall from (a) that H satisfies (S+). Assume in addition that H is almost quasisimple.
Then 𝐺 (∞) = 𝐻 (∞) is a cover of a non-abelian simple group R. But 𝐺 ↩→ 𝐺̃, so (4.4.7) implies that
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R is a simple subquotient of S5. It follows that 𝑅 = A5. We also know that 𝐻 ≤ Sp4(C) is almost
quasisimple with rational traces. Hence, 𝐻 = SL2(5) in a faithful irreducible representation of degree 4;
in particular, any element of order 3 in H has trace 1 [Atlas]. Thus, any element t of order 3 in 𝐼 (∞) has
trace 1 in 𝜑, and trace −1 on the tame part of H53. So t has trace 2 on the wild part Wild of H53, which
means that t acts trivially on Wild, a contradiction.

We have now shown that H is also an extraspecial normalizer, and so (4.4.7) also holds for H. Note
that both 𝐶5 and 𝐶3 inject in H, so 15 divides the order of 𝐻/𝐸 ≤ S5. Inspecting the list of maximal
subgroups of Sym5 [Atlas], we see that 𝐻/𝐸 = S5 or A5. But 𝐻 = O2(𝐻), so 𝐻 = 𝐸 ·A5; in particular, H
is perfect. Since 𝐻/𝐺 ↩→ 𝐶5, we also have that𝐺 = 𝐻. Now𝐺arith,F4 ,F53 normalizes G and O2(𝐺) = 𝐸 ,
so (4.4.7) holds for 𝐺arith,F4 ,F53 , which already contains the subgroup 𝐺 = 𝐸 · A5 of index 2 in 𝐸 · S5.
By [KT6, Proposition 8.2.4], 𝐸 · S5 contains an element x with |𝜑(𝑥) | =

√
2. Since 𝜑 is rational on

𝐺arith,F4 ,F53 , we conclude that𝐺arith,F4 ,F53 = 𝐺. Noting that (4.4.7) holds for𝐺arith,F4 ,H53 which has only
rational traces and contains 𝐺arith,F4 ,F53 , we deduce that 𝐺arith,F4 ,H53 = 𝐺.

Next,𝐺arith,F2 ,F53 normalizes G and O2 (𝐺) = 𝐸 , so (4.4.7) holds for𝐺arith,F2 ,F53 . But now𝐺arith,F2 ,F53

contains the Frobenius at 𝑠 = 1 with trace −
√

2 that does not belong to G. Using (4.4.7), we conclude that
𝐺arith,F2 ,F53 = 𝐸 ·S5. As𝐺arith,F2 ,F53 embeds in𝐺arith,F2 ,H53 which also satisfies (4.4.7) (as it normalizes
O2 (𝐻) = 𝐸), we must have that 𝐺arith,F2 ,H53 = 𝐸 · S5.

Now, 𝐸 · A5 = 𝐺 = 𝐺geom,F53 ≤ 𝐺geom,F531 = 𝐺̃ ≤ 𝐸 · S5 and 𝜑|𝐺̃ is rational-valued, so 𝐺̃ = 𝐺.
Repeating the same inclusions for𝐺arith,F4 , we get 𝐺arith,F4 ,F531 = 𝐺. Finally, as𝐺arith,F2 ,F531 normalizes
O2 (𝐺̃) = 𝐸 , we have

𝐸 · S5 = 𝐺arith,F2 ,F53 ≤ 𝐺arith,F2 ,F531 ≤ 𝐸 · S5,

whence 𝐺arith,F2 ,F531 = 𝐸 · S5.
(f) As mentioned in the proof of Theorem 4.3, we already know 𝑀2,2 = 3 unless F = F53 or F95.

But 𝐺geom,F53 = 𝐺geom,F531 according to (i) and 𝐺geom,F95 = 𝐺geom,F9531 , so F53 and F95 both have
𝑀2,2 = 3 as well. �

5. Multiparameter local systems: Balanced pairs and Infmono(𝐴, 𝐵)

We will now develop some framework to study the case in which 𝑟 ≥ 2 and F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) has
infinite𝐺geom. First, we attach to the data (𝐴, 𝐵1, . . . , 𝐵𝑟 ) a balanced pair (𝐴, 𝐵 = some 𝐵𝑖) as follows.
We must distinguish three cases.

(i) If A and all 𝐵𝑖 are odd, we choose any of the 𝐵𝑖 .
(ii) If A is even, then some 𝐵𝑖 is odd, and we choose any odd 𝐵𝑖 .

(iii) If A is odd and some 𝐵𝑖 is even, then we choose some even 𝐵𝑖 .

Notice that, in all cases, at least one of 𝐴, 𝐵 is odd, and hence, gcd(𝐴, 𝐵) is odd.
We now formulate the following hypothesis infmono(𝐴, 𝐵) for a pair (𝐴, 𝐵) of integers 𝐴 > 𝐵 ≥ 1

with 𝑝 � 𝐴𝐵. For 𝐶 := gcd(𝐴, 𝐵), 𝐴 = 𝐶𝐴0, 𝐵 = 𝐶𝐵0, we have the direct sum decomposition

F (𝐴, 𝐵,1) =
⊕

𝜒∈Char(𝐶)
F (𝐴0, 𝐵0, 𝜒),

where, in general, F (𝐴, 𝐵, 𝜒) is the local system onA1/F𝑝 (𝜒) whose trace function is given as follows:
for 𝐿/F𝑝 (𝜒) a finite extension and 𝑡 ∈ 𝐿,

Trace(Frob𝑡 ,𝐿 |F (𝐴, 𝐵, 𝜒)) = (−1/
√

#𝐿)
∑
𝑥∈𝐿

𝜓𝐿 (𝑥𝐴 + 𝑡𝑥𝐵)𝜒𝐿 (𝑥).
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The hypothesis infmono(𝐴, 𝐵) is the following:

infmono(𝐴, 𝐵) : for each 𝜒 ∈ Char(𝐶), 𝐺geom,F (𝐴0 ,𝐵0 ,𝜒) is infinite,
except for 𝐺geom,F (𝐴0 ,𝐵0 ,1) in the special case (𝐴0, 𝐵0) = (2, 1). (5.0.1)

Lemma 5.1. For 𝐶 := gcd(𝐴, 𝐵), 𝐴 = 𝐶𝐴0, 𝐵 = 𝐶𝐵0, suppose C is odd and 𝐶 ≥ 3. Then the following
statements hold.

(i) If F (𝐴0, 𝐵0,1) has infinite 𝐺geom, then infmono(𝐴, 𝐵) holds.
(ii) Suppose F (𝐴0, 𝐵0,1) has finite 𝐺geom but some summand F (𝐴0, 𝐵0, 𝜒) of F (𝐴, 𝐵,1) has infinite

𝐺geom. Then there is a divisor𝐶0 of C with𝐶0 < 𝐶 such that a summand F (𝐴0, 𝐵0, 𝜑) ofF (𝐴, 𝐵,1)
has infinite 𝐺geom precisely when 𝜑𝐶 = 1 ≠ 𝜑𝐶0 , i.e. 𝜑 ∈ Char(𝐶) \ Char(𝐶0).

Proof. (i) follows from [KT6, 10.2.6 and 10.3.13]. Indeed, for 𝜒 a nontrivial character of odd order, if
F (𝐴0, 𝐵0, 𝜒) has finite 𝐺geom, then F (𝐴0, 𝐵0, 𝜒) is in case (ii) of either [KT6, 10.2.6(ii) or 10.3.13(ii)]
(the SU cases). In these cases, F (𝐴0, 𝐵0,1) also has finite 𝐺geom.

For (ii), let S denote the set of 𝜒 ∈ Char(𝐶) for which F (𝐴0, 𝐵0, 𝜒) has infinite 𝐺geom; in particular,
𝜒 ∈ 𝑆 but 1 ∉ 𝑆. If Char(𝐶) \ 𝑆 is the singleton {1}, then the assertion holds trivially with 𝐶0 = 1. If
not, choose a nontrivial

𝜌 ∈ Char(𝐶) \ 𝑆.

Then F (𝐴0, 𝐵0, 𝜌) has finite 𝐺geom, so by [KT6, 10.2.6 and 10.3.13], we have

(𝐴0, 𝐵0) = ((𝑞𝑛 + 1)/(𝑞 + 1), (𝑞𝑚 + 1)/(𝑞 + 1)),

and o(𝜌) | gcd(𝑞 + 1, 𝐶) for some power q of p and some odd integers 𝑛 > 𝑚 with gcd(𝑛, 𝑚) = 1. Then
F (𝐴0, 𝐵0, 𝜎) has finite 𝐺geom precisely for 𝜎 ∈ Char(𝑞 + 1). Thus, F (𝐴0, 𝐵0,Λ) with Λ ∈ Char(𝐶)
has finite 𝐺geom precisely when Λ has order dividing 𝐶0 := gcd(𝐶, 𝑞 + 1). It remains to observe that
𝐶0 < 𝐶, for otherwise 𝐶 | (𝑞 + 1) and every 𝜌 ∈ Char(𝐶) would have F (𝐴0, 𝐵0, 𝜌) with finite 𝐺geom,
contradicting the hypothesis that some summand F (𝐴0, 𝐵0, 𝜒) has infinite 𝐺geom. �

The following statement is a consequence of Lemma 5.1(ii), but we will offer an independent proof.

Lemma 5.2. Suppose that 𝜒 and 𝜌 are nontrivial characters of odd order C which are Galois conjugate
under Gal(Q(𝜁𝐶 )/Q). Then F (𝐴0, 𝐵0, 𝜒) has finite 𝐺geom if and only if F (𝐴0, 𝐵0, 𝜌) has finite 𝐺geom.

Proof. The question is geometric, so we may work over extensions of F𝑝2 (𝜒, 𝜌). Over a finite extension
𝑘/F𝑝2 (𝜒, 𝜌), all traces of F (𝐴0, 𝐵0, 𝜒) and of F (𝐴0, 𝐵0, 𝜌) lie in Q(𝜁𝑝 , 𝜁𝐶 ), and point by point
their traces are conjugate under the action of Gal(Q(𝜁𝐶 , 𝜁𝑝)/Q(𝜁𝑝)). In both cases, finiteness of
𝐺geom is equivalent to all traces being algebraic integers, a condition which is invariant under Galois
conjugation. �

Because F is geometrically irreducible and starts life over F𝑝 , if 𝐺geom,F is infinite, then its identity
component 𝐺◦ is semisimple, by Grothendieck’s local monodromy theorem [De2, 1.3.9]. Next, we
determine 𝐺geom,F in some ‘easy’ cases.

Theorem 5.3. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) subject to (4.0.1). Suppose that
F (𝐴, 𝐵,1) has infinite geometric monodromy group H for some balanced pair (𝐴, 𝐵 = 𝐵𝑖) with
gcd(𝐴, 𝐵) = 1. Then we have the following results.

(i) If 2 � 𝐴𝐵𝑖 , then 𝐺geom,F = Sp𝐴−1.
(ii) Otherwise, SL𝐴−1 ≤ 𝐺geom,F ≤ {𝑔 ∈ GL𝐴−1 | det(𝑔) 𝑝 = 1}.

Proof. Suppose first that 2 � 𝐴𝐵𝑖 . Then by [KT6, Theorems 10.2.4(iii) and 10.3.21(iii)], 𝐻 = Sp𝐴−1. By
the definition of a balanced pair, the fact that 2 � 𝐴𝐵𝑖 implies that A and all 𝐵 𝑗 are odd. As F (𝐴, 𝐵,1)
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is a pullback of F , we have 𝐻 ≤ 𝐺geom,F . But we also have an a priori inclusion 𝐺geom,F ≤ Sp𝐴−1.
Hence, 𝐺geom,F = Sp𝐴−1 in this case.

Suppose next that 2|𝐴𝐵𝑖 . Then by [KT6, Theorems 10.2.4(i) and 10.3.21(i)], we have

SL𝐴−1 ≤ 𝐻 ≤ {𝑔 ∈ GL𝐴−1 | det(𝑔) 𝑝 = 1},
in fact, 𝐻 = SL𝐴−1 if 𝐵 ≠ 𝐴 − 1.

(5.3.1)

As F (𝐴, 𝐵,1) is a pullback of F , we again have 𝐻 ≤ 𝐺geom,F , and so

SL𝐴−1 � 𝐺geom,F ≤ GL𝐴−1

is irreducible. By [KT6, 2.3.1], we have 𝐺geom,F ≤ {𝑔 ∈ GL𝐴−1 | det(𝑔) 𝑝 = 1}. [To apply the cited
result, use the fact that the question is geometric, and after pullback to A𝑟/F𝑝2 , all Frobenius traces of
F lie in Q(𝜁𝑝).] �

Theorem 5.4. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 2 subject to (4.0.1).
Suppose 𝐺geom,F is infinite. Then we have the following results.

(i) Suppose that 𝐴 = 2𝐵𝑖 for some i. Then 𝐺◦
geom,F = SL𝐴−1.

(ii) Suppose that 𝐴 = 3𝐵𝑖 for some i. Then 𝐺geom,F = Sp𝐴−1 if 2 � 𝐴𝐵1 . . . 𝐵𝑟 , and 𝐺◦
geom,F = SL𝐴−1

if and 2|𝐴𝐵1 . . . 𝐵𝑟 .

Proof. Both assertions result from Theorem 3.7. In (i), by Theorem 3.7, we have 𝑀2,2 (F) = 2. This in
turn implies by [GT2, Theorem 1.5] that 𝐺◦

geom,F = SL𝐴−1.
In (ii), by Theorem 3.7, we have 𝑀2,2 (F) = 3 if 2 � 𝐴𝐵1 . . . 𝐵𝑟 , and 𝑀2,2 (F) = 2 if 2|𝐴𝐵1 . . . 𝐵𝑟 .

In the former case, we also have an a priori inclusion 𝐺geom,F ≤ Sp𝐴−1. This in turn implies by [GT2,
Theorem 1.5] that 𝐺geom,F = Sp𝐴−1. In the latter case, we have 𝐺◦

geom,F = SL𝐴−1 as in (i). �

To work with pairs (𝐴, 𝐵) with 𝐶 = gcd(𝐴, 𝐵) > 1, we first observe the following:

Lemma 5.5. Let 𝐴0 > 𝐵0 be prime to p integers with gcd(𝐴0, 𝐵0) = 1, and 𝜒 ≠ 𝜑 two multiplicative
characters. We have the following results.

(i) In all cases, F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to F (𝐴0, 𝐵0, 𝜑).
(ii) If 𝐴0𝐵0 is even, then F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to F (𝐴0, 𝐵0, 𝜑)∨.

(iii) If 𝐴0𝐵0 is even, then F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to F (𝐴0, 𝐵0, 𝜒)∨.
(iv) If 𝐴0𝐵0 is odd, the dual of F (𝐴0, 𝐵0, 𝜒) is F (𝐴0, 𝐵0, 𝜒).
(v) If 𝐴0𝐵0 is odd, F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to F (𝐴0, 𝐵0, 𝜑). It is isomorphic to

the dual of F (𝐴0, 𝐵0, 𝜑) only for 𝜑 = 𝜒.

Proof. We first prove that F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to F (𝐴0, 𝐵0, 𝜑) (i.e., that
𝐻2

𝑐 (G𝑚/F𝑝 ,F (𝐴0, 𝐵0, 𝜒) ⊗ F (𝐴0, 𝐵0, 𝜑)∨) = 0). The dimension of this 𝐻2
𝑐 is the limsup, over finite

extensions L of F𝑝 (𝜒, 𝜑), of the sums

1
(#𝐿)2

∑
𝑡 ∈𝐿

∑
𝑥,𝑦∈𝐿×

𝜓𝐿 (𝑥𝐴0 − 𝑦𝐴0 + 𝑡 (𝑥𝐵0 − 𝑦𝐵0 ))𝜒(𝑥)𝜑(1/𝑦)

=
1

#𝐿

∑
𝜁 ∈𝜇𝐵0

∑
𝑥∈𝐿×

𝜓𝐿 (𝑥𝐴0 (1 − 𝜁 𝐴0))𝜒(𝑥)𝜑(1/(𝜁𝑥)).

The inner sum for 𝜁 ≠ 1 has 𝜁 𝐴0 ≠ 1 (because gcd(𝐴0, 𝐵0) = 1), so this inner sum is bounded in
absolute value by 𝐴0

√
#𝐿 (Weil bound). For 𝜁 = 1, the inner sum is

∑
𝑥∈𝐿× 𝜒(𝑥)𝜑(1/𝑥), which vanishes

unless 𝜒𝜑 = 1, in which case the inner sum is #𝐿 − 1,
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We next prove that if 𝐴0𝐵0 is even, then F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to the dual
F (𝐴0, 𝐵0, 𝜑)∨. This amounts to the vanishing of the space 𝐻2

𝑐 (G𝑚/F𝑝 ,F (𝐴0, 𝐵0, 𝜒) ⊗ F (𝐴0, 𝐵0, 𝜑)).
The dimension of this 𝐻2

𝑐 is the limsup, over finite extensions L of F𝑝 (𝜒, 𝜑), of the sums

(1/#𝐿)2
∑
𝑡 ∈𝐿

∑
𝑥,𝑦∈𝐿×

𝜓𝐿 (𝑥𝐴0 + 𝑦𝐴0 + 𝑡 (𝑥𝐵0 + 𝑦𝐵0 ))𝜒(𝑥)𝜑(𝑦).

Choose a root of unity 𝜏 with 𝜏𝐵0 = −1. Then this sum is

(1/#𝐿)
∑

𝜁 ∈𝜇𝐵0

∑
𝑥∈𝐿×

𝜓𝐿 (𝑥𝐴0 (1 + (𝜏𝜁)𝐴0)𝜒(𝑥)𝜑(𝜏𝜁𝑥).

For every 𝜁 ∈ 𝜇𝐵0 , we claim that (𝜏𝜁)𝐴0 ≠ −1. Indeed, if (𝜏𝜁)𝐴0 = −1, then (𝜏𝜁)𝐴0𝐵0 = (−1)𝐵0 ,
but(𝜏𝜁)𝐴0𝐵0 = (−1)𝐴0 (𝜁)𝐴0𝐵0 = (−1)𝐴0 , and hence, (−1)𝐴0 = (−1)𝐵0 , impossible as 𝐴0 and 𝐵0 have
opposite parities in the 𝐴0𝐵0 even case. Therefore, each inner sum is bounded in absolute value by
𝐴0

√
#𝐿 (Weil bound), and we are done in this 𝐴0𝐵0 even case.

The proof of (ii-bis) is identical: the particular, 𝜒, 𝜑 play no role in the proof of (ii).
Assertion (iii) is obvious: the trace functions of F (𝐴0, 𝐵0, 𝜒) and F (𝐴0, 𝐵0, 𝜒) are complex conju-

gates of each other if 𝐴0𝐵0 is odd. Assertion (iv) then follows from (i) and (iii). �

In view of assertion (iii) of Lemma 5.5, in the case when 𝐴𝐵 is odd, for 𝐶 = gcd(𝐴, 𝐵), we choose
a set Rep(𝐶) ⊂ Char(𝐶) of (𝐶 − 1)/2 nontrivial characters such that for each nontrivial 𝜒 ∈ Char(𝐶),
precisely one of 𝜒, 𝜒 lies in Rep(𝐶).

Theorem 5.6. Let 𝐴 > 𝐵 ≥ 1 be prime to p integers with 2 � gcd(𝐴, 𝐵) = 𝐶 > 1. Suppose that
infmono(𝐴, 𝐵) holds, and write (𝐴, 𝐵) = (𝐶𝐴0, 𝐶𝐵0). Then we have the following results.

(i) Suppose that 𝐴𝐵 is even and 𝐴0 > 2. Then

𝐺◦
geom,F (𝐴,𝐵,1) = SL𝐴0−1 ×

∏
1≠𝜒∈Char(𝐶)

SL𝐴0 .

(ii) Suppose that 𝐴𝐵 is odd and 𝐴0 > 3. Then precisely one of 𝜒, 𝜒 lies in Rep(𝐶), and𝐺geom,F (𝐴,𝐵,1) =
Sp𝐴0−1 ×

∏
𝜒∈Rep(𝐶) SL𝐴0 .

Proof. We begin with the direct sum decomposition

F (𝐴, 𝐵,1) =
⊕

𝜒∈Char(𝐶)
F (𝐴0, 𝐵0, 𝜒),

Recall from [KT4, 3.10 (i) and (ii)] that, up to the same multiplicative translation, the local systems
F (𝐴0, 𝐵0, 𝜒) are each geometrically isomorphic to Kummer [𝐴0]★ pullbacks of hypergeometric sheaves.
We have

F (𝐴0, 𝐵0,1) = [𝐴0]★H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 ,

and for 𝜒 ≠ 1 and any choice of 𝜌𝜒 with 𝜌𝐴0
𝜒 = 𝜒, we have

F (𝐴0, 𝐵0, 𝜒) = [𝐴0]★H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 .

(i) Suppose first that 𝐴𝐵 is even, and 𝐴0 ≥ 3. By infmono(𝐴, 𝐵), each 𝐺geom,F (𝐴0 ,𝐵0 ,𝜒) is infinite.
Then by [KT6, 10.2.4 and 10.3.21], we have

𝐺◦
geom,F (𝐴0 ,𝐵0 ,1) = SL𝐴0−1,
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and for each 𝜒 ≠ 1, we have

𝐺◦
geom,F (𝐴0 ,𝐵0 ,𝜒) = SL𝐴0 .

Now consider the direct sum of hypergeometric sheaves H(𝐴, 𝐵,1) defined as

H(𝐴, 𝐵,1) := H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 ⊕
⊕

1≠𝜒∈Char(𝐶)
H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 .

Up to multiplicative translation, we have a geometric isomorphism

F (𝐴, 𝐵,1) = [𝐴0]★H(𝐴, 𝐵,1).

As finite pullback does not change 𝐺◦
geom, we have

𝐺◦
geom,H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0

= SL𝐴0−1,

and for each 𝜒 ≠ 1, we have

𝐺◦
geom,H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒

= SL𝐴0 .

In this 𝐴𝐵 even case, it suffices to show that 𝐺◦
geom,H(𝐴,𝐵,1) is the asserted product

𝐺◦
geom,H(𝐴,𝐵,1) = SL𝐴0−1 ×

∏
𝜒∈Char(𝐶) ,𝜒≠1

SL𝐴0 .

For this, we apply Goursat-Kolchin-Ribet [Ka2, 1.8.2]. We must show that for any character L of
𝐺geom,H(𝐴,𝐵,1) ,
(a) there is no isomorphism between L ⊗H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 and any H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 or its dual H∨

𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒

(b) For 𝜒 ≠ 𝜑 both nontrivial, there is no isomorphism between L ⊗ H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 and either
H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜑 or its dual H∨

𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜑
.

The first condition holds trivially, as the ranks are different, 𝐴0 − 1 versus 𝐴0. It suffices to show
the second condition with the stronger statement for L any character of 𝜋geom,tame at 0

1 (G𝑚/F𝑝). Such a
character is a Kummer sheaf L𝜎 . Indeed, as 𝐴0 ≥ 3, either 𝐴0 − 𝐵0 > 1, in which case all ∞-slopes are
< 1, and so L is tame at ∞, or 𝐴0 − 𝐵0 = 1, in which case there is a single slope 1 at ∞, but 𝐴0 − 1 ≥ 2
slopes 0 at ∞, so again L must be tame at ∞.

As the ‘upstairs’ characters of H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 and of both H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜑 and its dual H∨
𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜑

are
Char(𝐴0), the set of all characters, the only possible L is a Kummer L𝜒 for some 𝜒 ∈ Char(𝐴0).

If there were such an isomorphism, it would persist after [𝐴0]★ Kummer pullback, which makes
the L disappear. So in this 𝐴𝐵 even case, we are reduced to showing that for 𝜒 ≠ 𝜑 both nontrivial,
F (𝐴0, 𝐵0, 𝜒) is not geometrically isomorphic to eitherF (𝐴0, 𝐵0, 𝜑) or its dualF (𝐴0, 𝐵0, 𝜑)∨. Applying
Lemma 5.5, we complete the proof in the 𝐴𝐵 even case.

(ii) We now treat the case when 𝐴𝐵 is odd. Then 𝐴0𝐵0 is odd, and for each nontrivial 𝜒 ∈ Char(𝐶),
the two local systems F (𝐴0, 𝐵0, 𝜒) and F (𝐴0, 𝐵0, 𝜒) are dual. Therefore, F (𝐴, 𝐵,1) has the same
𝐺geom as the ‘reduced’ direct sum

F𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐴, 𝐵,1) := F (𝐴0, 𝐵0,1) ⊕
⊕

𝜒∈Rep(𝐶)
F (𝐴0, 𝐵0, 𝜒).

Let us explain this last point. Our situation is that we have two local systems A and B of ranks M and N,
respectively. We consider both the direct sum A ⊕ B and the direct sum A ⊕ B ⊕ B∨. For the latter, an
element 𝛾 ∈ 𝜋1 (A1/F𝑝) maps to a ‘diagonal’ element diag(𝑍, 𝑋,𝑌 ) in GL(A ⊕ B ⊕ B∨), This element
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satisfies the matrix equation 𝑡𝑋𝑌 = Id2𝑁 . Hence, every element (𝑍, 𝑋,𝑌 ) in the Zariski closure also
satisfies the matrix equation 𝑡𝑋𝑌 = Id2𝑁 . Thus, the map

𝐺geom,A⊕B⊕B∨ → 𝐺geom,A⊕B, (𝑍, 𝑋,𝑌 ) ↦→ (𝑍, 𝑋)

is injective: we recover Y as 𝑡𝑋−1. But this projection is surjective, so we get the asserted isomorphism

𝐺geom,A⊕B⊕B∨ � 𝐺geom,A⊕B .

Analogously to the 𝐴𝐵 even case, we introduce the ‘reduced’ direct sum of hypergeometric sheaves

H𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐴, 𝐵,1) := H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 ⊕
⊕

𝜒∈Rep(𝐶) ,𝜒≠1
H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 ,

whose [𝐴0]★ Kummer pullback isF𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐴, 𝐵,1). Then it suffices to prove that𝐺◦
geom,H𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐴,𝐵,1)

is the asserted product

𝐺◦
geom,H𝑟𝑒𝑑𝑢𝑐𝑒𝑑 (𝐴,𝐵,1) = Sp𝐴0−1 ×

∏
𝜒∈Rep(𝐶)

SL𝐴0 .

In view of Lemma 5.5, this is immediate from Goursat-Kolchin-Ribet [Ka2, 1.8.2]. Indeed, with the
hypothesis 𝐴0 > 3, we can instead directly apply [Ka2, 8.11.7.2] because the exclusion (1) of that result,
concerning factors of rank 2, is vacuous, as there are no such factors. �

6. Multiparameter local systems with infinite monodromy. I

We continue to work with local systems defined in (4.0.1), for which the condition infmono(𝐴, 𝐵) does
not necessarily hold. First, we give a slight variant of Theorem 5.6.

Theorem 6.1. Given prime to p integers 𝐴 > 𝐵 ≥ 1, suppose that 𝐶 := gcd(𝐴, 𝐵) is both odd and ≥ 3.
Write (𝐴, 𝐵) = (𝐶𝐴0, 𝐶𝐵0). Let 𝑆inf , respectively 𝑆fin, be the set of those characters 𝜒 ∈ Char(𝐶) for
which F (𝐴0, 𝐵0, 𝜒) has infinite, respectively finite, 𝐺geom. Suppose that ∅ ≠ 𝑆inf ≠ Char(𝐶). Then, by
Lemma 5.1(ii),

𝑆fin = Char(𝐶0) and 𝑆inf = Char(𝐶) \ Char(𝐶0)

for some divisor 𝐶0 < 𝐶 of C. Denote

Finf (𝐴, 𝐵) := ⊕𝜒∈𝑆infF (𝐴0, 𝐵0, 𝜒),
Ffin(𝐴, 𝐵) := ⊕𝜒∈𝑆finF (𝐴0, 𝐵0, 𝜒) = F (𝐴0𝐶0, 𝐵0𝐶0,1).

Then the following statements hold for 𝐺 := 𝐺geom,F (𝐴,𝐵,1) and 𝐻fin := 𝐺geom,Ffin (𝐴,𝐵) .

(i) Suppose 𝐴0𝐵0 is even. Then

𝐺◦
geom,F (𝐴,𝐵,1) = 𝐺

◦
geom,Finf (𝐴,𝐵) �

∏
𝜒∈𝑆inf

SL𝐴0 .

If 𝐴0 − 1 ≠ 𝐵0, then 𝐺geom,Finf (𝐴,𝐵) = 𝐺
◦
geom,Finf (𝐴,𝐵) and

𝐺 = 𝐻fin × 𝐺geom,Finf (𝐴,𝐵) .
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If 𝐴0 − 1 = 𝐵0 but 𝐴0 > 2, then

[𝐺,𝐺] = [𝐻fin, 𝐻fin] × 𝐺◦
geom,Finf (𝐴,𝐵) ,

and the quotient 𝐺/[𝐺,𝐺] is a nontrivial finite elementary abelian p-group.
(ii) Suppose 𝐴0𝐵0 is odd. Choose a subset Rep(𝑆inf) ⊂ 𝑆inf of #𝑆inf/2 nontrivial characters such that

for each nontrivial 𝜒 ∈ 𝑆inf , precisely one of 𝜒, 𝜒 lies in Rep(𝑆inf). Then

𝐺geom,Finf (𝐴,𝐵) �
∏

𝜒∈Rep(𝑆inf )
SL𝐴0 , 𝐺 = 𝐻fin × 𝐺geom,Finf (𝐴,𝐵) .

Proof. The proof of the identification of 𝐺◦
geom,F (𝐴,𝐵,1) = 𝐺

◦
geom,Finf (𝐴,𝐵) , via Goursat-Kolchin-Ribet,

is a subset of the proof of Theorem 5.6 and is left to the reader.
Next, observe that 𝐺◦

geom,Finf (𝐴,𝐵) is perfect and has no nontrivial finite quotient; furthermore,

F (𝐴, 𝐵,1) = Ffin (𝐴, 𝐵) ⊕ Finf (𝐴, 𝐵). (6.1.1)

Assume in addition that either 2 � 𝐴0𝐵0, or 2 | 𝐴0𝐵0 but 𝐴0 − 1 ≠ 𝐵0. Then (5.3.1) and the arguments
in the proof of Theorem 5.6 show that

𝐺geom,Finf (𝐴,𝐵) = 𝐺
◦
geom,Finf (𝐴,𝐵) .

Now, the action of G on the two summands in (6.1.1) projects G onto the finite group 𝐻fin and onto
𝐺geom,Finf (𝐴,𝐵) . Since 𝐺geom,Finf (𝐴,𝐵) has no finite quotient, an application of the classical Goursat
lemma (cf. [L, Exercise 5, p. 75]) shows that

𝐺 = 𝐻fin × 𝐺geom,Finf (𝐴,𝐵) .

Assume now that 𝐴0 − 1 = 𝐵0 but 𝐴0 > 2. By [KT6, Theorem 10.3.13], we have 𝐶0 = 1, and precisely
two cases:

(𝑝, 𝐴0, 𝐻fin) = (3, 5, Sp4(3) × 3), (5, 3, SL2 (5) × 5). (6.1.2)

The action of G on any summand F (𝐴0, 𝐵0, 𝜒) of F (𝐴, 𝐵,1) projects G onto 𝐻fin when 𝜒 = 1 and
onto an intermediate group between SL𝐴0 and SL𝐴0 · 𝑝 when 𝜒 ∈ 𝑆inf . Hence, it projects [𝐺,𝐺] onto
the quasisimple group [𝐻fin, 𝐻fin] when 𝜒 = 1, and onto SL𝐴0 when 𝜒 ∈ 𝑆inf . Again using the classical
Goursat lemma, we conclude that

[𝐺,𝐺] = [𝐻fin, 𝐻fin] × 𝐺◦
geom,Finf (𝐴,𝐵) .

Now, the above action projects𝐺/[𝐺,𝐺] onto𝐶𝑝 on every finite summand, and onto 1 or𝐶𝑝 on SL-type
components, whence 𝐺/[𝐺,𝐺] is a nontrivial finite elementary abelian p-group. �

This last result allows a partial strengthening of Lemma 5.5(i).

Corollary 6.2. Hypotheses and notations as in Theorem 6.1, the local systems F (𝐴0, 𝐵0, 𝜒) with
𝜒 ∈ 𝑆inf are pairwise non-isomorphic as representations of 𝐺◦

geom,Finf (𝐴,𝐵) .

Proof. In the case when 𝐴0𝐵0 is even, the group 𝐺◦
geom,Finf (𝐴,𝐵) is a product of nontrivial groups,

and the constituents F (𝐴0, 𝐵0, 𝜒) indexed by 𝜒 ∈ 𝑆inf are nontrivial irreducible representations of the
various nontrivial factor groups. In the case when 𝐴0𝐵0 is odd, the group 𝐺geom,Finf (𝐴,𝐵) is a product of
copies of SL𝐴0 , 𝐴0 ≥ 3, and the constituents are either the natural module for one of the SL𝐴0 factors
or the dual of the natural module for that factor. In this case, it remains to observe that, because 𝐴0 > 2,
the natural module for a given SL𝐴0 factor is not self-dual. �
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Theorem 6.3. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 2, subject to (4.0.1).
Suppose that, for some (not necessarily balanced) pair (𝐴, 𝐵 := 𝐵𝑖) with 2 � 𝐶 = gcd(𝐴, 𝐵), F (𝐴, 𝐵,1)
has infinite geometric monodromy group. Then F is Lie-irreducible (i.e., 𝐺◦

geom,F acts irreducibly).

Proof. Write (𝐴, 𝐵) = (𝐶𝐴0, 𝐶𝐵0). When 𝐶 = 1, or when 𝐴0 = 2, or when 𝐴0 = 3 and B is odd, we
have already established the statement in Theorem 5.3 (and its proof), and in Theorem 5.4.

It remains to treat the case when 𝐶 ≥ 3 and either 𝐴0 > 2 or both 𝐴0𝐵0 is odd and 𝐴0 > 3. In these
cases, we have the direct sum decomposition

F (𝐴, 𝐵,1) =
⊕

𝜒∈Char(𝐶)
F (𝐴0, 𝐵0, 𝜒),

into pairwise non-isomorphic geometrically irreducible constituents. Precisely one of these constituents
has rank 𝐴0 − 1 (namely, F (𝐴0, 𝐵0,1)), and the other 𝐶 − 1 constituents each have rank 𝐴0.

(a) Let 𝑆inf , respectively 𝑆fin, be the set of those characters 𝜒 ∈ Char(𝐶) for which F (𝐴0, 𝐵0, 𝜒) has
infinite, respectively finite, 𝐺geom, and write

𝐶0 := #𝑆fin.

Recall from Lemma 5.1 that either 𝐶0 = 0, or 𝐶0 is a proper divisor of 𝐶 ≥ 3, and hence,

#𝑆inf = 𝐶 − 𝐶0 ≥ 2.

Because F (𝐴, 𝐵,1) is a pullback of F , we have 𝐻 ≤ 𝐺 for

𝐺 := 𝐺geom,F , 𝐻 := 𝐺geom,F (𝐴,𝐵,1) ,

and hence, 𝐻◦ ≤ 𝐺◦. Now we can apply Theorem 5.6 and Theorem 6.1 to see that

𝐻◦ = 𝐻◦
inf = 𝐺

◦
geom,Finf (𝐴,𝐵) . (6.3.1)

By Lemma 5.5(i) and Corollary 6.2, each of 𝐶 − 𝐶0 ≥ 2 constituents F (𝐴0, 𝐵0, 𝜒), 𝜒 ∈ 𝑆inf , is
irreducible under 𝐻◦, and they are pairwise non-isomorphic as representations of 𝐻◦.

(b) We argue by contradiction. We know [KT5, 2.6] that F is geometrically irreducible (i.e., that
G is an irreducible subgroup of GL𝐴−1 = GL(𝑉) with 𝑉 := F𝜂). Suppose that 𝐺◦ is reducible on V.
Because 𝐺◦ � 𝐺, the action of 𝐺◦ on V is completely reducible. Let

𝑉 =
𝑚⊕
𝑖=1

𝑛𝑖𝑊𝑖

be the decomposition of V into isotypical components under the action of 𝐺◦. Then G transitively
permutes these m isotypical components, and it must also transitively permute the isomorphism classes
of the 𝑊𝑖 . Therefore, the multiplicities 𝑛𝑖 have a common value n, and 𝑉 = 𝑛(⊕𝑚

𝑖=1𝑊𝑖) under 𝐺◦. Now
if 𝑛 > 1, then some simple summand of 𝑉 |𝐻 ◦ has multiplicity ≥ 𝑛, contradicting the conclusion of (a).
Hence,

𝑛 = 1 and 𝑚 ≥ 2, (6.3.2)

the latter because we assume 𝑉 |𝐺◦ is reducible.
Now the summands𝑊𝑖 are transitively permuted by G, so all have the same dimension as each other,

say common dimension M. Under the subgroup𝐻◦, each𝑊𝑖 is a partial direct sum of the𝐻◦-components
of V. In the case 𝐶0 = 0, exactly one of these 𝐺◦

geom,F (𝐴,𝐵,1) -components has dimension 𝐴0 − 1 ≥ 2,
and all the others have dimension 𝐴0. So exactly one of the 𝑊𝑖 has dimension which is −1 (mod 𝐴0),
and any other𝑊𝑖 has dimension divisible by 𝐴0. This contradicts the fact that dim(𝑊𝑖) = 𝑀 for all i.
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Assume now that 𝐶0 ≥ 1. By Theorem 6.1, H contains the subgroup

𝐻 ′
fin × 𝐻

◦, (6.3.3)

where 𝐻 ′
fin = 𝐻fin, unless 𝐴0 − 1 = 𝐵0, in which case we take 𝐻 ′

fin = [𝐻fin, 𝐻fin]. Observe that in either
case, F (𝐴0𝐶0, 𝐵0𝐶0,1) splits into a direct sum of 𝐶0 simple modules under 𝐻 ′

fin, one of dimension
𝐴0 − 1, and the other 𝐶0 − 1 of dimension 𝐴0. On all of these summands, 𝐻◦ acts trivially; see (6.3.1).

However, the remaining 𝐶 − 𝐶0 subsheaves F (𝐴0, 𝐵0, 𝜒), 𝜒 ∈ 𝑆inf , give simple, pairwise non-
isomorphic 𝐻◦-submodules, as mentioned in (a). Thus, each of these simple modules of multiplicity
1 must occur in some, and exactly one, 𝑊𝑖 upon restriction to 𝐻◦. Call 𝑊𝑖 big if 𝑊𝑖 |𝐻 ◦ is nontrivial,
equivalently, contains some F (𝐴0, 𝐵0, 𝜒) with 𝜒 ∈ 𝑆inf , and small otherwise. As before, we have

𝑚𝑀 = 𝐷 := dim(𝑉) = 𝐴0𝐶 − 1 ≡ −1 (mod 𝐴0),

and so

𝐴0 � 𝑀 = dim(𝑊 𝑗 ). (6.3.4)

Suppose𝑊𝑖 is big, so its restriction to 𝐻◦ contains some F (𝐴0, 𝐵0, 𝜒𝑖) with 𝜒𝑖 ∈ 𝑆inf , and consider
any ℎ ∈ 𝐻 ′

fin. Recall that h, as any other element in G, sends 𝑊𝑖 to some 𝑊𝑖′ . Since h centralizes
𝐻◦ (see (6.3.3)), the 𝐻◦-modules ℎ(𝑊𝑖) and 𝑊𝑖 are isomorphic and hence have the same 𝐻◦ simple
summands. But F (𝐴0, 𝐵0, 𝜒𝑖) occurs with multiplicity 1 in𝑉 |𝐻 ◦ ; hence, ℎ(𝑊𝑖) = 𝑊𝑖′ = 𝑊𝑖 . Thus,𝑊𝑖 is
stabilized by 𝐻 ′

fin, and hence, it is an𝐻 ′
fin×𝐻

◦-submodule. Recall that all but one simple summand of the
𝐻 ′

fin ×𝐻
◦-module V has dimension 𝐴0, and the remaining one, F (𝐴0, 𝐵0,1), has dimension 𝐴0 − 1. As

𝐴0 ≥ 3, condition (6.3.4) now implies that𝑊𝑖 must containF (𝐴0, 𝐵0,1), which uniquely determines𝑊𝑖 .
We have shown that among the𝑊 𝑗 ’s, there is exactly one big summand, and all others are small.

Relabeling the 𝑊 𝑗 ’s, we may assume 𝑊1 is big and 𝑊2, . . . ,𝑊𝑚 are all small. As 𝑚 ≥ 2 by (6.3.2),
we have

dim(⊕𝑚
𝑖=2𝑊𝑖) ≥ 𝐷/2 = (𝐴0𝐶 − 1)/2. (6.3.5)

However, each small𝑊 𝑗 is trivial on 𝐻◦ (by definition), and so must be contained in F (𝐴0𝐶0, 𝐵0𝐶0,1),
and does not contain F (𝐴0, 𝐵0,1) (which already occurs in the big𝑊1). It follows that

dim(⊕𝑚
𝑖=2𝑊𝑖) ≤ 𝐴0(𝐶0 − 1).

As 𝐶0 < 𝐶/2, this contradicts (6.3.5). �

In tandem with Theorem 6.3, we prove the following:

Proposition 6.4. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 2 subject to (4.0.1).
Suppose that 𝐴 ≥ 5, that for some j, A and 𝐵 𝑗 have different parity, and that 𝐺◦ := 𝐺◦

geom,F acts
irreducibly on F . Then F cannot be self-dual for the action of 𝐺◦.

Proof. We argue by contradiction. Assume that the underlying (𝐴−1)-dimensional representation space

𝑉 := F𝜂

for 𝐺 := 𝐺geom,F is self-dual over 𝐺◦. Then Hom𝐺◦ (𝑉∨, 𝑉) is a one-dimensional representation of
𝐺/𝐺◦; call it L. This means precisely that 𝑉 � L ⊗ 𝑉∨ as a representation of G. By pullback, we get a
geometric isomorphism

F (𝐴, 𝐵 𝑗 ,1) � L0 ⊗ F (𝐴, 𝐵 𝑗 ,1)∨

for L0 the restriction of L to the subgroup 𝐺geom,F (𝐴,𝐵 𝑗 ,1) ≤ 𝐺.
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Now define 𝐶 := gcd(𝐴, 𝐵 𝑗 ), and write (𝐴, 𝐵 𝑗 ) = (𝐶𝐴0, 𝐶𝐵0). Then C is odd, and precisely one of
𝐴0, 𝐵0 is even. In the decomposition

F (𝐴, 𝐵 𝑗 ,1) = F (𝐴0, 𝐵0,1) ⊕
⊕

𝜒∈Char(𝐶) , 𝜒≠1
F (𝐴0, 𝐵0, 𝜒)

into a direct sum of local systems which are pairwise not geometrically isomorphic, the summand
F (𝐴0, 𝐵0,1) is the unique one of lowest rank 𝐴0 − 1. Therefore, the isomorphism above,

F (𝐴, 𝐵 𝑗 ,1) � L0 ⊗ F (𝐴, 𝐵 𝑗 ,1)∨,

gives a geometric isomorphism

F (𝐴0, 𝐵0,1) � L0,0 ⊗ F (𝐴0, 𝐵0,1)∨,

for L0,0 the restriction of L0 to the image in 𝐺geom,F (𝐴0 ,𝐵0 ,1) of 𝐺geom,F (𝐴,𝐵 𝑗 ,1) .
We now consider the local system F (𝐴0, 𝐵0,1). Up to a multiplicative translation, it is the [𝐴0]★

pullback

[𝐴0]★H𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 .

Thus,F (𝐴0, 𝐵0,1) is lisse at 0, and (asH𝑠𝑚𝑎𝑙𝑙,𝐴0 ,𝐵0 is hypergeometric of type (𝐴0−1, 𝐵0−1)) its 𝐼 (∞)-
representation is the direct sum Tame ⊕ Wild with Tame of rank 𝐵0 − 1 and Wild of rank 𝐴0 − 𝐵0, with
all slopes 𝐴0/(𝐴0 − 𝐵0). The same statements about local monodromy hold for its dual F (𝐴0, 𝐵0,1)∨.

Our L0,0 is a constituent of F (𝐴0, 𝐵0,1) ⊗ F (𝐴0, 𝐵0,1), so is lisse on A1.
We first treat the case when 𝐴0 is odd and 𝐵0 is even. Suppose first that 𝐴0 − 𝐵0 ≠ 1. Because

gcd(𝐴0, 𝐴0 − 𝐵0) = 1, the slope 𝐴0/(𝐴0 − 𝐵0) > 1 is not an integer. But the ∞-slope of L0,0 – namely,
Swan∞(L0,0) – is an integer. So if Swan∞(L0,0) > 0, then L0,0 ⊗ F (𝐴0, 𝐵0,1)∨ will be totally wild at
∞, so cannot be geometrically isomorphic to F (𝐴0, 𝐵0,1), which at ∞ has a tame part of dimension
𝐵0 − 1 ≥ 1 (≥ 1 because 𝐵0 is odd). Therefore, L0,0 must be tame at ∞; hence, is geometrically
trivial. But then we have a geometric isomorphism of F (𝐴0, 𝐵0,1) with its dual, contradicting (ii-bis)
of Lemma 5.5.

Suppose next that 𝐴0 − 𝐵0 = 1 but that 𝐴0 − 𝐵0 ≠ 𝐵0 − 1 > 1. Then F (𝐴0, 𝐵0,1) at ∞ has a wild
part of dimension 1 with slope 𝐴0 and a tame part of dimension 𝐵0 − 1 > 1. So if Swan∞(L0,0) > 0,
then L0,0 ⊗ F (𝐴0, 𝐵0,1)∨ will have a wild part of dimension ≥ 2, and so cannot be geometrically
isomorphic to F (𝐴0, 𝐵0,1). Again, L0,0 must be tame at ∞, hence geometrically trivial, and again a
contradiction of (ii-bis) of Lemma 5.5.

Finally, we have the case when 𝐴0 − 𝐵0 = 1 and 𝐵0 − 1 = 1 (i.e., the case (𝐴0, 𝐵0) = (3, 2)). Here,
(𝐴, 𝐵) = (3𝐶, 2𝐶). As 𝐴 ≥ 5, we have 𝐶 > 1. So in the decomposition

F (𝐴, 𝐵 𝑗 ,1) = F (𝐴0, 𝐵0,1) ⊕
⊕

𝜒∈Char(𝐶) , 𝜒≠1
F (𝐴0, 𝐵0, 𝜒),

there are𝐶−1 > 1 distinct irreducible componentsF (𝐴0, 𝐵0, 𝜒) of rank 𝐴0. The geometric isomorphism

F (𝐴, 𝐵 𝑗 ,1) � L0 ⊗ F (𝐴, 𝐵 𝑗 ,1)∨

then gives a geometric isomorphism⊕
𝜒∈Char(𝐶) , 𝜒≠1

F (𝐴0, 𝐵0, 𝜒) �
⊕

𝜒∈Char(𝐶) , 𝜒≠1
L0 ⊗ F (𝐴0, 𝐵0, 𝜒)∨.
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Matching irreducible constituents, we see that for some pair 𝜒, 𝜑 of (not necessarily distint) nontrivial
characters in Char(𝐶), we have a geometric isomorphism

F (𝐴0, 𝐵0, 𝜒) � L𝜒,𝜑 ⊗ F (𝐴0, 𝐵0, 𝜑)∨

for some lisse L𝜒,𝜑 of rank one. Again in this situation, both F (𝐴0, 𝐵0, 𝜒) and F (𝐴0, 𝐵0, 𝜑) are lisse
on A1. Each is the [𝐴0]★ pullback of a hypergeometric H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜒 , respectively H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜌𝜑 . Thus,
both of F (𝐴0, 𝐵0, 𝜒) and F (𝐴0, 𝐵0, 𝜑) at ∞ have a wild part of dimension 𝐴0 − 𝐵0 = 3 − 2 = 1 and
a tame part of dimension 𝐵0 = 2. So if L𝜒,𝜑 were not tame at ∞, L𝜒,𝜑 ⊗ F (𝐴0, 𝐵0, 𝜑)∨ would have
a wild part of dimension ≥ 𝐵0 = 2, impossible as F (𝐴0, 𝐵0, 𝜒) has a wild part of dimension 1. Thus,
L𝜒,𝜑 is geometrically trivial, and hence, we get

F (𝐴0, 𝐵0, 𝜒) � F (𝐴0, 𝐵0, 𝜑)∨,

contradicting either (ii) or (ii-bis) of Lemma 5.5. This concludes the proof in the case that 𝐴0 is odd and
𝐵0 is even.

We now treat the case when 𝐴0 is even and 𝐵0 is odd. If 𝐴0 = 2, then 𝐵0 = 1, and hence,
(𝐴, 𝐵) = (2𝐶,𝐶); in this case, we have 𝑀2,2 (F) = 2 by Theorem 3.7. As 𝐺geom,F is infinite, we have
𝐺0

geom,F = SL𝐴−1, and we are done in this 𝐴0 = 2 case.
It remains to treat the case when 𝐴0 ≥ 4 is even and 𝐵0 is odd. If gcd(𝐴, 𝐵) = 1, then 𝐺geom,F (𝐴,𝐵)

is infinite, and hence has 𝐺0
geom,F = SL𝐴−1, and we are done in this case.

Suppose now that 𝐶 > 1. Just as in the case (𝐴0, 𝐵0) = (3, 2) discussed above, we match irreducible
constituents to see that for some pair 𝜒, 𝜑 of (not necessarily distint) nontrivial characters in Char(𝐶),
we have a geometric isomorphism

F (𝐴0, 𝐵0, 𝜒) � L𝜒,𝜑 ⊗ F (𝐴0, 𝐵0, 𝜑)∨.

Both F (𝐴0, 𝐵0, 𝜒) and F (𝐴0, 𝐵0, 𝜑)∨ are lisse at 0. As 𝐼 (∞)-representations, each is Tame⊕Wild, with
Tame of rank 𝐵0 and Wild of rank 𝐴0 − 𝐵0 with all slopes 𝐴0/(𝐴0 − 𝐵0).

If 𝐴0 − 𝐵0 ≠ 1, then the slope 𝐴0/(𝐴0 − 𝐵0) is not an integer. If L𝜒,𝜑 had Swan∞ > 0, then
L𝜒,𝜑 ⊗ F (𝐴0, 𝐵0, 𝜑)∨ would be totally wild at ∞, impossible because F (𝐴0, 𝐵0, 𝜒) has a tame part of
dimension 𝐵0 ≥ 1. Thus, L𝜒,𝜑 is geometrically trivial. Then

F (𝐴0, 𝐵0, 𝜒) � F (𝐴0, 𝐵0, 𝜑)∨,

contradicting either (ii) or (ii-bis) of Lemma 5.5.
It remains to treat the case when 𝐴0 − 𝐵0 = 1. Here, Tame has dimension 𝐵0 = 𝐴0 − 1 ≥ 3, while

Wild has dimension 1. If L𝜒,𝜑 had Swan∞ > 0, then L𝜒,𝜑 ⊗ F (𝐴0, 𝐵0, 𝜑)∨ would have a wild part of
dimension at least 𝐵0 ≥ 3, impossible because F (𝐴0, 𝐵0, 𝜒) has a wild part of dimension 1. So again
here, we get

F (𝐴0, 𝐵0, 𝜒) � F (𝐴0, 𝐵0, 𝜑)∨,

contradicting either (ii) or (ii-bis) of Lemma 5.5. �

Remark 6.5. We exclude the case 𝐴 = 3 in Proposition 6.4 because F (3, 2,1) has rank two, and in any
characteristic, 𝑝 > 5 has infinite 𝐺geom, and hence 𝐺◦

geom = SL2 = Sp2 in any characteristic 𝑝 > 5.

Now we can determine 𝐺geom in the presence of infmono(𝐴, 𝐵):

Theorem 6.6. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 2 subject to (4.0.1).
Suppose that condition infmono(𝐴, 𝐵) holds for some, not necessarily balanced, pair (𝐴, 𝐵 = 𝐵𝑖) with
2 � 𝐶 = gcd(𝐴, 𝐵). Then the following statements hold for 𝐺geom,F .
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(i) Suppose that 𝐴𝐵 is even. Then 𝐺◦
geom,F = SL𝐴−1.

(ii) Suppose that 𝐴𝐵 is odd. If 2 � 𝐴𝐵1 . . . 𝐵𝑟 , then 𝐺geom,F = Sp𝐴−1. If 2|𝐴𝐵1 . . . 𝐵𝑟 , then 𝐺◦
geom,F =

SL𝐴−1.

Proof. (a) First, we assume that the pair (𝐴, 𝐵) is balanced, and write 𝐴0 = 𝐴/𝐶 and 𝐵0 = 𝐵/𝐶. In
view of Theorems 5.3 and 5.4, it suffices to treat the cases with

𝐶 ≥ 3, 𝐴0 ≥ 5 if 2 � 𝐴𝐵, and 𝐴0 ≥ 3 if 2|𝐴𝐵. (6.6.1)

Recall the condition infmono(𝐴, 𝐵) for the balanced pair (𝐴, 𝐵) implies that 𝐺 = 𝐺geom,F is infinite,
so 𝐺◦ is semisimple, say of rank

𝑟 = rank(𝐺◦).

By Theorem 6.3, 𝐺◦ acts irreducibly on the underlying representation V of dimension 𝐷 = 𝐴 − 1.
We aim to show that 𝐺◦ is a simple algebraic group. Assume the contrary:

𝐺 = 𝐺1 ∗ 𝐺2 ∗ . . . ∗ 𝐺𝑛,

where 𝑛 > 1, 𝐺𝑖 is a simple algebraic group of rank 𝑎𝑖 for each 1 ≤ 𝑖 ≤ 𝑛, and 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑛 ≥ 1.
Thus,

𝑟 =
𝑛∑
𝑖=1

𝑎𝑖 .

We will derive a contradiction when 𝑛 ≥ 2.
As 𝐺◦ acts irreducibly and faithfully on V, the underlying representation of G, we can write

𝑉 |𝐺◦ = 𝑉1 ⊗ 𝑉2 ⊗ . . . ⊗ 𝑉𝑛,

where 𝑉𝑖 is an irreducible 𝐺𝑖-module of dimension 𝑑𝑖 ≥ 2. In fact, by [KlL2, Proposition 5.4.11], we
have

𝑑𝑖 ≥ 𝑎𝑖 + 1.

Since (𝑥 + 1) (𝑦 + 1) ≥ 𝑥 + 𝑦 + 1 for all 𝑥, 𝑦 ∈ Z≥0, we have

𝐷 =
𝑛∏
𝑖=1

𝑑𝑖 ≥
𝑛∏
𝑖=1

(𝑎𝑖 + 1) ≥ (𝑎 + 1) (𝑏 + 1), (6.6.2)

where

𝑎 := 𝑎1 + 𝑎2 + . . . + 𝑎𝑛−1, 𝑏 := 𝑎𝑛, 𝑎 + 𝑏 = 𝑟.

(a1) First, we consider the case 2|𝐴𝐵. By Theorem 5.6(i),𝐺◦ contains a semisimple subgroup of rank

𝐴0 − 2 + (𝐴0 − 1) (𝐶 − 1) = 𝐴 − 1 − 𝐶,

and so 𝑟 ≥ 𝐴 − 1 − 𝐶. As 𝐶 = 𝐴/𝐴0 ≤ 𝐴/3 by (6.6.1), we have

𝑟 ≥ 2𝐴/3 − 1 = (2𝐷 − 1)/3,
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and so

𝐷 ≤ 3𝑟 + 1
2

. (6.6.3)

As 𝐴0 ≥ 3 and 𝐶 ≥ 3 by (6.6.1), we also have

𝑟 ≥ 5. (6.6.4)

However, 𝑎, 𝑏 ≥ 1 implies that (2𝑎 − 1) (2𝑏 − 1) ≥ 1 (i.e., 2𝑎𝑏 ≥ 𝑎 + 𝑏). Hence, using (6.6.2), we now
have

𝐷 − 3𝑟 + 1
2

= 𝐷 − 3(𝑎 + 𝑏) + 1
2

≥ (𝑎 + 1) (𝑏 + 1) − 3(𝑎 + 𝑏) + 1
2

=
2𝑎𝑏 − 𝑎 − 𝑏 + 1

2
> 0,

contrary to (6.6.3).
(a2) Now suppose that 2 � 𝐴𝐵. By Theorem 5.6(ii), 𝐺◦ contains a semisimple subgroup H of rank

𝐴0 − 1
2

+ (𝐴0 − 1)𝐶 − 1
2

= (𝐴0 − 1)𝐶/2 = (𝐴 − 𝐶)/2,

and so 𝑟 ≥ (𝐴 − 𝐶)/2. As 𝐶 = 𝐴/𝐴0 ≤ 𝐴/5 by (6.6.1), we have

𝑟 ≥ 2𝐴/5 = (2𝐷 + 2)/5,

and so

𝐷 ≤ 5𝑟 − 2
2

. (6.6.5)

As 𝐴0 ≥ 5 and 𝐶 ≥ 3 by (6.6.1), we also have

𝑟 ≥ 6. (6.6.6)

Assume in addition that 𝑏 ≥ 2. Then either 𝑎, 𝑏 ≥ 3, or 𝑏 = 2 but 𝑎 ≥ 4, and so (2𝑎 − 3) (2𝑏 − 3) ≥ 5
(i.e., 2𝑎𝑏 ≥ 3𝑎 + 3𝑏 − 2). Hence, using (6.6.2), we now have

𝐷 − 5𝑟 − 2
2

= 𝐷 − 5(𝑎 + 𝑏) − 2
2

≥ (𝑎 + 1) (𝑏 + 1) − 5(𝑎 + 𝑏) − 2
2

=
2𝑎𝑏 − 3𝑎 − 3𝑏 + 4

2
> 0,

contrary to (6.6.5).
It remains to consider the case 𝑎𝑛 = 𝑏 = 1. Write 𝐺◦ = 𝑋 ∗ 𝑌 , where 𝑋 := 𝐺1 ∗ . . . ∗ 𝐺𝑛−1 and

𝑌 := 𝐺𝑛. Then

𝐺◦/𝑋 = 𝑋𝑌/𝑋 � 𝑌/(𝑋 ∩ 𝑌 )

https://doi.org/10.1017/fms.2025.10062 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10062


Forum of Mathematics, Sigma 39

is isomorphic to SL2 or PSL2. Recall that each of the simple factors of the subgroup H has rank
≥ (𝐴0 − 1)/2 ≥ 2, and hence, any homomorphism from H to SL2 or PSL2 is trivial. It follows that
𝐻 ≤ 𝑋 . Note that X acts on V via a sum of 𝑑𝑛 = 𝑏 + 1 ≥ 2 copies of 𝑉1 ⊗ . . . ⊗ 𝑉𝑛−1; we see that each
simple summand of 𝑉 |𝐻 has multiplicity ≥ 2. However, the simple summand F (𝐴0, 𝐵0,1) of 𝑉 |𝐻 has
multiplicity 1, again a contradiction.

(b) Continue with the assumption of (a). We have shown that 𝐺◦ is a simple algebraic group of rank
𝑟 ≥ 5; see (6.6.4), (6.6.6). Furthermore, (6.6.3), respectively (6.6.5), still holds, so

𝐷 ≤ (5𝑟 − 2)/2.

In particular, 𝐷 ≤ 14 if 𝑟 = 6, 𝐷 ≤ 16 if 𝑟 = 7, and 𝐷 ≤ 19 if 𝑟 = 8. Applying [KlL2, Proposition
5.4.12], we see that 𝐺◦ is not an exceptional algebraic group, and thus, it is a classical group. Since
𝑟 ≥ 5, we have that

𝐷 ≤ 5𝑟 − 2
2

< min(𝑟 (𝑟 + 1)/2, 𝑟 (2𝑟 − 1) − 1, 2𝑟−1),

and

𝐷 ≤ 5𝑟 − 2
2

< min(𝑟 (𝑟 + 1)/2, 𝑟 (2𝑟 − 1) − 1, 2𝑟−1, 20),

when 𝑟 = 5. Applying [KlL2, Proposition 5.4.11], we conclude that𝑉 |𝐺◦ (of dimension 𝐷 = 𝐴−1) must
be the natural module or its dual for the classical group 𝐺◦. In other words, 𝐺◦ = SL𝐷 , Sp𝐷 , or SO𝐷 .

Suppose 2|𝐴𝐵. Then (6.6.3) rules out the groups Sp𝐷 and SO𝐷 since they have 𝐷 ≥ 2𝑟 . Hence, we
must have 𝐺◦ = SL𝐴−1 in this case.

Suppose 2 � 𝐴𝐵. The choice of the balanced pair (𝐴, 𝐵) implies that A and 𝐵𝑖 are all odd, so V is
symplectic, ruling out SL𝐷 and SO𝐷 . Hence, we must have Sp𝐷 = 𝐺◦ ≤ 𝐺 ≤ Sp𝐷 , and so 𝐺 = Sp𝐴−1.

(c) It remains to consider the case 2|𝐴𝐵1 . . . 𝐵𝑟 , 2 � 𝐴𝐵, and infmono(𝐴, 𝐵) holds for the
(unbalanced) pair (𝐴, 𝐵 = 𝐵𝑖). By Theorem 6.3, we still know that 𝐺◦ is irreducible on V.

Suppose first that gcd(𝐴, 𝐵𝑖) = 1. Then 𝐻 := 𝐺geom,F (𝐴,𝐵,1) is Sp𝐴−1 by [KT6, Theorems 10.2.4(iii)
and 10.3.21(iii)]. As F (𝐴, 𝐵) is a pullback of F , our 𝐺 = 𝐺geom,F , and hence, 𝐺◦ contains 𝐻 = Sp𝐴−1.
Thus

𝑟 ≥ (𝐴 − 1)/2 = 𝐷/2. (6.6.7)

Assume𝐺◦ is not simple. Now we can continue the analysis in (a2) to show that 𝑟 = 𝑎+𝑏 with 𝑎 ≥ 𝑏 ≥ 1
and 𝐷 ≥ (𝑎 +1) (𝑏 +1). If 𝑏 ≥ 2, then (𝑎−1) (𝑏−1) ≥ 1, 𝑎𝑏 ≥ 𝑎 + 𝑏, and so 𝐷 ≥ 2(𝑎 + 𝑏) +1 = 2𝑟 +1,
contradicting (6.6.7). If 𝑏 = 1, then as in (a2), we arrive at the contradiction that 𝑉 |𝐻 has simple
summands with multiplicity ≥ 2.

We have shown that 𝐺◦ is simple of rank r. Recall that 𝐴 > 𝐵𝑖 are odd, so 𝐴 ≥ 3 and 𝐷 ≥ 2. If 𝑟 = 1
or 𝐴 = 3, then necessarily, 𝐷 = 2, 𝐺◦ = SL2, and we are done. We may therefore assume

𝐴 ≥ 5, 𝑟 ≥ 2.

Hence, (6.6.7) implies 𝐷 ≤ (5𝑟 − 2)/2. Assume in addition that 𝑟 ≥ 5. Then the same arguments as in
(b) show that 𝐺◦ � SL𝐷 , Sp𝐷 , or SO𝐷 . Applying Proposition 6.4, we conclude that 𝐺◦ = SL𝐷 .

Suppose 𝑟 = 4. Then 𝐺◦ = SL5, SO9, Sp8, SO8 or 𝐹4, and 𝐷 ≤ 8 by (6.6.7). Since V is irreducible
and faithful over 𝐺◦, using [Lu], we see that (𝐺◦, 𝐷) = (SL5, 5), (Sp8, 8), or (SO8, 8). The latter two
cases are impossible by Proposition 6.4, so 𝐺◦ = SL𝐷 .

Suppose 𝑟 = 3. Then 𝐺◦ = SL4, SO7, or Sp6, and 𝐷 ≤ 6 by (6.6.7). Since V is irreducible and
faithful over 𝐺◦, using [Lu], we see that (𝐺◦, 𝐷) = (SL4, 4), (SO6, 6), or (Sp6, 6). The latter two cases
are impossible by Proposition 6.4, so 𝐺◦ = SL𝐷 .
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Suppose 𝑟 = 2. Then 𝐺◦ = SL3, Sp4, or 𝐺2, and 𝐷 ≤ 4 by (6.6.7). Since V is irreducible and
faithful over 𝐺◦, using [Lu], we see that (𝐺◦, 𝐷) = (SL3, 3), or (Sp4, 6). The latter case is ruled out by
Proposition 6.4, and so 𝐺◦ = SL𝐷 .

Now suppose that gcd(𝐴, 𝐵𝑖) = 𝐶 > 1 for the unbalanced pair (𝐴, 𝐵 = 𝐵𝑖) with infmono(𝐴, 𝐵).
Again write (𝐴, 𝐵) = (𝐶𝐴0, 𝐶𝐵0). If 𝐴0 = 3, then 𝐵0 = 1, and we are done by Theorem 5.3(ii).

It now remains to treat the case 𝐴0 ≥ 5. Exactly as in the discussion of the case when 2 � 𝐴𝐵 in the
balanced case, we prove that𝐺0

geom,F is a simple algebraic group, and then that𝐺◦ is one of the classical
groups SL𝐴−1, Sp𝐴−1 if A is odd, or SO𝐴−1, acting on its natural module or its dual. Proposition 6.4
then shows that 𝐺◦

geom,F = SL𝐴−1. �

Our next result visibly improves Theorem 6.6:

Theorem 6.7. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 2 subject to (4.0.1).
Suppose that, for some (not necessarily balanced) pair (𝐴, 𝐵 := 𝐵𝑖) with 2 � 𝐶 = gcd(𝐴, 𝐵), F (𝐴, 𝐵,1)
has infinite geometric monodromy group H. Then the following statements hold.

(i) Suppose that 𝐴𝐵 is even. Then 𝐺◦
geom,F = SL𝐴−1.

(ii) Suppose that 𝐴𝐵 is odd. If 2 � 𝐴𝐵1 . . . 𝐵𝑟 , then 𝐺geom,F = Sp𝐴−1. If 2|𝐴𝐵1 . . . 𝐵𝑟 , then 𝐺◦
geom,F =

SL𝐴−1.

Proof. (a) Since F (𝐴, 𝐵,1) is a pullback of F , 𝐻 ≤ 𝐺 := 𝐺geom,F , and G is infinite. Hence, 𝐺◦ is
semisimple, say of rank

𝑟 = rank(𝐺◦).

We aim to show that 𝐺◦ is a simple algebraic group. Assume the contrary:

𝐺◦ = 𝐺1 ∗ 𝐺2 ∗ . . . ∗ 𝐺𝑛,

where 𝑛 > 1, 𝐺𝑖 is a simple algebraic group of rank 𝑎𝑖 for each 1 ≤ 𝑖 ≤ 𝑛, and 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑛 ≥ 1.
Thus,

𝑟 =
𝑛∑
𝑖=1

𝑎𝑖 .

We will derive a contradiction when 𝑛 ≥ 2.
By Theorem 6.3, 𝐺◦ acts irreducibly and faithfully on V, the underlying representation of G. So we

can write

𝑉 |𝐺◦ = 𝑉1 ⊗ 𝑉2 ⊗ . . . ⊗ 𝑉𝑛,

where 𝑉𝑖 is an irreducible 𝐺𝑖-module of dimension 𝑑𝑖 ≥ 2. In fact, by [KlL2, Proposition 5.4.11], we
have

𝑑𝑖 ≥ 𝑎𝑖 + 1.

Since (𝑥 + 1) (𝑦 + 1) ≥ 𝑥 + 𝑦 + 1 for all 𝑥, 𝑦 ∈ Z≥0, we have

𝐴 − 1 = 𝐷 =
𝑛∏
𝑖=1

𝑑𝑖 ≥
𝑛∏
𝑖=1

(𝑎𝑖 + 1) ≥ (𝑎 + 1) (𝑏 + 1), (6.7.1)

where

𝑎 := 𝑎1 + 𝑎2 + . . . + 𝑎𝑛−1, 𝑏 := 𝑎𝑛, 𝑎 + 𝑏 = 𝑟.
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Write 𝐴0 = 𝐴/𝐶 and 𝐵0 = 𝐵/𝐶, and let V denote the underlying representation for G. Also, let 𝑆inf
denote the set of characters 𝜒 ∈ Char(𝐶) such that F (𝐴0, 𝐵0, 𝜒) has infinite 𝐺geom. By Theorem 6.6,
we may assume

𝐶 > 1, 𝑆inf ≠ Char(𝐶), (6.7.2)

so that 𝑆inf = Char(𝐶) \ Char(𝐶0) for some proper divisor 𝐶0 of C by Lemma 5.1(ii). As C is odd, we
have

𝐶0 ≤ 𝐶/3.

Also, in view of Theorem 5.4, it suffices to treat the cases with

𝐴0 ≥ 5 if 2 � 𝐴𝐵, and 𝐴0 ≥ 3 if 2|𝐴𝐵. (6.7.3)

(a1) First, we consider the case 2|𝐴𝐵. By Theorem 6.1, 𝐺◦ contains a semisimple subgroup 𝐻◦ of
rank (𝐴0 − 1) (𝐶 − 𝐶0) ≥ 2𝐶 (𝐴0 − 1)/3. Namely, 𝐻◦ is the product of the SL𝐴0 factors, one for each
F (𝐴0, 𝐵0, 𝜒) with 𝜒 ∈ 𝑆inf . By Corollary 6.2, the subsheaves F (𝐴0, 𝐵0, 𝜒) with 𝜒 ∈ 𝑆inf are simple
summands with multiplicity 1 for the module 𝑉 |𝐻 ◦ . Thus, we have

𝑟 ≥ 2𝐶 (𝐴0 − 1)/3 ≥ 4. (6.7.4)

In this case, 𝐶 = (𝐷 + 1)/𝐴0 ≤ (𝐷 + 1)/3, so 3𝑟 ≥ 2𝐴0𝐶 − 2𝐶 ≥ 4(𝐷 + 1)/3, and thus,

𝐷 + 1 ≤ 9𝑟/4. (6.7.5)

Suppose that 𝑏 < 𝐴0 − 1. Then every homomorphism from 𝐻◦ to 𝐺𝑛 of rank b is trivial. It follows
that 𝐻◦ ≤ 𝐺1 ∗ . . . ∗ 𝐺𝑛−1, and hence, the restriction of V to 𝐻◦ is a sum of 𝑑𝑛 = dim(𝑉𝑛) ≥ 2 copies
of the same module. But this contradicts the above multiplicity-one assertion.

We have therefore shown that

𝑟/2 ≥ 𝑏 ≥ 𝐴0 − 1. (6.7.6)

Together with (6.7.3) and (6.7.4), this implies that

𝑎𝑏 = 𝑏(𝑟 − 𝑏) ≥ (𝐴0 − 1) (𝑟 − (𝐴0 − 1)) ≥ (𝐴0 − 1)2(2𝐶/3 − 1) ≥ (𝐴0 − 1) (4𝐶/3 − 2).

Hence, by (6.7.4), we have

(𝑎 + 1) (𝑏 + 1) − 𝐷 = (𝑎𝑏 + 𝑟 + 1) − (𝐴0𝐶 − 1)
≥ (𝐴0 − 1) (4𝐶/3 − 2 + 2𝐶/3) + 1 − (𝐴0𝐶 − 1)
= (𝐴0 − 1) (2𝐶 − 2) + 1 − (𝐴0𝐶 − 1)
= (𝐴0 − 2) (𝐶 − 2) ≥ 1.

This, however, contradicts (6.7.1).
(a2) Next, we consider the case 2 � 𝐴𝐵. By Theorem 6.1, 𝐺◦ contains a semisimple subgroup 𝐻◦

of rank (𝐴0 − 1) (𝐶 − 𝐶0)/2 ≥ 𝐶 (𝐴0 − 1)/3. Namely, 𝐻◦ is the product of the SL𝐴0 factors, one for
each F (𝐴0, 𝐵0, 𝜒) with 𝜒 ∈ Rep(𝑆inf). By Corollary 6.2, the subsheaves F (𝐴0, 𝐵0, 𝜒) with 𝜒 ∈ 𝑆inf
are simple summands with multiplicity 1 for the module 𝑉 |𝐻 ◦ . Thus, we have

𝑟 ≥ 𝐶 (𝐴0 − 1)/3 ≥ 4. (6.7.7)
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In this case, 𝐶 = (𝐷 + 1)/𝐴0 ≤ (𝐷 + 1)/5, so 3𝑟 ≥ 𝐴0𝐶 − 𝐶 ≥ 4(𝐷 + 1)/5, and thus,

𝐷 + 1 ≤ 15𝑟/4. (6.7.8)

Arguing as in (a1), we see that (6.7.6) still holds. Together with (6.7.3) and (6.7.7), this implies that

𝑎𝑏 = 𝑏(𝑟 − 𝑏) ≥ (𝐴0 − 1) (𝑟 − (𝐴0 − 1)) ≥ (𝐴0 − 1)2(𝐶/3 − 1) ≥ (𝐴0 − 1) (4𝐶/3 − 4).

Suppose 𝐶 ≥ 9. Then

(𝑎 + 1) (𝑏 + 1) − 𝐷 = (𝑎𝑏 + 𝑟 + 1) − (𝐴0𝐶 − 1)
≥ (𝐴0 − 1) (4𝐶/3 − 4 + 𝐶/3) + 1 − (𝐴0𝐶 − 1)
= (𝐴0 − 1) (5𝐶/3 − 4) + 1 − (𝐴0𝐶 − 1)
= (2/3) (𝐴0𝐶 − 5𝐶/2 − 6𝐴0) + 6
= (2/3) (𝐴0 − 5/2) (𝐶 − 6) − 4 ≥ 1

since 𝐴0 ≥ 5. This, however, contradicts (6.7.1).
It remains to consider the case𝐶 ∈ {3, 5, 7}, in which case we have𝐶0 = 1 and 𝑟 ≥ (𝐴0−1) (𝐶−1)/2.

Now we have

𝑎𝑏 = 𝑏(𝑟 − 𝑏) ≥ (𝐴0 − 1) (𝑟 − (𝐴0 − 1)) ≥ (𝐴0 − 1)2(𝐶 − 3)/2 ≥ (𝐴0 − 1) (2𝐶 − 6).

If 𝐶 = 7, then 𝑎𝑏 ≥ 8(𝐴0 − 1), 𝑎 + 𝑏 = 𝑟 ≥ 3(𝐴0 − 1), and so

(𝑎 + 1) (𝑏 + 1) − 𝐷 ≥ 11(𝐴0 − 1) + 1 − (7𝐴0 − 1) = 4𝐴0 − 9 > 0.

If 𝐶 = 5, then 𝑎𝑏 ≥ 4(𝐴0 − 1), 𝑎 + 𝑏 ≥ 2(𝐴0 − 1), and so

(𝑎 + 1) (𝑏 + 1) − 𝐷 ≥ 6(𝐴0 − 1) + 1 − (5𝐴0 − 1) = 𝐴0 − 4 > 0.

If 𝐶 = 3, then 𝑎𝑏 ≥ (𝐴0 − 1)2 ≥ 4(𝐴0 − 1), 𝑎 + 𝑏 = 𝑟 ≥ (𝐴0 − 1), and so

(𝑎 + 1) (𝑏 + 1) − 𝐷 ≥ 5(𝐴0 − 1) + 1 − (3𝐴0 − 1) = 2𝐴0 − 3 > 0.

In all cases, we arrive at a contradiction with (6.7.1).
(b) We have shown that𝐺◦ is a simple algebraic group of rank 𝑟 ≥ 4; see (6.7.4), (6.7.7). Furthermore,

(6.7.5), respectively (6.7.8), still holds, so

𝐷 ≤ (15𝑟 − 4)/4.

In particular, 𝐷 ≤ 14 if 𝑟 = 4, 𝐷 ≤ 21 if 𝑟 = 6, 𝐷 ≤ 25 if 𝑟 = 7, and 𝐷 ≤ 29 if 𝑟 = 8. Applying [KlL2,
Proposition 5.4.12], we see that𝐺◦ is not an exceptional algebraic group, and thus, it is a classical group.

Assume in addition that 𝑟 ≥ 7. Then

𝐷 ≤ 15𝑟 − 4
4

< min(𝑟 (𝑟 + 1)/2, 𝑟 (2𝑟 − 1) − 1, 2𝑟−1).

Applying [KlL2, Proposition 5.4.11], we conclude that 𝑉 |𝐺◦ (of dimension 𝐷 = 𝐴 − 1) must be the
natural module or its dual for the classical group 𝐺◦. In other words, 𝐺◦ = SL𝐷 , Sp𝐷 , or SO𝐷 .

Suppose 2|𝐴𝐵1 . . . 𝐵𝑟 . As 𝐴 = 𝐴0𝐶 ≥ 9, Proposition 6.4 rules out the groups Sp𝐷 and SO𝐷 . Hence,
we must have 𝐺◦ = SL𝐴−1 in this case.

Suppose 2 � 𝐴𝐵1 . . . 𝐵𝑟 . Then V is symplectic, ruling out SL𝐷 and SO𝐷 . Hence, we must have
Sp𝐷 = 𝐺◦ ≤ 𝐺 ≤ Sp𝐷 , and so 𝐺 = Sp𝐴−1.
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(c) Now we return to the general case, where we know only that 𝑟 ≥ 4. If 𝑟 ≥ 7, then we are done
by (b).

Suppose that 𝐴 ≥ 14 if 2|𝐴𝐵 and 𝐴 ≥ 23 if 2 � 𝐴𝐵. In the former case, 𝑟 > 6 by (6.7.5). In the latter
case, 𝑟 > 6 by (6.7.8). Thus, we have 𝑟 ≥ 7, and so are again done by (b).

The rest of the proof is to analyze the remaining cases, in which we may assume

4 ≤ 𝑟 ≤ 6, 3 ≤ 𝐴 ≤ 13 if 2|𝐴𝐵, and 3 ≤ 𝐴 ≤ 21 if 2 � 𝐴𝐵. (6.7.9)

Suppose 𝐴 = 21. Then 2 � 𝐵, and 𝐶 ∈ {3, 7}. By (6.7.3), we have 𝐴0 ≠ 3, so (𝐴0, 𝐶) = (7, 3) and
𝑟 ≥ 6 by (6.7.8). In view of (6.7.9), we now have 𝑟 = 6, but𝐺◦ ≥ 𝐻◦ = SL7. So in fact,𝐺◦ = 𝐻◦ = 𝐻◦

inf ,
and hence, 𝐺◦ is reducible on V by (6.7.2), a contradiction.

Suppose 𝐴 ∈ {3, 5, 7, 11, 13, 17, 19} ∪ {2, 4, 8}. Since C is an odd proper divisor of A, in these cases,
we must have 𝐶 = 1, violating (6.7.2).

Suppose 𝐴 = 15. Then 𝐺◦ is a simple classical group of rank 4 ≤ 𝑟 ≤ 6 acting irreducibly on
𝑉 = C14. This is impossible by [Lu].

Suppose 𝐴 = 12. Then (𝐴0, 𝐶) = (4, 3) and 𝑟 ≥ 6 by (6.7.5), whence 𝑟 = 6. Now 𝐺◦ is a simple
classical group of rank 6 acting irreducibly on 𝑉 = C11. This is impossible by [Lu].

If 𝐴 = 10, then 𝐶 = 5 and 𝐴0 = 2, violating (6.7.3).
Suppose 𝐴 = 9. Then (𝐴0, 𝐶) = (3, 3) by (6.7.3), so 2|𝐴𝐵. Now 𝐺◦ is a simple classical group of

rank 4 ≤ 𝑟 ≤ 6 acting irreducibly on 𝑉 = C8, whence 𝐺◦ � Sp8 or SO8 by [Lu]. In either case, this
contradicts Proposition 6.4.

Finally, if 𝐴 = 6, then 𝐶 = 3 and 𝐴0 = 2, violating (6.7.3). �

Next, we prove the following extension of [KT6, Theorem 11.1.3]:

Theorem 6.8. Let 𝑉 = C𝐷 with 𝐷 ≥ 6, and let 𝐺 ≤ GL(𝑉) be a Zariski closed, irreducible subgroup,
with 𝐺◦ ≠ 1 being semisimple. Suppose that G contains a subgroup 𝐺1 which is one of the following
groups.

(a) 𝐺1 is the image of Sp2𝑛 (𝑞) in a nontrivial subrepresentation of degree D of a total Weil representation
of degree 𝑞𝑛 for some odd prime power 𝑞 = 𝑝 𝑓 and some 𝑛 ≥ 1. Furthermore, if 𝐷 = 𝑞𝑛, assume
that 𝑞𝑛 ≥ 13.

(b) 𝐺1 is the image of SU𝑛 (𝑞) in a nontrivial subrepresentation of degree D of the total Weil repre-
sentation of degree 𝑞𝑛 for some prime power 𝑞 = 𝑝 𝑓 and some odd 𝑛 ≥ 3 with (𝑛, 𝑞) ≠ (3, 2).
Furthermore, if 𝐺1 is reducible on V, assume that 𝑉 |𝐺1 contains a simple summand of dimension
(𝑞𝑛 − 𝑞)/(𝑞 + 1), and, in addition, (𝑛, 𝑞) ≠ (3, 3).

(c) 𝐺1 is the image of 2 · J2 in an irreducible representation of degree 𝐷 = 6.
(d) 𝐺1 is the image of 61 · PSU4 (3) in an irreducible representation of degree 𝐷 = 6.
(e) 𝐺1 is the image of 2 · 𝐺2(4) in an irreducible representation of degree 𝐷 = 12.

Then 𝐺◦ is a simple algebraic group acting irreducibly on V and 𝐺◦ > 𝐺1. Moreover, one of the
following conclusions holds.

(i) 𝐺◦ = SL(𝑉), Sp(𝑉), or SO(𝑉).
(ii) 𝐷 = 32, 𝐺1 = SU5 (2), and 𝐺◦ = Sp10.

(iii) (𝐺◦, 𝐷) = (𝐺2, 7), and 𝐺1 = PSL2 (13) or SU3 (3).
(iv) (𝐺◦, 𝐷) = (𝐸6, 27) and 𝐺1 = SL2(27).
(v) (𝐺◦, 𝐷) = (𝐸7, 56) and 𝐺1 = PSU3(8).

Proof. (A) By assumption, 𝑞𝑛 ≥ 𝐷 ≥ 6 in (a) and (𝑛, 𝑞) ≠ (3, 2) in (b), so𝐺1 is quasisimple. According
to [KlL2, Table 5.2.A] and [Atlas], for the smallest index 𝑃(𝐺1) of proper subgroups of 𝐺1 we have
𝑃(𝐺1) ≥ 𝑞𝑛+1 > 𝐷 in case (a), unless (𝑛, 𝑞) = (1, 11), for which we have𝐷 ≤ (𝑞𝑛+1)/2 by hypothesis,
and 𝑃(𝐺1) ≥ (𝑞𝑛 + 3)/2 > 𝐷. Similarly, 𝑃(𝐺1) ≥ 𝑞𝑛 + 1 > 𝐷 in case (b), unless (𝑛, 𝑞) ≠ (3, 5), in
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which case 𝑃(𝐺1) = 50. Furthermore, 𝑃(𝐺1) = 100 > 𝐷 in case (c), 𝑃(𝐺1) = 112 > 𝐷 in case (d),
and 𝑃(𝐺1) = 416 > 𝐷 in case (e). Thus, in all cases, we have

𝑃(𝐺1) > 𝐷 or (𝑆, 𝑃(𝐺1), 𝐷) = (PSU3 (5), 50, ≥ 50), (6.8.1)

where 𝑆 := 𝐺1/Z(𝐺1) is simple.
By [KlL1, Theorem 3], the smallest degree 𝑒(𝐺1) of any nontrivial projective representation of 𝐺1

(over C) is at least the smallest degree 𝑒(𝑆) of any nontrivial projective representation of S (over C).
According to [KlL2, Table 5.3.A],

𝑒(𝑆) = (𝑞𝑛 − 1)/2 ≥ (𝐷 − 1)/2 ≥ max(6,
√

11𝐷/4) (6.8.2)

in case (a), unless 𝐷 ≤ 12. If 6 ≤ 𝐷 ≤ 12 but 𝑉 |𝐺1 is irreducible, then 𝑞𝑛 ≥ 11 (as 𝐷 ≥ 6) and

𝑒(𝑆) = (𝑞𝑛 − 1)/2 ≥ 𝐷 − 1 ≥ max(5,
√

4𝐷). (6.8.3)

If 6 ≤ 𝐷 ≤ 12 but𝑉 |𝐺1 is reducible, then 𝐷 = 𝑞𝑛 ≤ 11, which is excluded by our hypothesis. Similarly,

𝑒(𝑆) = (𝑞𝑛 − 𝑞)/(𝑞 + 1) ≥ max(6,
√

3𝐷) (6.8.4)

in case (b), and

𝑒(𝑆) = 𝐷 ≥
√

6𝐷 ≥ 6 (6.8.5)

in cases (c)–(e). Moreover, in all cases, the smallest nontrivial projective representation of S is also a
projective representation of 𝐺1, so in fact, we have

𝑒(𝐺1) = 𝑒(𝑆) >
√

11𝐷/4 > 4. (6.8.6)

(A1) By assumption, G acts irreducibly on 𝑉 := C𝐷 , and 𝐺1 is quasisimple. Suppose that G fixes an
imprimitive decomposition

𝑉 = 𝑉1 ⊕ 𝑉2 ⊕ . . . ⊕ 𝑉𝑚

with 𝑚 > 1. Then 1 < 𝑚 |𝐷 and dim(𝑉𝑖) = 𝐷/𝑚 for all i.
Suppose we are in the case 𝑃(𝐺1) > 𝐷 of (6.8.1). Then every homomorphism 𝐺1 → S𝑚 is trivial,

and so the action of 𝐺1 on the m summands 𝑉𝑖 is trivial. In other words, 𝐺1 stabilizes every 𝑉𝑖 . If in
addition 𝑉 |𝐺1 is irreducible, then 𝑉1, being fixed by 𝐺1, is equal to V, contrary to 𝑚 > 1. So 𝑉 |𝐺1 is
reducible. In particular, we are either in (a) with 𝐷 = 𝑞𝑛, in which case 𝑉 |𝐺1 is a sum 𝑊1 ⊕𝑊2 of two
simple summands,𝑊1 of dimension 𝑑 := (𝑞𝑛 − 1)/2 and𝑊2 of dimension 𝑑 + 1 = (𝑞𝑛 + 1)/2, or in (b),
in which case𝑉 |𝐺1 is a sum ⊕𝑠

𝑖=1 of 𝑠 > 1 simple summands,𝑊1 of dimension 𝑑 := (𝑞𝑛−𝑞)/(𝑞+1) and
𝑊2, . . . ,𝑊𝑠 all of dimension 𝑑 + 1 = (𝑞𝑛 + 1)/(𝑞 + 1). In either case, because𝑊1 is a simple summand
of multiplicity one in 𝑉 |𝐺1 , we may assume that 𝑊1 occurs in 𝑉1 (and only in 𝑉1). Since each 𝑊𝑖 with
𝑖 > 1 has dimension 𝑑 + 1, we see that

dim(𝑉1) ≡ −1 (mod 𝑑 + 1), dim(𝑉2) ≡ 0 (mod 𝑑 + 1).

Thus, dim(𝑉1) ≠ dim(𝑉2), a contradiction.
Suppose now that we are in the case 𝑃(𝐺1) ≤ 𝐷 of (6.8.1), so that 𝐺1/Z(𝐺1) = PSU3(5). The same

arguments as above show that 𝐺1 cannot act trivially on the set {𝑉1, . . . , 𝑉𝑚}. As 𝑃(𝐺1) = 50, we must
have that 𝑚 ≥ 50, and so dim(𝑉𝑖) ≤ 2 as 𝐷 ≤ 53. But the simple summands of 𝑉 |𝐺1 has dimension 20
or 21, so no 𝑉𝑖 can be fixed by 𝐺1. Using [Atlas] we can check that every proper subgroup of 𝐺1 has
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index 50 or ≥ 126 > 𝑚. It follows that every 𝐺1-orbit on {𝑉1, . . . , 𝑉𝑚} is of length 50, and hence, 50|𝐷.
However, by (6.8.1) and hypothesis, 𝐷 ∈ {62, 83, 104, 125}, a contradiction.

(A2) We have shown that G acts primitively on V. Let Φ denote the representation of G on V. Next
suppose that 𝐺1 fixes a tensor decomposition

𝑉 = 𝑉1 ⊗ 𝑉2

with 1 < dim(𝑉1) ≤ dim(𝑉2). Then the quasisimple group 𝐺1 admits a projective representation on
𝑉1, of dimension ≤

√
𝐷, whose image is either trivial, or a quasisimple cover of the simple group

𝑆 := 𝐺1/Z(𝐺1). By (6.8.6), every composition factor of the projective representation of 𝐺1 on 𝑉1 is
trivial, and so the corresponding image of 𝐺1 in PGL(𝑉1) is contained in a Borel subgroup which
is solvable. As 𝐺1 is quasisimple, this image is trivial (i.e., 𝐺1 acts via scalars on 𝑉1). Pulling the
constants to the action of 𝐺1 on 𝑉2, for every 𝑔 ∈ 𝐺1, we can write

Φ(𝑔) = Iddim(𝑉1) ⊗ Ψ(𝑔)

for a unique matrix Ψ(𝑔) ∈ GL(𝑉2). Since Φ|𝐺1 is a linear representation, it follows that Ψ is a linear
representation 𝐺1 → GL(𝑉2). Thus, Φ|𝐺1 is the sum of dim(𝑉1) > 1 copies of the representation Ψ. In
particular, every simple summand of 𝑉 |𝐺1 occurs with multiplicity ≥ dim(𝑉1) > 1. But this contradicts
our hypothesis on 𝑉 |𝐺1 .

(A3) We have shown that 𝐺1 cannot fix any tensor decomposition of V. Finally, suppose 𝐺1 fixes a
tensor induced decomposition

𝑉 = 𝑉1 ⊗ . . . ⊗ 𝑉𝑚 � 𝑉 ⊗𝑚
1

with 𝑚 ≥ 2 and dim(𝑉𝑖) ≥ 2. Then

𝑚 ≤ log2 𝐷 < 𝑃(𝐺1),

the latter inequality because of (6.8.1). In such a case, 𝐺1 must fix every tensor factor 𝑉𝑖 , and hence,
𝑉 |𝐺1 is tensor decomposable, contrary to the preceding result.

Note that Z(𝐺)◦ ≤ Z(𝐺◦) is finite since 𝐺◦ is semisimple. Thus, Z(𝐺) is finite. We have shown that
(𝑉, 𝐺) satisfies condition (S+). By [KT3, Lemma 1.1],𝐺◦ is a simple algebraic group acting irreducibly
on V.

(B) By Schur’s lemma, C𝐺 (𝐺◦) = Z(𝐺) is cyclic. Furthermore, Out(𝐺◦) is a subgroup of S3, and
hence solvable. It follows that 𝐺/𝐺◦ is solvable. But 𝐺1 is perfect, so 𝐺1 < 𝐺

◦.
Let r denote the rank of the simple algebraic group 𝐺◦. We will now analyze each of the possibilities

for 𝐺◦.
(B1) Suppose 𝐺◦ is of type 𝐴𝑟 . In this case, 𝐺◦ admits an irreducible projective complex repre-

sentation Θ of dimension 𝑟 + 1 with finite cyclic kernel. Thus, Θ|𝐺1 is now a nontrivial projective
representation, and, arguing as in (A), we see that

𝑟 + 1 ≥ 𝑒(𝐺1) ≥
√

11𝐷/4,

by (6.8.6). It follows that 𝑟 ≥ 4 and 𝐷 ≤ 4(𝑟+1)2/11 < 𝑟 (𝑟+1)/2. Applying [KlL2, Proposition 5.4.11],
we conclude that the D-dimensional module V of𝐺◦ is the natural module, or its dual, and so𝐺◦ = SL𝐷 .

(B2) Suppose 𝐺◦ is of type 𝐵𝑟 with 𝑟 ≥ 2. In this case, 𝐺◦ admits an irreducible projective complex
representation Θ of dimension 2𝑟 + 1 with finite cyclic kernel and with image contained in PSO2𝑟+1.
Thus, Θ|𝐺1 is now a nontrivial projective representation, and hence,

2𝑟 + 1 ≥ 𝑒(𝐺1) ≥
√

11𝐷/4 (6.8.7)
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by (6.8.6). Now, if 𝑟 = 2, then 𝑒(𝐺1) = 5, and so by (6.8.2)–(6.8.5), we must have that 𝐺1/Z(𝐺1) =
PSL2(11). Since SL2 (11) is the universal cover of PSL2 (11), Θ lifts to a 5-dimensional orthogonal
representation of SL2(11), which is impossible. So

𝑟 ≥ 3 and 𝐷 ≤ 4(2𝑟 + 1)2/11 < 𝑟 (2𝑟 + 1).

Applying [KlL2, Proposition 5.4.11], we see that either the D-dimensional module V of𝐺◦ is the natural
module of dimension 2𝑟 + 1 and so 𝐺◦ = SO𝐷 , or 3 ≤ 𝑟 ≤ 5 and 𝐷 = 2𝑟 . It remains to look at the latter
possibilities.

Note that if 𝐷 = 8, then 𝐺1 = SL2 (17) and 𝑉 |𝐺1 is irreducible of symplectic type. (Indeed, if we are
in case (a), then, as 𝑞𝑛 ≠ 8, we have

(𝑞𝑛 ± 1)/2 = 𝐷 = 8,

whence (𝑛, 𝑞) = (1, 17) and so 𝐺1 = SL2(17) in an irreducible Weil representation. If we are in case
(b), then 8 = 𝐷 ≥ (𝑞𝑛 − 𝑞)/(𝑞 + 1), which is at least 10 if 𝑛 ≥ 5, and at least 12 if 𝑛 = 3 but 𝑞 ≥ 4.
So (𝑛, 𝑞) = (3, 3), and we quickly reach a contradiction.) However, in this case, we have 𝑒(𝐺1) = 8 and
𝑟 = 3, contrary to (6.8.7).

Similarly, if 𝐷 = 16, 32, or 64, then either (𝐷,𝐺1) = (16, SL2(31)), (64, SL2(127)) and 𝑉 |𝐺1 is
irreducible, or𝐷 = 32 and𝐺1 = SU5(2), or𝐷 = 64 and𝐺1 = SU3 (4). (Indeed, if we are in case (a), then,
as 𝑞𝑛 ≠ 16, 32, 64, we have (𝑞𝑛±1)/2 = 𝐷 = 16, 32, or 64, whence (𝐷, 𝑛, 𝑞) = (16, 1, 31) or (64, 1, 127)
and 𝐺1 acts in an irreducible Weil representation. If we are in case (b), then 𝐷 ≥ (𝑞𝑛 − 𝑞)/(𝑞 + 1),
which is at least 72 if 𝑛 ≥ 9, or 𝑛 = 7 but 𝑞 ≥ 3, or 𝑛 = 5 but 𝑞 ≥ 4, or 𝑛 = 3 but 𝑞 ≥ 9. If
(𝑛, 𝑞) = (7, 2), then 𝐷 ∈ {42, 43, ≥ 85}. If (𝑛, 𝑞) = (5, 3), then 𝐷 ∈ {60, 61, ≥ 121}. If (𝑛, 𝑞) = (5, 2),
then 𝐷 ∈ {10, 11, 21, 32} by hypothesis, so 𝐷 = 32. If (𝑛, 𝑞) = (3, 8), then 𝐷 ∈ {56, 57, ≥ 113}.
If (𝑛, 𝑞) = (3, 7), then 𝐷 ∈ {42, 43, ≥ 85}. If (𝑛, 𝑞) = (3, 5), then 𝐷 ∈ {20, 21, 41, 62, ≥ 83}
by hypothesis. If (𝑛, 𝑞) = (3, 4), then by hypothesis 𝐷 ∈ {12, 13, 25, 38, 51, 64}, so 𝐷 = 64. If
(𝑛, 𝑞) = (3, 3), then 𝐷 = 6, 7 by hypothesis.)

Now, in the case 𝐷 = 16 and 𝐺1 = SL2(31), we have 𝑒(𝐺1) = 15 and 𝑟 = 4, contrary to (6.8.7).
In the case 𝐷 = 32 and𝐺1 = SU5(2), we have𝐺◦ = Spin11. The projection𝐺◦ → SO11 has kernel of

order 2 which must then intersect𝐺1 trivially since𝐺1 is simple. It follows that𝐺1 embeds in SO11. But
this is a contradiction, since every nontrivial complex representation of degree 11 of SU5 (2) is either
irreducible non-self-dual, or a direct sum of a trivial representation and an irreducible representation of
symplectic type (of degree 10) see [Atlas].

(B3) Suppose 𝐺◦ is of type 𝐷𝑟 with 𝑟 ≥ 4. In this case, 𝐺◦ admits an irreducible projective complex
representation Θ of dimension 2𝑟 with finite cyclic kernel and with image contained in PSO2𝑟 . Thus,
Θ|𝐺1 is now a nontrivial projective representation, and hence,

2𝑟 ≥ 𝑒(𝐺1) ≥
√

11𝐷/4 (6.8.8)

by (6.8.6), so

𝐷 ≤ 16𝑟2/11 < 𝑟 (2𝑟 − 1).

Applying [KlL2, Proposition 5.4.11], we see that either the D-dimensional module V of 𝐺◦ is (quasi-
equivalent in the case 𝑟 = 4 to) the natural module of dimension 2𝑟 and so 𝐺◦ � SO𝐷 , or 4 ≤ 𝑟 ≤ 7
and 𝐷 = 2𝑟−1. It remains to look at the latter possibilities.

If (𝑟, 𝐷) = (4, 8), then 𝐺1 = SL2 (17) and 𝑉 |𝐺1 is of symplectic type, as shown in (B2). However,
𝑉 |𝐺◦ is quasi-equivalent to the natural module, so it is of orthogonal type, a contradiction.

If (𝑟, 𝐷) = (5, 16), then 𝐺1 = SL2 (31) as shown in (B2). However, in this case, 𝑒(𝐺1) = 15 and
𝑟 = 5, contrary to (6.8.8).
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If (𝑟, 𝐷) = (6, 32), then𝐺1 = SU5(2) as shown in (B2), and𝐺◦ = Spin12. The projection𝐺◦ → SO12
has kernel of order 2 which must then intersect 𝐺1 trivially since 𝐺1 is simple. It follows that 𝐺1
embeds in SO12. But this is a contradiction, since every nontrivial complex representation of degree 12
of SU5(2) is either a sum of of a trivial representation and a non-self-dual irreducible representation
(of degree 11), or a sum of two copies of the trivial representation and an irreducible representation of
symplectic type (of degree 10); see [Atlas].

If (𝑟, 𝐷) = (7, 64), then𝐺1 = SU3(4) as shown in (B2), and𝐺◦ = Spin14. The projection𝐺◦ → SO14
has kernel of order 2 which must then intersect 𝐺1 trivially since 𝐺1 is simple. It follows that 𝐺1
embeds in SO14. But this is a contradiction, since every nontrivial complex representation of degree 14
of SU3(4) is either a sum of of a trivial representation and a non-self-dual irreducible representation
(of degree 13), or a sum of two copies of the trivial representation and an irreducible representation of
symplectic type (of degree 12), see [Atlas].

(B4) Suppose 𝐺◦ is of type 𝐶𝑟 with 𝑟 ≥ 3. In this case, 𝐺◦ admits an irreducible projective complex
representation Θ of dimension 2𝑟 with finite cyclic kernel and with image contained in PSp2𝑟 . Thus,
Θ|𝐺1 is now a nontrivial projective representation, and hence, (6.8.8) holds by (6.8.6), and so

𝐷 ≤ 16𝑟2/11 < 𝑟 (2𝑟 − 1) − 1.

Applying [KlL2, Proposition 5.4.11], we see that either the D-dimensional module V of𝐺◦ is the natural
module of dimension 2𝑟 and so 𝐺◦ � Sp𝐷 , or 3 ≤ 𝑟 ≤ 5 and 𝐷 = 2𝑟 , or (𝑟, 𝐷) = (3, 14). It remains to
look at the latter possibilities.

If 𝐷 = 8, then 𝐺1 = SL2(17) as shown in (B2). However, in this case, we have 𝑒(𝐺1) = 8 and 𝑟 = 3,
contrary to (6.8.8).

If 𝐷 = 16, then 𝐺1 = SL2 (31) as shown in (B2). However, in this case, we have 𝑒(𝐺1) = 15 and
𝑟 = 4, contrary to (6.8.8).

If 𝐷 = 32, then 𝐺1 = SU5 (2) as shown in (B2), and this is recorded in conclusion (ii).
If (𝑟, 𝐷) = (3, 14), then this violates (6.8.8).
(B5) Suppose 𝐺◦ = 𝐺2. Then 𝐺◦ < SL7, and so

𝑒(𝐺1) ≤ 7, (6.8.9)

whence 𝐷 ≤ 17 by (6.8.6). Since 𝑉 |𝐺◦ is irreducible, we must have 𝐷 = 7 or 14 by [Lu].
Suppose 𝐷 = 7. In case (a), (since 𝑞𝑛 ≥ 13 when 𝐷 = 𝑞𝑛), we have (𝑞𝑛 ± 1)/2 = 𝐷 = 7, and so

(𝑛, 𝑞) = (1, 13) and 𝐺1 = PSL2(13). In case (b), since 𝐷 ≥ (𝑞𝑛 − 𝑞)/(𝑞 + 1) is at least 10 when 𝑛 ≥ 5
or 𝑛 = 3 but 𝑞 ≥ 4, we have (𝑛, 𝑞) = (3, 3) and 𝐺1 = SU3(3). These two possibilities are recorded in
conclusion (iii).

Suppose𝐷 = 14. In case (a), we have (𝑞𝑛±1)/2 = 𝐷 = 14, and so (𝑛, 𝑞) = (1, 27) and𝐺1 = SL2 (27).
This violates (6.8.9) since 𝑒(𝐺1) = 13. In case (b), 𝐷 ≥ (𝑞𝑛 − 𝑞)/(𝑞 + 1) is at least 20 when 𝑛 ≥ 7, or
𝑛 = 5 but 𝑞 ≥ 3, or 𝑛 = 3 but 𝑞 ≥ 5. Now if (𝑛, 𝑞) = (5, 2), then 𝐷 ∈ {10, 11, ≥ 21}. If (𝑛, 𝑞) = (3, 4),
then 𝐷 ∈ {12, 13, ≥ 25}. If (𝑛, 𝑞) = (3, 3), then 𝐷 ∈ {6, 7} by hypothesis.

(B6) Suppose 𝐺◦ = 𝐹4. Then 𝐺◦ < SL26, and so

𝑒(𝐺1) ≤ 26, (6.8.10)

whence 𝐷 ≤ 245 by (6.8.6). Since 𝑉 |𝐺◦ is irreducible, we must have 𝐷 = 26 or 52 by [Lu].
Suppose 𝐷 = 26. In case (a), we have (𝑞𝑛 ± 1)/2 = 𝐷 = 26, and so 𝐺1 = SL2(53). But SL2 (53)

cannot be embedded in 𝐹4 by [GrR]. In case (b), 𝐷 ≥ (𝑞𝑛−𝑞)/(𝑞+1) is at least 42 when 𝑛 ≥ 7, or 𝑛 = 5
but 𝑞 ≥ 3, or 𝑛 = 3 but 𝑞 ≥ 7. Now if (𝑛, 𝑞) = (5, 2), then 𝐷 ∈ {10, 11, 21, 32}. If (𝑛, 𝑞) = (3, 5), then
𝐷 ∈ {20, 21, ≥ 41}. If (𝑛, 𝑞) = (3, 4), then 𝐷 ∈ {12, 13, 25, ≥ 38}. If (𝑛, 𝑞) = (3, 3), then 𝐷 ∈ {6, 7}
by hypothesis.

Suppose 𝐷 = 52. In case (a), we have (𝑞𝑛 ± 1)/2 = 𝐷 = 52, and so 𝐺1 = SL2 (103). But SL2(103)
cannot be embedded in 𝐹4 by [GrR]. In case (b), 𝐷 ≥ (𝑞𝑛 − 𝑞)/(𝑞 + 1) is at least 56 if 𝑛 ≥ 9, or 𝑛 = 7
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but 𝑞 ≥ 3, or 𝑛 = 5 but 𝑞 ≥ 3, or 𝑛 = 3 but 𝑞 ≥ 8. If (𝑛, 𝑞) = (7, 2), then 𝐷 ∈ {42, 43, ≥ 85}. If
(𝑛, 𝑞) = (5, 2) or (3, 3), then 𝐷 ≤ 32. If (𝑛, 𝑞) = (3, 7), then 𝐷 ∈ {42, 43, ≥ 85}. If (𝑛, 𝑞) = (3, 5), then
𝐷 ∈ {20, 21, 41, ≥ 62} by hypothesis. If (𝑛, 𝑞) = (3, 4), then by hypothesis,𝐷 ∈ {12, 13, 25, 38, 51, 64}.

(B7) Suppose𝐺◦ = 𝐸6. Then𝐺◦ admits an irreducible projective representation of degree 27, and so

𝑒(𝐺1) ≤ 27

whence 𝐷 ≤ 265 by (6.8.6). Since 𝑉 |𝐺◦ is irreducible, we must have 𝐷 = 27 or 78 by [Lu].
In case (a), 𝐷 = 𝑞𝑛 or (𝑞𝑛 ± 1)/2, so 𝐺1 = SL2(27) as recorded in (iv), or SL2(53), which cannot

be projectively embedded in 𝐸6 by [GrR]. So we are in case (b). Since no PSU𝑛 (𝑞) with 𝑛 ≥ 5, or
𝑛 = 3 but 𝑞 ≥ 9, can be embedded in 𝐸8 by [GrR], we have 𝑛 = 3 and 𝑞 ≤ 8. If (𝑛, 𝑞) = (3, 8), then
by hypothesis, 𝐷 ∈ {56, 57} or 𝐷 ≥ 113} or 170 ≤ 𝐷 ≤ 512. If (𝑛, 𝑞) = (3, 7), then by hypothesis,
𝐷 ∈ {42, 43, ≥ 85}. If (𝑛, 𝑞) = (3, 5), then 𝐷 ∈ {20, 21, 41, 62, ≥ 83} by hypothesis. If (𝑛, 𝑞) = (3, 4),
then by hypothesis, 𝐷 ∈ {12, 13, 25} or 38 ≤ 𝐷 ≤ 64.

(B8) Suppose𝐺◦ = 𝐸7. Then𝐺◦ admits an irreducible projective representation of degree 56, and so

𝑒(𝐺1) ≤ 56,

whence 𝐷 ≤ 1140 by (6.8.6). Since 𝑉 |𝐺◦ is irreducible, we must have 𝐷 = 56, 133, or 912 by [Lu].
In case (a), 𝐷 = 𝑞𝑛 or (𝑞𝑛 ± 1)/2, so 𝐺1 = SL2(113) or SL2 (1813), neither of which can be

projectively embedded in 𝐸7 by [GrR]. So we are in case (b). Since no PSU𝑛 (𝑞) with 𝑛 ≥ 5, or 𝑛 = 3
but 𝑞 ≥ 9, can be embedded in 𝐸8 by [GrR], we have 𝑛 = 3 and 𝑞 ≤ 8. If (𝑛, 𝑞) = (3, 8), then by
hypothesis, 𝐷 ∈ {56, 57, 113} or 170 ≤ 𝐷 ≤ 512, so 𝐷 = 56 and 𝐺1 = PSU3 (8) as recorded in (v). If
(𝑛, 𝑞) = (3, 7), then by hypothesis, 𝐷 ∈ {42, 43, 85, 128} or 171 ≤ 𝐷 ≤ 343. If (𝑛, 𝑞) = (3, 5), then
𝐷 ≤ 41 or 62 ≤ 𝐷 ≤ 125 by hypothesis. If (𝑛, 𝑞) = (3, 4), then by hypothesis, 𝐷 ≤ 51 or 𝐷 = 64.

(B9) Finally, suppose 𝐺◦ = 𝐸8. Then 𝐺◦ < SL248, and so

𝑒(𝐺1) ≤ 248,

whence 𝐷 ≤ 22365 by (6.8.6). Since 𝑉 |𝐺◦ is irreducible, we must have 𝐷 = 248 or 3875 by [Lu].
In case (a), 𝐷 = 𝑞𝑛 or (𝑞𝑛 ±1)/2, which is impossible. So we are in case (b). Since no PSU𝑛 (𝑞) with

𝑛 ≥ 5, or 𝑛 = 3 but 𝑞 ≥ 9, can be embedded in 𝐸8 by [GrR], we have 𝑛 = 3 and 𝑞 ≤ 8. Now if 𝑞 ≤ 5,
then 𝐷 ≤ 125. If (𝑛, 𝑞) = (3, 8), then by hypothesis, 𝐷 ≤ 227 or 284 ≤ 𝐷 ≤ 512. If (𝑛, 𝑞) = (3, 7), then
by hypothesis, 𝐷 ≤ 214 or 257 ≤ 𝐷 ≤ 343. None of these values can fit the values 248 or 3875. �

Now we can prove the main result of this section. Recall that the systems F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with
finite 𝐺geom are already classified in Theorem 11.2.4 of [KT6].

Theorem 6.9. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 1 subject to (4.0.1).
Suppose that 𝐴 ≥ 7 and that 𝐺geom,F is infinite. Then the following statements hold.

(i) Suppose that 𝐴𝐵1 . . . 𝐵𝑟 is even. Then 𝐺◦
geom,F = SL𝐴−1.

(ii) Suppose that 𝐴𝐵1 . . . 𝐵𝑟 is odd. Then 𝐺geom,F = Sp𝐴−1.

Proof. If 𝑟 = 1, then the result follows from Theorems 10.2.4 of 10.3.21 of [KT6]. Hence, we will
assume 𝑟 ≥ 2. Since gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1, there must be some i such that

2 � 𝐶 := gcd(𝐴, 𝐵𝑖).

Now if F (𝐴, 𝐵𝑖 ,1) has infinite monodromy group, then we are done by Theorem 6.7.
It remains to consider the case in which F (𝐴, 𝐵𝑖 ,1) has finite geometric monodromy group 𝐺1. By

Theorem 5.4(ii), we may assume that

(𝐴/𝐶, 𝐵𝑖/𝐶) ≠ (3, 1). (6.9.1)
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(b) Let the prime p be the characteristic of F , and consider the case where (𝐴, 𝐵𝑟 ) = (𝑝𝑛 + 1, 1) for
some 𝑛 ∈ Z≥1. Then F is the system of Theorem 2.4, with its 𝑓 (𝑥) taken to be 𝑥𝐴, and its 𝑏1, . . . , 𝑏𝑛
taken to be {𝐵1, . . . , 𝐵𝑟−1, 𝐵𝑟 = 1}, and F has

𝑀2,2 = lim sup
#𝐿→∞

#Σ(𝐿)
(#𝐿)2 ,

where Σ is the locus Σ1 = Σ𝐴 = Σ𝐵1 = . . . = Σ𝐵𝑟−1 = 0.
According to [KT6, Theorem 11.2.3], when 𝐴 = 𝑝𝑛 + 1, the local system F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) in

characteristic 𝑝 � 𝐴𝐵1 . . . 𝐵𝑟 can have finite 𝐺geom only in the ‘van-der-Geer–van-der-Vlugt’ situations,
that is, when 𝐵 𝑗 = 𝑝𝑚 𝑗 + 1 for 1 ≤ 𝑗 ≤ 𝑟 − 1, and either 𝐵𝑟 = 𝑝𝑚𝑟 + 1 with 𝑚𝑟 ≥ 0, or 𝐵𝑟 = 1.

We apply Proposition 3.5 to F . Suppose 𝑝 = 2; in particular, 2 � 𝐴𝐵1 . . . 𝐵𝑟 . In the case of 3.5(b),
we have 𝑀2,2 = 3 and hence (because𝐺geom,F is infinite and F is symplectically self dual),𝐺 = Sp𝐴−1.
In the case of 3.5(d), which is ‘vdG-vdV’, G is finite.

Suppose 𝑝 > 2. In the case of 3.5(a), we have 𝑀2,2 = 2, and hence (again because𝐺geom,F is infinite),
𝐺◦ = SL𝐴−1. In the case of 3.5(c), which is again ‘vdG-vdV’, G is finite.

(c) In the rest of the proof, we will assume that

If 𝐴 − 1 is a 𝑝-power then 𝐵𝑟 ≠ 1. (6.9.2)

Moreover, using [KT6, Theorem 11.2.3], we may assume that some 𝐵 𝑗 is neither 1 nor a 2-power plus
one when 𝑝 = 2. Replacing 𝐵𝑖 by this 𝐵 𝑗 , we may furthermore assume that

If 𝑝 = 2 and 𝐴 − 1 is a 2-power then 𝐵𝑖 − 1 is not a 2-power. (6.9.3)

Let V denote the underlying representation of G, and apply Theorems 10.3.14 and 11.2.4 of [KT6] to𝐺1.
Suppose𝐶 > 1. Then, since C is odd, we are in case (iii) of [KT6, Theorem 11.2.4]. In particular,𝑉 |𝐺1

is a submodule of the total Weil module of SU𝑛 (𝑞) that contains the submodule F (𝐴/𝐶, 𝐵𝑖/𝐶,1) of
dimension (𝑞𝑛−𝑞)/(𝑞+1), for an odd integer 𝑛 ≥ 3 and a power 𝑞 = 𝑝 𝑓 . Furthermore,𝐶 | (𝑞+1) by [KT6,
Theorem 11.2.4(iii)], and this rules out the possibility (𝑛, 𝑞) = (3, 3). If, moreover, (𝑛, 𝑞) = (3, 2), then
we have (𝐴/𝐶, 𝐵𝑖/𝐶) = (3, 1), contrary to (6.9.1). Hence, (𝑛, 𝑞) ≠ (3, 2). Thus, we fulfill hypothesis
(b) of Theorem 6.8.

Suppose 𝐶 = 1. Then [KT6, Theorem 11.2.4] implies that F (𝐴, 𝐵𝑖 ,1) is as described in Theorems
10.2.6 and 10.3.13 of [KT6]. Next, assumption (6.9.2) rules out possibility (iv) of [KT6, Theorem
10.2.6], and assumption (6.9.3) rules out possibility (iii) of [KT6, Theorem 10.3.13]. Furthermore, in
case (ii) of [KT6, Theorem 10.2.6], we have (𝑛, 𝑞) ≠ (3, 2) because 𝐴 ≥ 7. Thus, 𝐺1 satisfies the
hypothesis of Theorem 6.8 when 𝐶 = 1 as well, by [KT6, Theorems 10.2.7 and 10.3.13].

It follows that the semisimple group 𝐺◦ = 𝐺◦
geom,F satisfies one of the conclusions of Theorem 6.8.

In particular, 𝐺◦ > 𝐺1 acts irreducibly on V. Hence, by Proposition 6.4, 𝑉 |𝐺◦ is not self-dual in
case (i). Next, we observe that none of the possibilities (ii) and (iv) of Theorem 6.8 cannot occur.
Indeed, in the case of 6.8(ii), we have (𝐷, 𝑝, 𝐺1, 𝐶) = (32, 2, SU5 (2), 3). In such a case, by [KT6,
Theorem 11.2.4], 𝐴 = 33 and 𝐵𝑖 ∈ {3, 9}, which is forbidden by (6.9.3). In the case of 6.8(iv), we have
(𝐷, 𝑝, 𝐺1, 𝐶) = (27, 3, SL2 (27), 2), which is ruled out since C is odd.

Suppose 𝐺◦ satisfies Theorem 6.8(i), that is, 𝐺◦ = SL(𝑉), Sp(𝑉), or � SO(𝑉). In case (i), 𝑉 |𝐺◦ is
not self-dual, so we must have 𝐺◦ = SL𝐷 . In case (b), V is symplectic self-dual, so 𝐺◦ = Sp𝐷 .

Suppose 𝐺◦ satisfies Theorem 6.8(iii). Here, 𝐴 = 8, so 𝑉 |𝐺◦ is not self-dual, contradicting the fact
that the 7-dimensional module of 𝐺2 is self-dual.

Finally, we consider the case when 𝐺◦ satisfies Theorem 6.8(v). Then we have 𝐴 = 57, 𝐶 = 1,
𝐺1 = PSU3 (8), and Theorems 10.2.4 and 10.3.21 of [KT6] imply that 𝑝 = 2 and 𝐵𝑖 = 1 (and so 𝑖 = 𝑟).
As 𝑝 = 2, all 𝐵 𝑗 are odd, and hence,𝐺 ≤ Sp56. We will derive a contradiction by showing that𝐺 = Sp56
in this case. Indeed, recalling 𝑟 ≥ 2, we have that 𝐵1 > 1 = 𝐵𝑖 and gcd(𝐴, 𝐵1) is odd. Replacing (𝐴, 𝐵𝑖)
by (𝐴, 𝐵1), we have 𝐺◦ = Sp56 by the already established result. �
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Finally, we remove the restriction 𝐴 ≥ 7 in Theorem 6.9:

Theorem 6.10. Consider the local system F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) with 𝑟 ≥ 1 subject to (4.0.1).
Suppose that 3 ≤ 𝐴 ≤ 6 and that 𝐺geom,F is infinite. Then the following statements hold.

(i) Suppose that 𝐴𝐵1 . . . 𝐵𝑟 is even. Then 𝐺◦
geom,F = SL𝐴−1.

(ii) Suppose that 𝐴𝐵1 . . . 𝐵𝑟 is odd. Then 𝐺geom,F = Sp𝐴−1.

Proof. Denote 𝐺 := 𝐺geom,F . If 𝑟 = 1, then the result follows from Theorems 10.2.4 and 10.3.21 of
[KT6]. Also, if 𝐴 = 3, then 𝐺◦ ≤ GL2 is a semisimple algebraic group, whence 𝐺◦ = SL2. Henceforth,
we assume

𝑟 ≥ 2, 4 ≤ 𝐴 ≤ 6. (6.10.1)

Suppose that for some i, we have 𝐴 = 2𝐵𝑖 or 𝐴 = 3𝐵𝑖 . In the latter case, we have 𝐴 = 6 because
of (6.10.1). Hence, Theorem 3.7 implies that 𝑀2,2 = 2 in both cases, when 𝐺◦ = SL𝐴−1 by Larsen’s
Alternative.

Next, suppose that 𝐵1 = 𝐴−1; in particular, 2|𝐴𝐵1. IfF (𝐴, 𝐵1,1) has infinite geometric monodromy
group H, then 𝐻◦ = SL𝐴−1 by [KT6, Theorem 10.3.21(i)]. As F (𝐴, 𝐵1,1) is a pullback of F , it follows
that 𝐺◦ = SL𝐴−1. If F (𝐴, 𝐵1,1) has finite geometric monodromy group, then (𝐴, 𝐵1, 𝑝) = (5, 4, 3) by
[KT6, Theorem 10.3.13]. In this case, we have {𝐵2, . . . , 𝐵𝑟 } ⊆ {1, 2}, and G is finite by [KT6, Theorem
11.2.3(vii)].

We now assume that

𝐵𝑖 ≠ 𝐴 − 1, 𝐴/2, 𝐴/3

and analyze the remaining cases.
(a) Suppose 𝐴 = 4. Then 𝐵𝑖 ≠ 2, 3 and so 𝑘 < 2, contrary to (6.10.1).
(b) Suppose 𝐴 = 5. First, we consider the case that 𝐵𝑖 = 2 for some i, and let H denote the geometric

monodromy group of F (𝐴, 𝐵𝑖 ,1). If H is infinite, then 𝐻◦ = SL𝐴−1 by [KT6, Theorem 10.3.21(i)],
whence 𝐺◦ = SL𝐴−1. If H is finite, then (𝐻, 𝑝) = (Sp4 (3), 3) or (2A7, 7) by [KT6, Theorem 10.3.13].
In both cases, we have 𝑀2,2 (𝐻) = 2, whence 𝑀2,2 (F) = 2 and 𝐺◦ = SL4.

In the remaining case, 𝐵𝑖 ≠ 2, 4, so 𝑘 ≥ 2 forces (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (5, 3, 1) and 𝑝 ≠ 3, 5. If 𝑝 = 2,
then G is finite by [KT6, Theorem 11.2.3(ii)]. If 𝑝 > 5, then F (5, 3,1) has Sp4 as its 𝐺geom by [KT6,
Lemma 10.3.20]. As F is symplectic self-dual, we conclude that 𝐺 = Sp4.

(c) Finally, assume 𝐴 = 6. Then 𝐵𝑖 ≠ 2, 3, 5, so the inequality 𝑘 ≥ 2 forces (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (6, 4, 1)
and 𝑝 ≥ 5. Let H denote the geometric monodromy group of F (6, 1,1). If in addition, 𝑝 ≠ 5, 11, then H
is infinite by [KT6, Theorem 10.2.6], whence 𝐻 = SL5 by [KT6, Theorem 10.2.4(i)], and we conclude
that 𝐺◦ = SL5.

Suppose 𝑝 = 5. Then 𝑀2,2 = 2 by Proposition 3.5, whence 𝐺◦ = SL5.
In the remaining case, we have 𝑝 = 11. Recall that G acts irreducibly on the underlying representation

𝑉 = C5, of prime dimension 𝐷 = 5. Since 𝐺◦ ≠ 1 is semisimple – in particular, non-abelian – it must
have some simple submodule of dimension > 1 on V, and so Clifford’s theorem implies that 𝐺◦ is
irreducible on V as well. Now 𝐷 = 5 being prime forces 𝐺◦ to be simple, of rank ≤ 4. An inspection of
[Lu] or use of Gabber’s theorem [Ka2, 1.8] shows that either 𝐺◦ = SL5, or 𝐺◦ = SL2, or 𝐺◦ = SO5. In
the latter two cases, 𝑉 |𝐺◦ is self-dual. Note that 𝐺/C𝐺 (𝐺◦) ↩→ Out(𝐺◦) = 1 and C𝐺 (𝐺◦) is abelian
by Schur’s lemma. So 𝐺/𝐺◦ is abelian, and hence, the simple 𝐻 = PSL2(11) must embed in 𝐺◦. But
this is a contradiction since 𝑉 |𝐻 is non-self-dual. Hence, we conclude that 𝐺◦ = SL5. (Alternatively, by
considering the pullback F (6, 4,1) of F and its decomposition as F (3, 2,1) ⊕ F (3, 2, 𝜒2), we see by
that 𝐺◦

geom,F (6,4,1) projects onto SL3. This rules out the possibilities SL2 and SO5 for 𝐺◦). �
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7. Multiparameter local systems with infinite monodromy. II

In this section, we are given a (possibly trivial) multiplicative character 𝜒 of (the multiplicative group of)
a finite extension 𝐿/F𝑝 . We consider a local system F𝜒 on A𝑟/𝐿 defined as follows. We are given a list
of integers

𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1, 𝑝 � 𝐴
∏
𝑖

𝐵𝑖 , gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1.

as in (4.0.1). For 𝐸/𝐿 a finite extension, and (𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐸𝑟 ,

Trace(Frob(𝑡1 ,...,𝑡𝑟 ) ,𝐸 |F𝜒) =
−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐸 (𝑥𝐴 +
𝑟∑
𝑖=1

𝑡𝑖𝑥
𝐵𝑖 )𝜒𝐸 (𝑥).

Here, we make a choice of √𝑝 ∈ Qℓ , and define
√

#𝐿 := √
𝑝deg(𝐿/F𝑝) . We adopt the usual convention

that 𝜒(0) = 0 if 𝜒 ≠ 1, but 1(0) = 1. We will name this F𝜒 as

F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒)

when confusion about which F𝜒?’ is possible. Recall from [KT5, 2.6] that such an F𝜒 is geometrically
irreducible.

In the previous sections, we determined 𝐺◦
geom,F𝜒

for any F1 whose 𝐺geom is infinite. We now do
the same for any F𝜒 with 𝜒 ≠ 1 whose 𝐺geom,F𝜒 is infinite.

We begin with the ‘easy’ case.

Theorem 7.1. Let 𝜒 be nontrivial. Suppose that for given data

𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1, 𝑝 � 𝐴
∏
𝑖

𝐵𝑖 , gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1,

with 𝐴 ≥ 3, 𝑟 ≥ 2, and both F1, F𝜒 have infinite 𝐺geom. Then we have the following results.

(i) If 𝐴
∏

𝑖 𝐵𝑖 is even, then 𝐺◦
geom,F𝜒

= SL𝐴.
(ii) If 𝐴

∏
𝑖 𝐵𝑖 is odd, 𝑝 ≠ 2, and 𝜒 is the quadratic character, then we have 𝐺geom,F𝜒 = SO𝐴.

(iii) If 𝐴
∏

𝑖 𝐵𝑖 is odd, and 𝜒2 ≠ 1, then 𝐺◦
geom,F𝜒

= SL𝐴.

Proof. If 𝐴
∏

𝑖 𝐵𝑖 is even and 𝐺geom,F1
is infinite, then 𝐺◦

geom,F1
= SL𝐴−1 by Theorems 6.9 and 6.10.

Therefore, 𝑀2,2 (F1) = 2. By Theorem 2.4, we have 𝑀2,2 (F𝜒) ≤ 𝑀2,2 (F1). But for any local system
of rank > 1, 𝑀2,2 ≥ 2. Therefore, 𝑀2,2 (F𝜒) = 2. Given that 𝐺geom,F𝜒 is infinite, we must have
𝐺◦

geom,F𝜒
= SL𝐴 by Larsen’s Alternative [Ka3, 1.1.6].

If 𝐴
∏

𝑖 𝐵𝑖 is odd and 𝐺geom,F1
is infinite, then 𝐺geom,F1

= Sp𝐴−1. Therefore, 𝑀2,2 (F1) = 3.
Therefore, 𝑀2,2 (F𝜒) ≤ 3, so either 𝑀2,2 (F𝜒) = 2 or 𝑀2,2 (F𝜒) = 3. If p is odd and 𝜒 is the quadratic
character, then F𝜒 is orthogonally self-dual (being self-dual because its traces are real, and being
geometrically irreducible of odd rank). Thus, we have an a priori inclusion 𝐺geom,F𝜒 ≤ O𝐴. Given that
𝐺geom,F𝜒 is infinite, we must have𝐺◦

geom,F𝜒
= SO𝐴 by Larsen’s Alternative [Ka3, 1.1.6]. Thus, we have

SO𝐷 ≤ 𝐺 ≤ O𝐷 . But det(F) is lisse on A𝑘 of order dividing 2, and so must be geometrically trivial as
𝑝 ≠ 2.

Finally, we must treat the case when 𝐴
∏

𝑖 𝐵𝑖 is odd, 𝐺geom,F1
= Sp𝐴−1, and 𝜒2 ≠ 1. When 𝜒2 ≠ 1

and A and all 𝐵𝑖 are odd, we have 𝑀2,2 (F𝜒) < 𝑀2,2 (F1) by Theorem 2.4. Therefore, 𝑀2,2 (F𝜒) = 2 in
this case, and we have 𝐺◦

geom,F𝜒
= SL𝐴 by Larsen’s Alternative [Ka3, 1.1.6]. �

It remains to treat cases with 𝜒 nontrivial in which F1 has finite 𝐺geom but F𝜒 has infinite 𝐺geom.
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Theorem 7.2. Consider the case of p arbitrary, 𝑞 = 𝑝 𝑓 for some 𝑓 ≥ 1, 𝑟 ≥ 2,

𝑛 > 𝑚1 > . . . > 𝑚𝑟−1 ≥ 0

integers with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟−1) = 1 and F𝜒, 𝜒 ≠ 1, formed with

(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (𝑞𝑛 + 1, 𝑞𝑚1 + 1, . . . , 𝑞𝑚𝑟−1 + 1, 1).

Then 𝐺◦
geom,F𝜒

= SL𝐴.

Proof. The only purpose of the gcd hypothesis is to ensure that our choice of q is correct. The fact
that 𝐵𝑟 = 1 ensures the geometric irreducibility. We compute 𝑀2,2 (F1) as the number of geometrically
irreducible components of dimension 2 of the intersection Σ𝐴,𝐵1 ,...,𝐵𝑟 of the Fermat surfaces

Σ𝑑 : 𝑥𝑑 + 𝑦𝑑 − 𝑧𝑑 − 𝑤𝑑 = 0

as d runs over the exponents (𝐴, 𝐵1, . . . , 𝐵𝑟 ). We have the obvious inclusion

Σ𝐴,𝐵1 ,...,𝐵𝑟 ⊆ Σ𝐴,𝐵𝑟 = Σ1+𝑞𝑛 ,1.

Using the equation Σ1 = 𝑥 + 𝑦 − 𝑧 − 𝑤 = 0, we may solve for w as 𝑤 = 𝑥 + 𝑦 − 𝑧, and rewrite Σ1+𝑞𝑛 ,1 as
the locus in the A3 of 𝑥, 𝑦, 𝑧 of

𝑥1+𝑞𝑛 + 𝑦1+𝑞𝑛 − 𝑧1+𝑞𝑛 − (𝑥 + 𝑦 − 𝑧)1+𝑞𝑛
= 0.

Let us temporarily write

𝑄 := 𝑞𝑛.

According to [KT6, Lemma 12.3.2], we have the following factorization in F𝑄2 [𝑥, 𝑦, 𝑧]:

𝑥1+𝑄 + 𝑦1+𝑄 − 𝑧1+𝑄 − (𝑥 + 𝑦 − 𝑧)1+𝑄 = −(𝑦 − 𝑧)
∏

𝐴∈F𝑄2 , 𝐴𝑄=−𝐴
(𝑥 + 𝐴𝑦 − (𝐴 + 1)𝑧).

In the special case 𝑝 = 2, we get the identity in F𝑄 [𝑥, 𝑦, 𝑧]

𝑥1+𝑄 + 𝑦1+𝑄 − 𝑧1+𝑄 − (𝑥 + 𝑦 − 𝑧)1+𝑄 = (𝑦 − 𝑧)
∏
𝐴∈F𝑄

(𝑥 + 𝐴𝑦 − (𝐴 + 1)𝑧). (7.2.1)

Going back to 𝑥, 𝑦, 𝑧, 𝑤, these linear factors give the following 𝑄 + 1 affine planes in A4:

(𝑦 = 𝑧, 𝑤 = 𝑥), (𝑥 = 𝑧, 𝑤 = 𝑦) (7.2.2)

together with the 𝑄 − 1 planes 𝑃𝐴, one for each 𝐴 ∈ F𝑄2 with 𝐴𝑄−1 = −1, of equation

𝑃𝐴 : (𝑥 = −𝐴𝑦 + (𝐴 + 1)𝑧, 𝑤 = −(𝐴 − 1)𝑦 + 𝐴𝑧). (7.2.3)

By [KT6, Theorem 11.2.3], 𝐺geom,F𝜒 is infinite, so it suffices to show that 𝑀2,2 (F𝜒) = 2. The
geometrically irreducible components of Σ𝐴,𝐵1 ,...,𝐵𝑟 are then among the planes above. So it suffices to
show that for each 𝐴 ∈ F𝑄2 with 𝐴𝑄−1 = −1, the limsup over extensions E of L dies:

lim sup
𝐸/𝐿, #𝐸→∞

1
(#𝐸)2

∑
(𝑥,𝑦,𝑧,𝑤) ∈𝑃𝐴 (𝐸)

𝜒(𝑥𝑦/𝑧𝑤) = 0. (7.2.4)
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We readily calculate on 𝑃𝐴, with coordinates 𝑦, 𝑧,

𝑥𝑦/𝑧𝑤 = (−𝐴𝑦2 + (𝐴 + 1)𝑦𝑧)/(−(𝐴 − 1)𝑦𝑧 + 𝐴𝑧2)
= (−𝐴 + (𝐴 + 1)𝑧/𝑦)/(−(𝐴 − 1)𝑧/𝑦 + 𝐴(𝑧/𝑦)2)
= (−𝐴 + (𝐴 + 1)𝑧/𝑦)/((𝑧/𝑦) (−(𝐴 − 1) + 𝐴(𝑧/𝑦)).

This is an expression in the quantity

𝑇 := 𝑧/𝑦,

namely,

(−𝐴 + (𝐴 + 1)𝑇)/(𝑇 (−(𝐴 − 1) + 𝐴𝑇)).

Thus, ∑
(𝑥,𝑦,𝑧,𝑤) ∈𝑃𝐴 (𝐸)

𝜒(𝑥𝑦/𝑧𝑤) = (#𝐸 − 1)
∑
𝑇 ∈𝐿

𝜒(−𝐴 + (𝐴 + 1)𝑇)𝜒(𝑇 (−(𝐴 − 1) + 𝐴𝑇)).

So it suffices to show that for every 𝐴 ∈ F𝑄2 with 𝐴𝑄−1 = −1, this sum is 𝑂 (
√

#𝐸).
Suppose first that p is odd. Then𝑄 +1 is even, and hence, A is neither 1 nor −1. Then the local system

L𝜒 (−𝐴+(𝐴+1)𝑇 ) ⊗ L𝜒 (𝑇 (−(𝐴−1)+𝐴𝑇 ))

is lisse of rank one on P1 \ {0,∞, 𝐴/(𝐴 + 1), (𝐴 − 1)/𝐴}, extended by direct image across the missing
points, at each of which the ramification is tame but nontrivial. Then by the usual Weil estimate, this
sum has absolute value at most 2

√
#𝐸 .

Suppose next that 𝑝 = 2. Then for 𝐴 ≠ 1, the above argument gives the same bound 2
√

#𝐸 . In the
case 𝐴 = 1, local system is just L𝜒 (𝑇 2) = L𝜒2 (𝑇 ) , But 𝜒, being nontrivial in characteristic 2, has odd
order, so 𝜒2 ≠ 1, and in this case, the sum vanishes. �

Theorem 7.3. Suppose given 𝑟 ≥ 2 and integers

𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0

with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1 and 2|𝑛
∏

𝑖 𝑚𝑖 . Let p be a prime, 𝑞 = 𝑝 𝑓 with 𝑓 ≥ 1, 𝜅 := gcd(𝑝 − 1, 2),
and form the data

(𝐴, 𝐵1, . . . , 𝐵𝑟 ) := ((𝑞𝑛 + 1)/𝜅, (𝑞𝑚1 + 1)/𝜅, . . . , (𝑞𝑚𝑟 + 1)/𝜅).

If 𝑝 = 2, make the further assumption that 𝑚𝑟 ≥ 1. Then for F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ) and any 𝜒 with
𝜒𝜅 ≠ 1, we have 𝐺◦

geom,F𝜒
= SL𝐴.

Proof. Because gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1 and 2|𝑛
∏

𝑖 𝑚𝑖 , there is some 𝑚𝑖 whose parity is different from
that of n: that is, if n is even the gcd condition forces some 𝑚𝑖 to be odd, and if n is odd, the evenness
condition forces some 𝑚𝑖 to be even. Pick one such 𝑚 := 𝑚𝑖 such that n and m have opposite parities.

Next, we show that

𝑑 := gcd((𝑞𝑛 + 1)/𝜅, (𝑞𝑚 + 1)/𝜅) = 1. (7.3.1)
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Indeed, 𝑒 := gcd(𝑛, 𝑚) is odd as n and m have different parities. Let 𝑘 ∈ {𝑛, 𝑚} be the one that is even.
Then 𝑞𝑘 ≡ 1 (mod 4) when 𝑝 > 2, and so (𝑞𝑘 + 1)/𝜅 is always odd, and hence, 2 � 𝑑. Suppose 𝑑 > 1,
and let ℓ > 2 be any prime divisor of d. Then ℓ divides

gcd(𝑞2𝑛 − 1, 𝑞2𝑚 − 1) = 𝑞2𝑒 − 1,

and so ℓ | (𝑞𝑒 − 1) or ℓ | (𝑞𝑒 + 1). In the former case, as 𝑒 |𝑛 and ℓ > 2, we have ℓ | (𝑞𝑛 − 1)/𝜅, and so
(𝑞𝑛 + 1)/𝜅 ≡ 2/𝜅 (mod ℓ), a contradiction. In the latter case, as 2 � 𝑒 and 2|𝑘 , we have 𝑘 = 2𝑙𝑒 for
some 𝑙 ∈ Z≥1. Now ℓ | (𝑞2𝑒 − 1) and (𝑞2𝑒 − 1) |(𝑞2𝑙𝑒 − 1), so we again have (𝑞𝑘 + 1)/𝜅 ≡ 2/𝜅 (mod ℓ),
a contradiction.

By [KT6, Theorem 11.2.3], 𝐺geom,F (𝐴,𝐵𝑖 ,𝜒) is infinite. Using (7.3.1) and applying Theorems 10.2.4
and 10.3.21 of [KT6], we obtain 𝐺◦

geom,F (𝐴,𝐵𝑖 ,𝜒) = SL𝐴. Since F (𝐴, 𝐵𝑖 , 𝜒) is a pullback of F𝜒, we
conclude that 𝐺◦

geom,F𝜒
= SL𝐴. �

We now begin preparation for the SU case. We begin with an ‘axiomatic’ result, which reveals the
simple underlying mechanism.

Theorem 7.4. Let p be a prime 𝐴 > 𝐵 ≥ 1 a pair of odd, prime to p integers, 𝐶 := gcd(𝐴, 𝐵). Write
(𝐴, 𝐵);= (𝐴0𝐶, 𝐵0𝐶). Suppose that 𝜒 is a multiplicative character with 𝜒2 ≠ 1, with the following
property: For every multiplicative character 𝜌 with 𝜌𝐶 = 𝜒, the local system F (𝐴0, 𝐵0, 𝜌) has infinite
𝐺geom. [Indeed, it has 𝐺geom = SL𝐴0 , in view of Theorems 10.2.4 and 10.3.21 of [KT6]. Notice that
𝐴0, 𝐵0 are both odd, so 𝐴0 − 𝐵0 ≥ 2.] Then the local system

F (𝐴, 𝐵, 𝜒) =
⊕

𝜌:𝜌𝐶=𝜒

F (𝐴0, 𝐵0, 𝜌)

has

𝐺geom,F (𝐴,𝐵,𝜒) =
∏

𝜌:𝜌𝐶=𝜒

SL𝐴0 .

Proof. For each 𝜌, pick a multiplicative character 𝜎𝜌 with

𝜎𝐴0
𝜌 = 𝜌.

Then
⊕

𝜌:𝜌𝐶=𝜒 F (𝐴0, 𝐵0, 𝜌) is geometrically isomorphic to the Kummer [𝐴0]★ pullback of the direct
sum of hypergeometric sheaves ⊕

𝜌:𝜌𝐶=𝜒

H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌 .

Each constituent hypergeometric sheaf is of type (𝐴0, 𝐵0), of odd rank 𝐴0 ≥ 3. As Kummer pullback
does not change 𝐺◦

geom, we see that each constituent hypergeometric sheaf has its 𝐺◦
geom,H = SL𝐴0 . So

it suffices to show that

𝐺◦
geom,

⊕
𝜌:𝜌𝐶=𝜒 H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌

=
∏

𝜌:𝜌𝐶=𝜒

SL𝐴0 .

For this, we apply Goursat-Kolchin-Ribet in the form [Ka2, 8.11.7.2]. We must show that for 𝜌1 ≠ 𝜌2,
there is no Kummer sheaf LΛ such that the sheaf LΛ ⊗ H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1

is geometrically isomorphic to
either H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌2

or to its dual. [Notice that because 𝐴0 − 𝐵0 is even, the dual of H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌2
is

(with the same 𝜓) geometrically isomorphic to H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌2
.]
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We argue by contradiction. Suppose that

LΛ ⊗ H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1
� H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌2

.

Looking at the 𝐼 (0)-representations of the two hypergeometrics, which are each Char(𝐴0), we first
conclude that Λ𝐴0 = 1. From the definition of H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1

(cf. [KT4, §3]), we see that

LΛ ⊗ H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1
� H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1/Λ

𝐵0 .

So if the purported isomorphism holds, then 𝜎𝜌1/Λ𝐵0 = 𝜎𝜌2 . But their 𝐴0 powers are 𝜌1 and 𝜌2,
respectively, (because Λ𝐴0 = 1). But 𝜌1 ≠ 𝜌2, the desired contradiction.

If instead we have

LΛ ⊗ H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌1
� H𝑏𝑖𝑔,𝐴0 ,𝐵0 ,𝜎𝜌2

,

then we get the equality 𝜎𝜌1/Λ𝐵0 = 𝜎𝜌2 . But their 𝐴0 powers are 𝜌1 and 𝜌2. These cannot be equal
because their C powers are 𝜒 and 𝜒, respectively, which are not equal, precisely because 𝜒2 ≠ 1. �

With this ‘axiomatic’ result in hand, we now turn to the SU case directly. In preparation, observe
that for any prime power 𝑞 > 1 and any odd integer 𝑛 ≥ 1, the ratio (𝑞𝑛 + 1)/(𝑞 + 1) is odd; indeed for
𝑛 ≥ 3, it is 1 mod 𝑞(𝑞 − 1).
Proposition 7.5. Let p be a prime, 𝑞 = 𝑝 𝑓 with 𝑓 ≥ 1, 𝑟 ≥ 2, and

𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1

a sequence of odd integers with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1. Define

(𝐴, 𝐵1, . . . , 𝐵𝑟 ) := ((𝑞𝑛 + 1)/(𝑞 + 1), (𝑞𝑚1 + 1)/(𝑞 + 1), . . . , (𝑞𝑚𝑟 + 1)/(𝑞 + 1)).

Consider F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) where 𝜒𝑞+1 ≠ 1. We have the following results.
(i) If gcd(𝑛, 𝑚𝑖) = 1 for some i, then 𝐺◦

geom,F = SL𝐴.
(ii) In general, with 𝑐 := gcd(𝑛, 𝑚𝑖) and 𝐶 := (𝑞𝑐 + 1)/(𝑞 + 1), we have

𝐺geom,F (𝐴,𝐵𝑖 ,𝜒) =
∏

𝜌: 𝜌𝐶=𝜒

SL𝐴/𝐶 .

In particular, 𝐺geom,F (𝐴,𝐵𝑖 ,𝜒) acts on F with C simple summands, none of which is self-dual and
any two of which are neither isomorphic nor dual to each other.

Proof. The first assertion is easy since gcd(𝐴, 𝐵𝑖) = 1, and so already the pullback F (𝐴, 𝐵𝑖 , 𝜒) has
𝐺geom = SL𝐴 by Theorems 10.2.4 and 10.3.21 of [KT6]. For the second assertion, with 𝑐 = gcd(𝑛, 𝑚𝑖)
and 𝑄 = 𝑞𝑐 , we have

𝐶 = gcd(𝐴, 𝐵𝑖) = (𝑄 + 1)/(𝑞 + 1), (𝐴, 𝐵𝑖) = (𝐴0𝐶, 𝐵0𝐶),

where

𝐴0 = (𝑄𝑛/𝑐 + 1)/(𝑄 + 1), 𝐵0 = (𝑄𝑚𝑖/𝑐 + 1)/(𝑄 + 1).

It remains only to remark that if 𝜒𝑞+1 ≠ 1 and 𝜌𝐶 = 𝜒, then 𝜌𝑄+1 = 𝜌𝐶 (𝑞+1) ≠ 1. Hence, F (𝐴0, 𝐵0, 𝜌)
indeed has infinite 𝐺geom. Now if 𝑝 > 2, then 2| (𝑞 + 1) and so 𝜒2 ≠ 1, and if 𝑝 = 2, then 𝜒 ≠ 1 implies
𝜒2 ≠ 1. The formula for𝐺geom,F (𝐴,𝐵𝑖 ,𝜒) then follows from Theorem 7.4. The last statement also follows
since each of the C simple summands F (𝐴0, 𝐵0, 𝜌) is acted on by exactly one of the C simple factors
SL𝐴0 as on its natural module (or its dual), and 𝐴0 ≥ 𝑄2 −𝑄 + 1 ≥ 3. �
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Now we can complete the SU case:

Theorem 7.6. Let p be a prime, 𝑞 = 𝑝 𝑓 with 𝑓 ≥ 1, 𝑟 ≥ 2, and

𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1

a sequence of odd integers with gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1. Define

(𝐴, 𝐵1, . . . , 𝐵𝑟 ) := ((𝑞𝑛 + 1)/(𝑞 + 1), (𝑞𝑚1 + 1)/(𝑞 + 1), . . . , (𝑞𝑚𝑟 + 1)/(𝑞 + 1)).

Consider F := F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) with any 𝜒 where 𝜒𝑞+1 ≠ 1. Then F has 𝐺◦
geom,F = SL𝐴.

Proof. (a) Let 𝐺 := 𝐺geom,F . If there is some i such that gcd(𝑛, 𝑚𝑖) = 1, then we are done by
Proposition 7.5(i). Hence, we may assume that

𝑐𝑖 := gcd(𝑛, 𝑚𝑖) > 1 (7.6.1)

for all i. Since 𝑟 ≥ 2 and 2 � 𝑛𝑚1 . . . 𝑚𝑟 , this implies that

𝑛 ≥ 15, 𝑛/𝑐 ≥ 3 (7.6.2)

for 𝑐 := 𝑐𝑟 . (Indeed, if 𝑛 < 15, then either n is a prime or 𝑛 = 9. In the former case, gcd(𝑛, 𝑚1) = 1, and
in the latter case, gcd(𝑛, 𝑚2) = 1, both violating (7.6.1).)

We know by [KT5, 2.6] that F is geometrically irreducible (i.e., that G is an irreducible subgroup
of GL𝐴 = GL(𝑉) with 𝑉 := F𝜂). By Proposition 7.5(ii), for each 1 ≤ 𝑖 ≤ 𝑟 , G contains a semisimple
subgroup

𝐻𝑖 �
(
SL(𝑞𝑛+1)/(𝑞𝑐𝑖+1)

) (𝑞𝑐𝑖+1)/(𝑞+1)

of rank

𝑅𝑖 =
𝑞𝑛 − 𝑞𝑐𝑖
𝑞𝑐𝑖 + 1

· 𝑞
𝑐𝑖 + 1
𝑞 + 1

=
𝑞𝑛 − 𝑞𝑐𝑖
𝑞 + 1

.

In particular,

𝑅𝑟 =
𝑞𝑛 − 𝑞𝑐
𝑞 + 1

≥ 𝑞𝑛 − 𝑞𝑛/3

𝑞 + 1
>

2𝐴
3
. (7.6.3)

Furthermore, the 𝐻𝑖-module V is a direct sum of (𝑞𝑐𝑖 + 1)/(𝑞 + 1) pairwise non-isomorphic simple
summands, all of dimension

𝐷𝑖 :=
𝑞𝑛 + 1
𝑞𝑐𝑖 + 1

.

(b) Because 𝐺◦ � 𝐺, by Clifford’s theorem, we may express 𝑉 |𝐺◦ = 𝑒(⊕𝑚
𝑗=1𝑊 𝑗 ) as the sum of e

copies each of pairwise non-isomorphic simple summands 𝑊1, . . . ,𝑊𝑚. Note that 𝐺◦ ≥ 𝐻𝑖 for all i.
Now if 𝑒 > 1, then some simple summand of 𝑉 |𝐻𝑘 has multiplicity ≥ 𝑒, contradicting the discussion in
(a). Hence, 𝑒 = 1.

Next, the summands𝑊 𝑗 are transitively permuted by G, so all have the same dimension

𝑀 = (𝑞𝑛 + 1)/𝑚(𝑞 + 1).
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Since𝐺◦ ≥ 𝐻𝑖 and all simple summands of𝑉 |𝐻𝑖 have the same dimension 𝐷𝑖 , we must have that 𝐷𝑖 |𝑀;
equivalently, (𝑞𝑐𝑖 + 1)/𝑚(𝑞 + 1) ∈ Z for all i. In turn, this implies that 𝑚(𝑞 + 1) divides

gcd
(
𝑞𝑐1 + 1, 𝑞𝑐2 + 1, . . . , 𝑞𝑐𝑟 + 1

)
= 𝑞𝑒 + 1,

where 𝑒 := gcd(𝑐1, 𝑐2, . . . , 𝑐𝑟 ). As e divides 𝑐𝑖 = gcd(𝑛, 𝑚𝑖), we have e divides n and each𝑚𝑖 , and thus,
𝑒 | gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1. Thus, 𝑒 = 1 and so 𝑚 = 1. We have shown that 𝐺◦ acts irreducibly on V.

(c) Recall from (7.6.3) that the semisimple group 𝐺◦ has rank 𝑅 ≥ 𝑅𝑟 > 2𝐴/3. As shown in (b), 𝐺◦

acts irreducibly on V of dimension 𝐴 < 3𝑅/2, and

𝐴 = (𝑞𝑛 + 1)/(𝑞 + 1) ≥ (215 + 1)/3

by (7.6.2). Arguing as in part (a1) of the proof of Theorem 6.6, we conclude that 𝐺◦ is simple. Arguing
as in part (b) of the proof of Theorem 6.6, we then see that 𝐺◦ = SL(𝑉), Sp(𝑉), or SO(𝑉). In the two
latter cases, the 𝐺◦-module V is self-dual. Restricting to 𝐻𝑟 , we see that some simple summand of the
𝐻𝑟 -module V is either self-dual, or dual to another simple summand. This is, however, impossible by
Proposition 7.5(ii). Hence, 𝐺◦ = SL𝐴. �

Now we consider the remaining cases of an F𝜒 onA𝑟/F𝑝 with finite𝐺geom,F1
and with 𝑟 ≥ 2. These

remaining cases are listed in [KT6, Theorem 11.2.3]. They are

(i) 𝑝 = 2, 𝑟 = 2, 𝐴 = 13, 𝐵1 = 3, 𝐵2 = 1, and 𝐺 = 2 · 𝐺2 (4).
(ii) 𝑝 = 3, 𝑟 = 2, 3, 𝐴 = 7, {𝐵1, . . . , 𝐵𝑟 } ⊆ {4, 2, 1}, and 𝐺 = 61 · PSU4 (3).

(iii) 𝑝 = 3, 𝑟 = 2, 3, 𝐴 = 5, {𝐵1, . . . , 𝐵𝑟 } ⊆ {4, 2, 1}. Furthermore, 𝐺 = Sp4 (3) × 3 if some 𝐵𝑖 is 4, and
𝐺 = Sp4(3) otherwise.

(iv) 𝑝 = 5, 𝐴 = 3, 𝐵1 = 2, 𝐵2 = 1, and 𝐺 = SL2(5) × 5.

Each of these cases, with the exception of F (5, 2, 1) in characteristic 𝑝 = 3, has the following
property: for any 𝜒 ≠ 1, F𝜒 has infinite 𝐺geom. This is immediate from [KT6, Theorem 11.2.3], which
lists all cases of an F𝜒 with finite 𝐺geom. In the exceptional case of F := F (5, 2, 1) in characteristic
𝑝 = 3, we have a Weil representation of degree 4 of Sp4(3). In this case, F𝜒2 yields a Weil representation
of degree 5 of PSp4(3).

Theorem 7.7. For any of the F listed above other than F (5, 2, 1) in characteristic 𝑝 = 3, and any
𝜒 ≠ 1, 𝐺◦

geom,F𝜒
= SL𝐴. In the exceptional case of F (5, 2, 1) in characteristic 𝑝 = 3, the same is true

for any 𝜒 with 𝜒2 ≠ 1.

Proof. In cases (ii)–(iv), 𝐺geom,F1
has 𝑀2,2 = 2, whence the same holds for F𝜒. As 𝐺geom,F𝜒 is

infinite by the discussion preceding the theorem, we conclude 𝐺◦
geom,F𝜒

= SL𝐴. In case (i), the pullback
F (13, 3, 𝜒) has SL13 as its𝐺geom by Theorems 10.3.13 and 10.3.21 of [KT6], so we are done again. �

Now we can prove the first main result of the paper. Recall that local systems F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒)
with finite 𝐺geom (and the corresponding 𝐺geom) have been determined in [KT6, Theorem 11.2.3].

Theorem 7.8. Consider the local system F𝜒 := F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) over A𝑟/F𝑝 with 𝑟 ≥ 1 subject
to (4.0.1), of dimension 𝐷 = 𝐴 − 1 if 𝜒 = 1, and 𝐷 = 𝐴 otherwise. Suppose that 𝐷 ≥ 2 and that
𝐺 := 𝐺geom,F𝜒 is infinite. Then the following statements hold.

(i) If 𝐴𝐵1 . . . 𝐵𝑟 is even, then 𝐺◦ = SL𝐷 .
(ii) If 𝐴𝐵1 . . . 𝐵𝑟 is odd and 𝜒 ≠ 1, 𝜒2, then 𝐺◦ = SL𝐷 .

(iii) If 𝐴𝐵1 . . . 𝐵𝑟 is odd and 𝜒 = 1, then 𝐺 = Sp𝐷 .
(iv) Suppose 𝐴𝐵1 . . . 𝐵𝑟 is odd, 𝑝 ≠ 2, and 𝜒 = 𝜒2. Then 𝐺 = SO𝐷 , unless (𝑟, 𝐴, 𝐵𝑟 ) = (1, 7, 1), in

which case we have 𝐺 = 𝐺2.

Proof. If 𝑟 = 1 and 𝐴 ≥ 3, then the result follows from Theorems 10.2.4 of 10.3.21 of [KT6]. If 𝐴 = 2,
then F = F (2, 1, 𝜒), and 1 ≠ 𝐺◦ ≤ GL2 is semisimple, so 𝐺◦ = SL2.
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We next treat the cases 𝑟 ≥ 2 when F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) has infinite 𝐺geom. These cases result from
Theorem 7.1.

Finally, assume that 𝑟 ≥ 2 and F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) has finite 𝐺geom. Applying [KT6, Theorem
11.2.3], we arrive at one of the possibilities considered in Theorems 7.2, 7.3, 7.6, and 7.7. �

We now consider the following variant. Given a finite field L of characteristic p, a multiplicative
character 𝜒 of 𝐿×, and data (𝐴, 𝐵1, . . . , 𝐵𝑟 ) subject to (4.0.1), we denote by F ♯ (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) the
local system on (G𝑚 × A𝑟 )/𝐿 whose trace function is given as follows:

For 𝐸/𝐿 a finite extension, and (𝑠, 𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐸× × 𝐸𝑟 ,

Trace(Frob(𝑠,𝑡1 ,...,𝑡𝑟 ) ,𝐸 |F ♯ (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒)) = (−1/
√

#𝐸)
∑
𝑥∈𝐸

(𝑠𝑥𝐴 +
∑
𝑖

𝑡𝑖𝑥
𝐵𝑖 ).

Theorem 7.9. Consider F ♯
𝜒 := F ♯ (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) with 𝑟 ≥ 1 subject to (4.0.1), of dimension

𝐷 = 𝐴− 1 if 𝜒 = 1, and 𝐷 = 𝐴 otherwise. Suppose that 𝐷 ≥ 2 and that 𝐺 := 𝐺geom,F♯
𝜒

is infinite. Then
the following statements hold.

(i) If 𝐴𝐵1 . . . 𝐵𝑟 is even, then 𝐺◦ = SL𝐷 .
(ii) If 𝐴𝐵1 . . . 𝐵𝑟 is odd and 𝜒 ≠ 1, 𝜒2, then 𝐺◦ = SL𝐷 .

(iii) If 𝐴𝐵1 . . . 𝐵𝑟 is odd and 𝜒 = 1, then 𝐺 = Sp𝐷 .
(iv) Suppose 𝐴𝐵1 . . . 𝐵𝑟 is odd, 𝑝 ≠ 2, and 𝜒 = 𝜒2. Then 𝐺 = O𝐷 , unless (𝑟, 𝐴, 𝐵𝑟 ) = (1, 7, 1), in

which case we have 𝐺 = {±1} × 𝐺2.

Proof. We follow the idea behind [KT6, 8.5.1]. After the partial Kummer covering ofG𝑚×A𝑟 by itself,

[𝐴, Id] : (𝑠, 𝑡1, . . . ., 𝑡𝑟 ) ↦→ (𝑠𝐴, 𝑡1, . . . , 𝑡𝑟 ),

the change of variable 𝑥 ↦→ 𝑥/𝑠, and the reparameterization 𝑠 ↦→ 𝑠, 𝑡𝑖 ↦→ 𝑡𝑖𝑠
𝐵𝑖 , this pullback is

just (the restriction to G𝑚 × A𝑟 of) the external tensor product L𝜒 (𝑠) ⊗ F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒). Finite
pullback does not change 𝐺◦, nor does tensoring with a Kummer sheaf of finite order. In the case when
𝜒 = 1 and 𝐴𝐵1 . . . 𝐵𝑟 is odd, F ♯

𝜒 is symplectic. So on the one hand, its 𝐺◦ = Sp𝐷 , while we also
have 𝐺 ≤ Sp𝐷 . In the case when 𝑝 ≠ 2, 𝜒 = 𝜒2 and 𝐴𝐵1 . . . 𝐵𝑟 is odd, F ♯

𝜒 is orthogonal. So
its 𝐺◦ = SO𝐷 , while we also have 𝐺 ≤ O𝐷 . However, after the partial Kummer pullback [𝐴, Id]★,
we obtain L𝜒2 (𝑠) ⊗ F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒2). Here, F𝜒2 has odd rank A and trivial determinant, so this
[𝐴, Id]★F ♯

𝜒2 pullback has nontrivial determinant. Therefore, F ♯
𝜒2 must have nontrivial determinant. �

8. 𝑀2,2 and finite symplectic and special unitary groups

In this section, we will determine the subgroups of 𝐺 = Sp2𝑛 (𝑞) with 2 � 𝑞, and 𝐺 = SU𝑛 (𝑞) with
2 � 𝑛, which have the same 𝑀2,2 on an irreducible Weil representation of G. These results will allow us
to determine 𝐺geom for F ( 𝑓 , 𝐴, 𝐵), as defined in (1.0.4), in §11.

Let p be any odd prime and 𝑞 = 𝑝 𝑓 . Then 𝐺 = Sp2𝑛 (𝑞) has two total Weil representations of degree
𝑞𝑛, with characters 𝜉 + 𝜂, and 𝜉∗ + 𝜂∗, where 𝜉 ∈ Irr(𝐺) has degree (𝑞𝑛 + 1)/2, 𝜂 ∈ Irr(𝐺) has degree
(𝑞𝑛 − 1)/2, and ∗ denotes the action of the outer automorphism of 𝐺𝑛 induced by the conjugation by an
element in CSp2𝑛 (𝑞) \ Sp2𝑛 (𝑞)Z(CSp2𝑛 (𝑞)); cf. [TZ2], [KT1].

Theorem 8.1. [KT7, Theorem 2.1] Assume (𝑛, 𝑞) ≠ (1, 3). Then the following statements hold for any
irreducible Weil character 𝜃 = 𝜉, 𝜉∗, 𝜂, 𝜂∗ of 𝐺 = Sp2𝑛 (𝑞).

(i) If 𝑛 ≥ 2, or if 𝑛 = 1 but 𝜃 ∈ {𝜉, 𝜉∗}, then

𝑀2,2 (𝜃) =
{
(𝑞 + 7)/4, 𝑞 ≡ 1 (mod 4),
(𝑞 + 5)/4, 𝑞 ≡ 3 (mod 4).
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(ii) If 𝑛 = 1 but 𝜃 ∈ {𝜂, 𝜂∗}, then 𝑀2,2 drops by one; that is,

𝑀2,2 (𝜃) =
{
(𝑞 + 3)/4, 𝑞 ≡ 1 (mod 4),
(𝑞 + 1)/4, 𝑞 ≡ 3 (mod 4).

Theorem 8.2. Let 𝑞 = 𝑝 𝑓 be a power of an odd prime p, 𝑛 ≥ 1, and (𝑛, 𝑞) ≠ (1, 3). Let H be a subgroup
of 𝐺 = Sp2𝑛 (𝑞) and 𝜃 be an irreducible Weil character of G, and suppose that

𝑀2,2 (𝐻, 𝜃) = 𝑀2,2 (𝐺, 𝜃).

Then either 𝐻 = 𝐺, or one of the following cases occurs.

(i) (𝐺, 𝐻, 𝜃 (1)) = (Sp2 (5), SL2 (3), 2).
(ii) (𝐺, 𝐻, 𝜃 (1)) = (Sp4 (3), 21+4

− · A5, 4).

Proof. We argue by contradiction. If 𝐻 < 𝐺, there exists a subgroup M with 𝐻 ≤ 𝑀 < 𝐺 and M a
maximal subgroup of G. We will show that this leads to a contradiction except in the two specified
exceptional cases. For brevity, in this proof, 〈𝑎〉 (or 〈𝑎〉𝑖 with some subscript i) will denote an irreducible
character of G of degree 𝑎 ∈ Z≥1. We will freely use the fact that the equality

𝑀2,2 (𝐻, 𝜃) = 𝑀2,2 (𝐺, 𝜃)

implies that H, and so M, is irreducible on any irreducible constituent 𝛼 of the G-character 𝜃𝜃. Moreover,
𝑀1,1 (𝐻, 𝜃) = 𝑀1,1 (𝐺, 𝜃) = 1 by [GT2, Lemma 3.1], so 𝜃 is irreducible over H and M as well.

(a) Here, we consider the case 𝑛 = 1. First, suppose that 𝑞 = 5. If 𝜃 ∈ {𝜉, 𝜉∗}, then

𝜃𝜃 = 〈1〉 + 〈3〉 + 〈5〉

as one can check using [GAP]. This implies that 〈5〉 is irreducible over M, and so |𝑀 | ≥ 26, which is
impossible by [Atlas]. If 𝜃 ∈ {𝜂, 𝜂∗}, then 𝜃𝜃 = 〈1〉 + 〈3〉 by [GAP]. Then 〈3〉 is irreducible on G, and
so |𝐺 | ≥ 10 and 3 divides |𝐺 |, whence 𝐺 � SL2(3) by [Atlas], as stated in (i).

Assume now that 9 ≤ 𝑞 ≡ 1 (mod 4). Using the character table of G [Do], one can check that

𝜉𝜉 = 〈1〉 + 〈𝑞〉 + 〈𝑞 + 1
2

〉 +
(𝑞−5)/4∑
𝑖=1

〈𝑞 + 1〉𝑖 , 𝜂𝜂 = 〈1〉 + 〈𝑞 + 1
2

〉 +
(𝑞−5)/4∑
𝑖=1

〈𝑞 + 1〉𝑖 .

Similarly, if 7 ≤ 𝑞 ≡ 3 (mod 4), then

𝜉𝜉 = 〈1〉 + 〈𝑞〉 +
(𝑞−3)/4∑
𝑖=1

〈𝑞 + 1〉𝑖 , 𝜂𝜂 = 〈1〉 +
(𝑞−4)/4∑
𝑖=1

〈𝑞 + 1〉𝑖 .

In both cases, some 〈𝑞 + 1〉 is irreducible over M, and so |𝑀 | > (𝑞 + 1)2, which is impossible by [BHR,
Tables 8.1, 8.2].

(b) From now on, we will assume 𝑛 ≥ 2. According to [KT7, formulas (2.1.7) and (2.1.11)], we have

𝜉𝜉 = 〈1〉 + 〈 (𝑞
𝑛 − 1) (𝑞𝑛 + 𝑞)

2(𝑞 − 1) 〉 + 〈 𝑞
2𝑛 − 1

2(𝑞 − 1) 〉 +
(𝑞−5)/4∑
𝑖=1

〈𝑞
2𝑛 − 1
𝑞 − 1

〉𝑖 ,

𝜂𝜂 = 〈1〉 + 〈 (𝑞
𝑛 + 1) (𝑞𝑛 − 𝑞)

2(𝑞 − 1) 〉 + 〈 𝑞
2𝑛 − 1

2(𝑞 − 1) 〉 +
(𝑞−5)/4∑
𝑖=1

〈𝑞
2𝑛 − 1
𝑞 − 1

〉𝑖

(8.2.1)
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when 𝑞 ≡ 1 (mod 4), and

𝜉𝜉 = 〈1〉 + 〈 (𝑞
𝑛 − 1) (𝑞𝑛 + 𝑞)

2(𝑞 − 1) 〉 +
(𝑞−3)/4∑
𝑖=1

〈𝑞
2𝑛 − 1
𝑞 − 1

〉𝑖 ,

𝜂𝜂 = 〈1〉 + 〈 (𝑞
𝑛 + 1) (𝑞𝑛 − 𝑞)

2(𝑞 − 1) 〉 +
(𝑞−3)/4∑
𝑖=1

〈𝑞
2𝑛 − 1
𝑞 − 1

〉𝑖

(8.2.2)

when 𝑞 ≡ 3 (mod 4). In particular, there exist (not necessarily distinct) characters 𝛾, 𝛿 ∈ Irr(𝐺) such
that

𝑞𝑛 + 1
2

divides 𝛾(1),

𝛿(1) = (𝑞𝑛 + 𝜖) (𝑞𝑛 − 𝜖𝑞)
2(𝑞 − 1) for some 𝜖 = ±,

and 𝛾 |𝑀 , 𝛿 |𝑀 ∈ Irr(𝑀).

(8.2.3)

Indeed, if 𝜃 ∈ {𝜂, 𝜂∗}, then we can choose

𝛾(1) = 𝛿(1) = (𝑞𝑛 + 1) (𝑞𝑛 − 𝑞)/2(𝑞 − 1).

Suppose 𝜃 ∈ {𝜉, 𝜉∗}. Then we can choose 𝛾 = 𝜃 and

𝛿(1) = (𝑞𝑛 − 1) (𝑞𝑛 + 𝑞)/2(𝑞 − 1).

Assume in addition that 𝑛 = 2. Then (8.2.3) implies that 𝑞(𝑞2 + 1)/2 divides |𝑀 |. Using [BHR,
Tables 8.12, 8.13], we now see that either 𝑀 = Sp2(𝑞2) �𝐶2, or 𝑞 = 3 and 𝑀 = 21+4

− · A5. In the former
case, the degree of any irreducible character of M has p-part equal to 1 or 𝑞2, contrary to the existence
of 𝛿 in (8.2.3). In the latter case, suppose 𝜃 = 𝜉. Then (8.2.2) shows that 〈24〉 is irreducible on the image
24 · A5 of M in 𝐺/Ker(𝜃). Hence, 24 divides |A5 | = 60 by Ito’s theorem [Is, (6.15)], a contradiction.
Thus, 𝜃 (1) = 𝜂(1) = 4, and using [GAP], we can check that 𝑀2,2 (𝑀, 𝜃) = 3 = 𝑀2,2 (𝐺, 𝜃). Now, as
O2 (𝑀)𝐻 is irreducible on 〈15〉, O2(𝑀)𝐻/O2 (𝑀) is a subgroup of A5 of order divisible by 15, whence
𝐻O2 (𝑀) = 𝑀 . Working in 𝑀/𝑍 where 𝑍 := Z(O2 (𝑀)) � 𝐶2 and noting that A5 is irreducible on
O2 (𝑀)/𝑍 � F4

2, we see that either 𝑍𝐻 = 𝑀 or |𝑍𝐻 | = 2|A5 | = 120. The latter is, however, impossible
as H is irreducible on 〈15〉. So 𝑍𝐻 = 𝑀 , whence 𝐻 ≥ [𝑍𝐻, 𝑍𝐻] ≥ [O2 (𝑀),O2 (𝑀)] = 𝑍 . Thus,
𝐻 = 𝑍𝐻 = 𝑀 , and we arrive at (ii).

Next, we consider the case 𝐺 = Sp6 (5). By the choice of 𝛾 in (8.2.3), |𝑀 | is divisible by 7 · 31.
Inspecting [BHR, Tables 8.28, 8.29], we see that 𝑀 = Sp2(53) � 𝐶3. In this case, the degree of any
irreducible character of M has p-part equal to 1 or 𝑞3, contrary to the existence of 𝛿 in (8.2.3).

Assume now that 𝐺 = Sp6(3). As noted in the proof of (8.2.3) for 𝑞 = 3, both 𝜃 and 𝜃𝜃 − 1𝐺 are
irreducible over M. This implies that |𝑀 | is divisible by 7 · 13 and Irr(𝑀) contains a character of degree
≥ 168. Inspecting [BHR, Tables 8.28, 8.29], we arrive at a contradiction.

(c) In the rest of the proof, we may assume that

𝑛 ≥ 3 and (𝑛, 𝑞) ≠ (3, 3), (3, 5). (8.2.4)

Then 𝑝2𝑛 𝑓 − 1 admits a large primitive prime divisor ℓ in the sense of [F]. Note that 𝑄 := (𝑞2𝑛 − 1)ℓ
divides (𝑞𝑛 + 1)/2, and so Q divides |𝑀 | by (8.2.3). Now we can apply [KT1, Theorem 4.6] to the
subgroup 𝑀 < GL2𝑛 (𝑞). If in addition

𝐿 := Oℓ′ (𝑀)
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is abelian, then again by Ito’s theorem the irreducibility of 𝛾 |𝑀 implies that 𝛾(1) divides |𝑀/𝐿 |, and
hence, ℓ � 𝛾(1) = (𝑞𝑛 + 1)/2, a contradiction. Hence, by [KT1, Theorem 4.6], there is a divisor 𝑗 < 2𝑛
of 2𝑛 such that we are in one of the following cases for L.

(c1) 𝑗 ≤ 2𝑛/3 and 𝐿 � SL2𝑛/ 𝑗 (𝑞 𝑗 ). Note that if 𝑞 𝑗 = 3, then 2𝑛/ 𝑗 > 6 by (8.2.4), and so 𝐿 � PSL4(3).
Hence, the smallest degree 𝑑 (𝐿) of nontrivial irreducible complex characters of L satisfies

𝑑 (𝐿) ≥ (𝑞2𝑛 − 𝑞 𝑗 )/(𝑞 𝑗 − 1) > 𝑞2𝑛− 𝑗 > (𝑞𝑛 + 1)/2 > 𝜂(1)

by [TZ1, Theorem 1.1]. This forces the quasisimple subgroup L of G to be in the kernel of the Weil
character 𝜂, which is absurd since Ker(𝜂) ≤ Z(𝐺) = 𝐶2.

(c2) 𝑗 |𝑛, 𝑗 ≤ 𝑛/2, and 𝐿 � Ω−
2𝑛/ 𝑗 (𝑞

𝑗 ). Now if 𝑗 ≤ 𝑛/4, then

𝑑 (𝐿) > 𝑞 𝑗 (2𝑛/ 𝑗−3) = 𝑞2𝑛−3 𝑗 > (𝑞𝑛 + 1)/2 > 𝜂(1)

by [TZ1, Theorem 1.1], which leads to the contradiction 𝐿 ≤ Ker(𝜂) ≤ 𝐶2 as in (c1).
Suppose 𝑗 = 𝑛/3. Then (2𝑛/ 𝑗 , 𝑞 𝑗 ) ≠ (6, 3) by (8.2.4). Hence, 𝐿 = Ω−

6 (𝑞
𝑗 ) is a cover of PSU4 (𝑞 𝑗 ) �

PSU4(3), and so

𝑑 (𝐿) ≥ 𝑞4 𝑗 − 𝑞 𝑗

𝑞 𝑗 + 1
> (𝑞3 𝑗 + 1)/2 = (𝑞𝑛 + 1)/2 > 𝜂(1)

by [TZ1, Theorem 1.1]. This again yields the contradiction 𝐿 ≤ Ker(𝜂) ≤ 𝐶2 as in (c1).
In the remaining case 𝑗 = 𝑛/2, we have 𝐿 � Ω−

4 (𝑞
𝑛/2) � PSL2(𝑞𝑛); see [KlL2, Proposition 2.9.1(v)].

Now, 𝑑 (PSL2 (𝑞𝑛)) = (𝑞𝑛+1)/2 > 𝜂(1) (as 𝑞𝑛 > 27 by (8.2.4)), and this again forces 𝐿 ≤ Ker(𝜂) ≤ 𝐶2,
a contradiction.

(c3) 𝑗 |𝑛, 𝐿 � Sp2𝑛/ 𝑗 (𝑞 𝑗 ), and 𝐿 �𝑀 ≤ N𝐺 (𝐿) = 𝐿 �𝐶 𝑗 . Then we look at the character 𝛿 in (8.2.3).
First, suppose that 𝜖 = −. As 𝑛 ≥ 3 by (8.2.4), 𝑝 (2𝑛−2) 𝑓 − 1 has a primitive prime divisor ℓ1 by [Zs],
and then ℓ1 divides both 𝛿(1) and |𝑀 |. Note that ℓ1 ≥ 2𝑛 − 1 > 𝑗 , so in fact ℓ1 divides |𝐿 |. Hence, we
can find some 1 ≤ 𝑖 ≤ 𝑛/ 𝑗 such that ℓ1 | (𝑞2𝑖 𝑗 − 1). The primitivity of ℓ1 implies that (𝑛 − 1) |𝑖 𝑗 , but
𝑖 𝑗 ≤ 𝑛 < 2(𝑛 − 1). Thus, 𝑖 𝑗 = 𝑛 − 1, and so 𝑗 | gcd(𝑛, 𝑛 − 1) = 1. We conclude that 𝑗 = 1 and 𝐿 = 𝐺, a
contradiction.

Next, we consider the case 𝜖 = +. As before, 𝐿 < 𝐺 implies that 𝑗 > 1. Suppose first that 𝑗 = 𝑛.
Then Sp2(𝑞𝑛) = 𝐿 � 𝑀 ≤ 𝐿 · 𝐶𝑛. It follows that the maximum degree of any 𝛼 ∈ Irr(𝑀) is at most

𝑛(𝑞𝑛 + 1) < (𝑞𝑛 + 1) (𝑞𝑛 − 𝑞)
2(𝑞 − 1) = 𝛿(1),

contrary to (8.2.3). So we have 𝑗 < 𝑛; in particular, 𝑛 ≥ 4. Hence, 𝑝 (𝑛−1) 𝑓 − 1 has a primitive prime
divisor ℓ2 by [Zs]. Now ℓ2 divides both 𝛿(1) and |𝑀 |. Note that ℓ2 ≥ 𝑛 > 𝑗 , so in fact, ℓ2 divides
|𝐿 |. Hence, we can find some 1 ≤ 𝑖 ≤ 𝑛/ 𝑗 such that ℓ2 | (𝑞2𝑖 𝑗 − 1). The primitivity of ℓ2 implies that
(𝑛 − 1) |2𝑖 𝑗 , but 2𝑖 𝑗 ≤ 2𝑛 < 3(𝑛 − 1). Thus, 𝑖 𝑗 = (𝑛 − 1)/2 or 𝑛 − 1. It follows that 𝑗 | gcd(𝑛, 𝑛 − 1) = 1,
and so 𝑗 = 1, again a contradiction.

(c4) 𝑗 = 2 𝑗0 ∈ 2Z, 𝑛/ 𝑗0 ≥ 3 is odd, 𝐿 � SU𝑛/ 𝑗0 (𝑞 𝑗0 ), and

𝐿 � 𝑀 ≤ N𝐺 (𝐿) ≤ GU𝑛/ 𝑗0 (𝑞 𝑗0) � 𝐶 𝑗 .

First, suppose that 𝜃 (1) = 𝜉 (1), and so 𝜖 = − in (8.2.3). As 𝑛 ≥ 3 by (8.2.4), 𝑝 (2𝑛−2) 𝑓 − 1 has a
primitive prime divisor ℓ1 by [Zs], and then ℓ1 divides both 𝛿(1) and |𝑀 |. Note that ℓ1 ≥ 2𝑛 − 1 > 𝑗 ,
so in fact, ℓ1 divides |𝐿 |. Hence, we can find some 1 ≤ 𝑖 ≤ 𝑛/ 𝑗0 such that ℓ1 | (𝑞𝑖 𝑗0 − (−1)𝑖). The
primitivity of ℓ1 implies that 2(𝑛 − 1) |2𝑖 𝑗0 (i.e., (𝑛 − 1) |𝑖 𝑗0). But 𝑖 𝑗0 ≤ 𝑛 < 2(𝑛 − 1), so 𝑖 𝑗0 = 𝑛 − 1,
and 𝑗0 | gcd(𝑛, 𝑛 − 1) = 1. In this case, 𝑗0 = 1, and 𝑖 = 𝑛 − 1 is even. Hence, ℓ1 | (𝑞𝑖 𝑗0 − 1), and so 2𝑛 − 2
divides 𝑖 𝑗0 = 𝑛 − 1, a contradiction.
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In the remaining case, we have 𝜃 (1) = 𝜂(1). Since 𝐿 < Sp2𝑛/ 𝑗0 (𝑞
𝑗0), 𝜃 |𝐿 is the restriction to L of a

Weil character of degree (𝑞𝑛 −1)/2 of Sp2𝑛/ 𝑗0 (𝑞
𝑗0 ), and so it is a sum of the unipotent Weil character of

degree (𝑞𝑛−𝑞 𝑗0 )/(𝑞 𝑗0 +1) and (𝑞 𝑗0 −1)/2 irreducible Weil characters, each of degree (𝑞𝑛+1)/(𝑞 𝑗0 +1).
Since these characters are not of the same degree, 𝜃 |𝑀 cannot be irreducible, a contradiction.

(c5) (𝑝, 𝑛 𝑓 ) = (3, 9) and 𝐿/Z(𝐿) = PSL2(37). Here, since the smallest degree of nontrivial
irreducible representations of L over F3 is ≥ 18, we must have that 𝐺 = Sp18(3), 𝐿 = SL2(37) = 𝑀 .
But then M cannot be irreducible on 𝜃 of degree ≥ (39 − 1)/2.

(c6) (𝑝, 𝑛 𝑓 ) = (17, 6) and 𝐿/Z(𝐿) = PSL2 (13). Here, since the smallest degree of nontrivial
irreducible representations of L over F17 is ≥ 6, we must have that 𝐺 = Sp6 (17), 𝐿 = SL2(13) = 𝑀 .
But then M cannot be irreducible on 𝜃 of degree ≥ (173 − 1)/2. �

Now let p be any prime, 𝑞 = 𝑝 𝑓 , and 2 � 𝑛 ≥ 5. Then 𝐺 = SU𝑛 (𝑞) has a total Weil representation of
degree 𝑞𝑛, with character 𝜔𝑛 =

∑𝑞
𝑖=0 𝜁𝑖,𝑛, where 𝜁𝑖,𝑛 ∈ Irr(𝐺) has degree (𝑞𝑛 + 𝑞(−1)𝑛)/(𝑞 + 1) when

𝑖 = 0 and (𝑞𝑛 − (−1)𝑛)/(𝑞 + 1) when 1 ≤ 𝑖 ≤ 𝑞 see, for example, [TZ2] and [KT2].

Theorem 8.3 [KT7, Theorem 3.4]. Assume 2 � 𝑛 and 𝑛 ≥ 5. Then for the irreducible Weil character
𝜃 = 𝜁𝑖,𝑛 of SU𝑛 (𝑞), of degree (𝑞𝑛 − 𝑞)/(𝑞 + 1) if 𝑖 = 0 and (𝑞𝑛 + 1)/(𝑞 + 1) if 1 ≤ 𝑖 ≤ 𝑞, we have

𝑀2,2 (𝜃) =
{
𝑞 + 1, 𝑖 = 0, or 2 � 𝑞 and 𝑖 = (𝑞 + 1)/2,
𝑞, otherwise.

Theorem 8.4. Let 𝑞 = 𝑝 𝑓 be a power of a prime p, 2 � 𝑛 ≥ 3 odd, and (𝑛, 𝑞) ≠ (3, 2). Let H be a
subgroup of 𝐺 = SU𝑛 (𝑞) and 𝜃 be an irreducible Weil character of G, and suppose that

𝑀2,2 (𝐻, 𝜃) = 𝑀2,2 (𝐺, 𝜃).

Then 𝐻 = 𝐺.

Proof. As in the proof of Theorem 8.2, we will assume that 𝐻 < 𝐺 and let 𝐻 ≤ 𝑀 < 𝐺 for a maximal
subgroup M of G. We will also use the fact that 𝑀2,2 (𝐻, 𝜃) = 𝑀2,2 (𝐺, 𝜃) implies that H, and so M, is
irreducible on any irreducible constituent 𝛼 of the G-characters 𝜃2 and 𝜃𝜃, as well as on 𝜃 itself.

(a) Here, we consider the case 𝑛 = 3. First, suppose that 𝑞 = 3, respectively 𝑞 = 4. Using [GAP], we
can check that 𝜃𝜃 has an irreducible constituent 𝛼 with 𝛼(1) ≥ 21, respectively 𝛼(1) = 65. However,
|𝑀 | ≤ 216, respectively |𝑀 | ≤ 960 by [Atlas], so 𝛼 |𝑀 is reducible, a contradiction.

Assume now that 𝑞 ≥ 5. First, we consider the case 𝜃 (1) = 𝑞2 − 𝑞 + 1. Then 𝜃 (1) is divisible by
ℓ, a primitive prime divisor of 𝑝6 𝑓 − 1 by [Zs]. Using [BHR, Tables 8.5, 8.6], we see that |𝑀 | can
be divisible by ℓ only when 𝑀 = 𝐶gcd 3, (𝑞+1) × PSL2 (7), 3 · A6, 3 · A6 · 23, or 𝑞 = 5 and 𝑀 = 3 · A7.
The first three cases are, however, impossible because M cannot have an irreducible character of odd
degree 𝑞2 − 𝑞 + 1 ≥ 21. In the last case, 𝜃𝜃 contains an irreducible constituent 𝛼 of degree 126, and
hence, 𝛼 is reducible over M by [Atlas].

It remains to consider the case 𝜃 (1) = 𝑞2−𝑞. Then 𝜃 |𝑀 is irreducible; in particular, |𝑀 | > 𝑞2(𝑞−1)2.
Again using [BHR, Tables 8.5, 8.6], we can check that M must be a Borel subgroup of G. Note that the
degree of any irreducible character of M is then equal to 1 or divisible by a fixed prime divisor r of
(𝑞 − 1)/gcd(3, 𝑞 − 1) [Geck]. However, any irreducible constituent of 𝜃𝜃 − 1𝐺 has degree > 1, and at
least one of them, say 𝛽, has degree coprime to r. Thus, 𝛽 |𝑀 is reducible, again a contradiction.

(b) From now on, we may assume 𝑛 ≥ 5, and write 𝜃 = 𝜁𝑖,𝑛 with 0 ≤ 𝑖 ≤ 𝑞. Then the proof of
Theorem 8.3 in [KT7] shows that 𝜃2 has an irreducible constituent

𝛾 = 𝐶◦
𝜒
(𝑖)
1
, of degree

(𝑞𝑛 + 1) (𝑞𝑛−1 − 1)
(𝑞 + 1) (𝑞2 − 1)

,
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when 𝑖 ≠ 0, and

𝛾 = 𝐶◦
𝜒
(1,𝑞)
𝑞−1

, of degree
(𝑞𝑛 + 1) (𝑞𝑛−1 − 1)

(𝑞 + 1)2 ,

when 𝑖 = 0. As 𝛾 |𝑀 is irreducible, we always have

𝛾(1) divides |𝑀 |. (8.4.1)

As 𝑛 ≥ 5, 𝑝2𝑛 𝑓 −1 admits a large primitive prime divisor ℓ in the sense of [F]. Note that𝑄 := (𝑞2𝑛−1)ℓ
divides 𝛾(1), and so Q divides |𝑀 | by (8.4.1). Now we can apply [KT1, Theorem 4.6] to the subgroup
𝑀 < Sp2𝑛 (𝑞). If, in addition,

𝐿 := Oℓ′ (𝑀)

is abelian, then again by Ito’s theorem, the irreducibility of 𝛾 |𝑀 implies that 𝛾(1) divides |𝑀/𝐿, and
hence, ℓ � 𝛾(1), a contradiction. Hence, by [KT1, Theorem 4.6], there is a divisor 𝑗 < 2𝑛 of 2𝑛 such
that we are in one of the following cases for L.

(b1) 𝑗 ≤ 2𝑛/3 and 𝐿 � SL2𝑛/ 𝑗 (𝑞 𝑗 ). Note that if 𝑞 𝑗 = 3, then 2𝑛/ 𝑗 = 2𝑛 ≥ 10, and so 𝐿 � PSL4(3).
Hence, as in the proof of Theorem 8.2, we have

𝑑 (𝐿) ≥ (𝑞2𝑛 − 𝑞 𝑗 )/(𝑞 𝑗 − 1) > 𝑞2𝑛− 𝑗 > (𝑞𝑛 + 1)/(𝑞 + 1) ≥ 𝜃 (1)

by [TZ1, Theorem 1.1]. This forces the quasisimple subgroup L of G to be in the kernel of the Weil
character 𝜃, which is absurd since Ker(𝜃) ≤ Z(𝐺).

(b2) 𝑗 |𝑛 and 𝐿 � Sp2𝑛/ 𝑗 (𝑞 𝑗 ). Here, 𝑗 ≠ 𝑛/2 as 2 � 𝑛; furthermore, 𝑞 𝑗 ≥ 25 if 𝑗 = 𝑛, and 𝑞 𝑗 ≥ 23 if
𝑗 = 𝑛/3 (as 2 � 𝑛 ≥ 5). Hence,

𝑑 (𝐿) > (𝑞𝑛 − 1)/2 > (𝑞𝑛 + 1)/(𝑞 + 1) ≥ 𝜃 (1)

by [TZ1, Theorem 1.1], which leads to the contradiction 𝐿 ≤ Ker(𝜃) ≤ Z(𝐺) as in (b1).
(b3) 𝑗 |𝑛, 𝑗 < 𝑛/2 (recall 2 � 𝑛), and 𝐿 � Ω−

2𝑛/ 𝑗 (𝑞
𝑗 ). Now if 𝑗 ≤ 𝑛/4, then

𝑑 (𝐿) > 𝑞 𝑗 (2𝑛/ 𝑗−3) = 𝑞2𝑛−3 𝑗 > (𝑞𝑛 + 1)/(𝑞 + 1) > 𝜃 (1)

by [TZ1, Theorem 1.1], which again leads to the contradiction that

𝐿 ≤ Ker(𝜃) ≤ Z(𝐺).

Suppose 𝑗 = 𝑛/3. Then 𝑞 𝑗 ≥ 23 as 2 � 𝑛 ≥ 5. Hence, 𝐿 = Ω−
6 (𝑞

𝑗 ) is a cover of PSU4(𝑞 𝑗 ) � PSU4(3),
and so

𝑑 (𝐿) ≥ 𝑞4 𝑗 − 𝑞 𝑗

𝑞 𝑗 + 1
> (𝑞3 𝑗 + 1)/2 > (𝑞𝑛 + 1)/(𝑞 + 1) > 𝜃 (1)

by [TZ1, Theorem 1.1]. This again yields the contradiction 𝐿 ≤ Ker(𝜃) ≤ Z(𝐺).
(b4) 𝑗 = 2 𝑗0 ∈ 2Z, 𝑛/ 𝑗0 ≥ 3 is odd, 𝐿 � SU𝑛/ 𝑗0 (𝑞 𝑗0 ), and

𝐿 � 𝑀 ≤ N𝐺 (𝐿) ≤ GU𝑛/ 𝑗0 (𝑞 𝑗0) � 𝐶 𝑗 .

As 𝑀 < 𝐺 = SU𝑛 (𝑞), we have 𝑗0 > 1. In particular, n is not prime, and so we may assume 𝑛 ≥ 9. It
follows that 𝑝 (𝑛−1) 𝑓 − 1 has a primitive prime divisor ℓ1 [Zs], which then divides |𝑀 | by (8.4.1). As
ℓ1 ≥ 𝑛 > 𝑗 , ℓ1 divides |GU𝑛/ 𝑗0 (𝑞 𝑗0 ) |. Hence, we can find some 1 ≤ 𝑖 ≤ 𝑛/ 𝑗0 such that ℓ1 | (𝑞𝑖 𝑗0 − (−1)𝑖).
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The primitivity of ℓ1 implies that (𝑛 − 1) |2𝑖 𝑗0. But 2𝑖 𝑗0 ≤ 2𝑛 < 3(𝑛 − 1), so 𝑖 𝑗0 = 𝑛 − 1 or (𝑛 − 1)/2,
and thus, 𝑗0 | gcd(𝑛, 𝑛 − 1) = 1, a contradiction.

(b5) (𝑝, 𝑛 𝑓 ) = (3, 9) and 𝐿/Z(𝐿) = PSL2 (37). This case cannot, however, occur since the smallest
degree of nontrivial irreducible representations of L over F3 is ≥ 18, and hence, L cannot embed in
𝐺 = SU9 (3). �

9. 𝑀2,2 and intersections of Fermat hypersurfaces

In this section, we fix a set 𝑆 = {𝐵0, 𝐵1, . . . , 𝐵𝑟 } of integers

𝐵0 > 𝐵1 > . . . > 𝐵𝑟 with 𝑟 ≥ 2 and gcd(𝑆) := gcd(𝐵0, 𝐵1, . . . , 𝐵𝑟 ) = 1. (9.0.1)

We will sometimes write

𝐴 := 𝐵0

when we wish to emphasize the largest 𝐵𝑖 . We work in characteristic 𝑝 �
∏

𝑖 𝐵𝑖 and choose a prime
ℓ ≠ 𝑝 so that we can speak of ℓ-adic local systems. [For example, one might take for ℓ a prime which
divides

∏
𝑖 𝐵𝑖 .]

In [KT6, 11.2.6], given a multiplicative character 𝜒 of 𝑘× for 𝐸/F𝑝 a finite extension, we introduced
the local system

F ♯ (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒)

on (G𝑚 × A𝑟 )/𝐸 whose trace function is

(𝑠, 𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐿× × 𝐿𝑟 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑠𝑥𝐴 + 𝑡1𝑥𝐵1 + . . . + 𝑡𝑟𝑥𝐵𝑟

)
𝜒(𝑥).

We will denote this

F ♯ (𝑆, 𝜒) := F ♯ (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒).

The pullback of F ♯ to 𝑠 = 1 is the local system F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) on A𝑟/𝐸 whose trace function is

(𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐿𝑟 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡1𝑥𝐵1 + . . . + 𝑡𝑟𝑥𝐵𝑟

)
𝜒(𝑥).

We will denote this

F (𝑆, 𝜒) := F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒).

As shown in §2, there is an intimate relationship between the 𝑀2,2 of F (𝑆, 𝜒) and the number
𝑁 (𝑆, 𝑝) of geometrically irreducible components Z of dimension 2 of the F𝑝-locus

Σ(𝑆) := ∩𝑟
𝑖=0Σ𝐵𝑖 ,

where Σ𝐵𝑖 is the Fermat hypersurface 𝑥𝐵𝑖 + 𝑦𝐵𝑖 = 𝑧𝐵𝑖 + 𝑤𝐵𝑖 in A4 (𝑥, 𝑦, 𝑧, 𝑤). As an application of the
results of the preceding sections, we will be able to completely determine this invariant 𝑁 (𝑆, 𝑝).

In fact, 𝑁 (𝑆, 𝑝) is related to 𝑀2,2 of a more general kind of multi-parameter local system. Consider
a partition of S as

𝑆 = 𝑆0 � 𝑇, #𝑇 = 2, 𝑇 = {𝑎, 𝑏}, 𝑎 < 𝑏.
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and a polynomial 𝑓 (𝑥) =
∑

𝑖 𝑐𝑖𝑥
𝑖 ∈ 𝐸 [𝑥] for which

{𝑖 |𝑐𝑖 ≠ 0} = 𝑆0

In a more cumbersome expression, we assume that

𝑓 (𝑥) =
∑
𝐵𝑖 ∈𝑆0

𝑐𝐵𝑖𝑥
𝐵𝑖 , all 𝑐𝐵𝑖 ≠ 0.

We now consider the two-parameter family

F ( 𝑓 , 𝑎, 𝑏, 𝜒)

on A2/𝐸 if 𝐴 := 𝐵0 ∈ 𝑆0, respectively on (G𝑚 × A1)/𝐸 if 𝑎 < 𝑏 = 𝐴 := 𝐵0, whose trace function at
L-valued points is

(𝑠, 𝑡) ↦→ −
∑
𝑥

𝜓𝐿 (𝑠𝑥𝑏 + 𝑡𝑥𝑎 + 𝑓 (𝑥))𝜒(𝑥).

The following theorem is a recapitulation of Theorems 2.3 and 2.6; see also Corollary 2.5. Remember
that #𝑆 ≥ 3 in this section.

Theorem 9.1. For any 𝜒, any partition 𝑆 = 𝑆0 �𝑇 as above and any f whose set of exponents is 𝑆0, the
following three local systems

F ♯ (𝑆, 𝜒), F (𝑆, 𝜒), F ( 𝑓 , 𝑎, 𝑏, 𝜒)

have the same geometric 𝑀2,2 as each other. This common 𝑀2,2 is the number 𝑁 (𝑆, 𝜒) of geometrically
irreducible components Z of dimension 2 of the F𝑝-locus Σ(𝑆) with the property that on the dense open
set 𝑥𝑦𝑧𝑤 ≠ 0 of Z, the rank one local system L𝜒 (𝑥𝑦)𝜒 (𝑧𝑤) is geometrically trivial. In particular, when
𝜒 = 1, the common 𝑀2,2 is 𝑁 (𝑆,1) = 𝑁 (𝑆, 𝑝) of geometrically irreducible components Z of dimension
2 of the F𝑝-locus Σ(𝑆).

Recall the definitions 4.1 and 4.2 of a data 𝑆 = {𝐵0, . . . , 𝐵𝑟 } to be p-finite, respectively strongly
p-finite.

Theorem 9.2. Given a set 𝑆 = {𝐵0, 𝐵1, . . . , 𝐵𝑟 } subject to (9.0.1) and a prime 𝑝 �
∏𝑘

𝑖=0 𝐵𝑖 . The follow-
ing statements holds for the number 𝑁 (𝑆, 𝑝) of geometrically irreducible components Z of dimension 2
of the F𝑝-locus Σ(𝑆).

(i) Suppose that S is either strongly p-finite or not p-finite. Then 𝑁 (𝑆, 𝑝) is 2 if 2|
∏𝑘

𝑖=0 𝐵𝑖 , and 3
otherwise.

(ii) Suppose that S is p-finite, but not strongly p-finite, that is, we are in 4.1(i) with 𝑞 ≥ 7, 4.1(ii) with
𝑞 > 2 and furthermore 2 � 𝑛𝑚1 . . . 𝑚𝑟−1 if 𝑝 > 2, 4.1(iii) with 𝑞 > 2, or 4.1(iv) with 𝑞 > 2. In the
case of 4.1(i), 𝑁 (𝑆, 𝑝) equals (𝑞 + 7)/4 if 𝑞 ≡ 1 (mod 4) and (𝑞 + 5)/4 if 𝑞 ≡ 3 (mod 4). In the
cases of 4.1(ii)–4.1(iv), 𝑁 (𝑆, 𝑝) = 𝑞 + 1.

Proof. By Theorem 9.1, 𝑁 (𝑆, 𝑝) is just the 𝑀2,2 of the local system F (𝑆,1) of rank 𝐷 = 𝐵0 − 1. Now
the statements follow from Theorem 4.3 if S is strongly p-finite.

Suppose next that S is not p-finite. By Theorem 4.3,F (𝑆,1) has infinite𝐺geom, whence𝐺◦
geom = SL𝐷

if 2|
∏𝑟

𝑖=0 𝐵𝑖 and 𝐺geom = Sp𝐷 otherwise (note that in the latter case, 𝐵0 ≥ 5 as 𝑘 ≥ 2, and hence,
𝐷 ≥ 4). It follows that the conclusion of (i) holds.

Finally, we consider the case where S is p-finite, but not strongly p-finite. By Theorem 4.3,F (𝑆, 1) has
finite𝐺geom, which is determined in [KT6, Theorem 11.2.3]. In the case of 4.1(i), we have 𝐵0 = (𝑞𝑛+1)/2
with 𝑛 ≥ 2, and 𝐺geom is the image of Sp2𝑛 (𝑞) in a Weil representation of degree 𝐷 = (𝑞𝑛 − 1)/2 by
[KT6, Theorem 11.2.3(i)], so the conclusion of (ii) follows from Theorem 8.1. In the case of 4.1(iv),
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we have 𝐵0 = (𝑞𝑛+1)/(𝑞+1) with 2 � 𝑛 ≥ 5, and𝐺geom is the image of SU𝑛 (𝑞) in a Weil representation
of degree 𝐷 = (𝑞𝑛 − 𝑞)/(𝑞 + 1) by [KT6, Theorem 11.2.3(iii)], whence 𝑁 (𝑆, 𝑝) = 𝑀2,2 = 𝑞 + 1 by
Theorem 8.3. In the case of 4.1(ii), we have 𝐵0 = 𝑞𝑛 + 1, 𝐵𝑖 = 𝑞𝑚𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑟 − 1, 𝐵𝑟 = 1, and
furthermore, 2 � 𝑛𝑚1 . . . 𝑚𝑟−1 if 𝑝 > 2. In this case, 𝑁 (𝑆, 𝑝) = 𝑞 + 1 by Corollary 3.6. In the case of
4.1(iii), we have 𝐵0 = 𝑞𝑛 + 1 and 𝐵𝑖 = 𝑞𝑚𝑖 + 1 for 1 ≤ 𝑖 ≤ 𝑘 with 𝑞 = 2 𝑓 > 2 and 𝑛 > 2. In this case,
𝐺geom = 21+2𝑛 𝑓

− ·Ω−
2𝑛 (𝑞) by [KT6, Theorem 11.2.3(ii)], and the proof of [GT2, Lemma 5.1] shows that

𝑁 (𝑆, 𝑝) = 𝑀2,2 = 𝑞 + 1, the number of Ω−
2𝑛 (𝑞) orbits on the vectors of its natural module F2𝑛

𝑞 . �

10. Two-parameter specializations of multi-parameter local systems

In this and the next sections, we will use our results on 𝑀2,2 to determine the geometric monodromy
groups of the two-parameter families F ( 𝑓 , 𝑎, 𝑏), 1 ≤ 𝑎 < 𝑏 < deg( 𝑓 ), with f monic and Artin-Schreier
reduced, obtained as the specializations of the multi-parameter local systems F (𝐴, 𝐵1, . . . , 𝐵𝑟 ), as
defined in (1.0.4) given the data (1.0.2).

Theorem 10.1. Let 𝑝 = 2. Consider the data (1.0.2) with 𝑟 ≥ 3, gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1, and

𝐴 = 2𝑛 + 1, 𝐵𝑖 = 2𝑚𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑟 − 1,
and either 𝐵𝑟 = 2𝑚𝑟 + 1 with 𝑚𝑟 ≥ 1 or (𝐵𝑟 , 𝑚𝑟 ) = (1, 0).

Then the following statements hold for the geometric monodromy group 𝐺 = 𝐺geom of the local system
F = F ( 𝑓 , 𝑎, 𝑏) defined in (1.0.4), with 𝑎 = 𝐵𝑖 < 𝑏 = 𝐵 𝑗 .

(i) Either 𝐺 = 21+2𝑛
− · Ω−

2𝑛 (2) or 𝐺 = 21+2𝑛
− · SU𝑛 (2).

(ii) If 𝐵𝑟 = 1 and 2 � 𝑛𝑚1 . . . 𝑚𝑟−1, then 𝐺 = 21+2𝑛
− · SU𝑛 (2).

(iii) If 2|𝑛, then 𝐺 = 21+2𝑛
− · Ω−

2𝑛 (2).

Proof. Note that F is a pullback of the local system F̃ := F (𝐴, 𝐵1, . . . , 𝐵𝑟 ); furthermore,

Either 𝑛 ≥ 4, or (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (9, 5, 3, 1). (10.1.1)

By Theorems 9.1 and 9.2, both F and F̃ have 𝑀2,2 = 3; moreover, G embeds in the (finite) geometric
monodromy group 𝐺̃ < Sp2𝑛 (C) of F̃ . Now we can apply [GT2, Theorem 1.5] and use the assumption
𝑛 ≥ 3 to conclude that

𝐸 = 21+2𝑛
− � 𝐺 ≤ NSp2𝑛 (C) (𝐸) = 𝐸 · O−

2𝑛 (2); (10.1.2)

furthermore, 𝐺/𝐸 ≤ O(𝑉) is transitive on the set of 2𝑛−1 (2𝑛 + 1) (nonzero) isotropic vectors and the
set of (2𝑛 + 1) (2𝑛−1 − 1) anisotropic vectors of the natural module 𝑉 = F2𝑛

2 of O−
2𝑛 (2). In particular,

|𝐺/𝐸 | is divisible by 2𝑛−1 · lcm(2𝑛 + 1, 2𝑛−1 − 1). (10.1.3)

Moreover, the semidirect product 𝑉 � (𝐺/𝐸) acts on the point set of V as a rank 3 affine permutation
group with point stabilizer 𝐺/𝐸 . By [Li, Theorem], we arrive at one of the following possibilities for
𝐺/𝐸 .

(a) 𝐺/𝐸 is in one of the ‘exceptional’ cases listed in [Li, Theorem, part (C)]. Here, 𝑛 = 3, 4 or 6, so
the lengths of the orbits of 𝐺/𝐸 on 𝑉 \ {0}, which are the so-called subdegrees for 𝑉 � (𝐺/𝐸), must
be 27, 36, or 119, 136, or 2015, 2080, respectively. But those subdegrees do not match the subdegrees
listed in [Li, Table 14].

(b)𝐺/𝐸 is in one of the ‘extraspecial’ cases listed in [Li, Theorem, part (B)]. Here, we have 𝑛 = 3, so
(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (9, 5, 3, 1) by (10.1.1). Furthermore, 𝐺/𝐸 is a subgroup of O−

6 (2) that normalizes an
extraspecial 3-group 31+2

± ; in particular,𝐺/𝐸 cannot containΩ−
6 (2). Using the list of maximal subgroups
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of O−
6 (2) [Atlas] and the fact that |𝐺/𝐸 | is divisible by 27, we now see that 𝐺/𝐸 is solvable, and hence,

G is solvable. Next, since F is a pullback of the local system F9531, by Theorem 4.4(ii), we have

𝐺 ≤ 𝐺̃ = 𝐸3 · Ω−
6 (2),

where 𝐸3 � 𝐸 = 21+6
− , and Z(𝐸3) = Z(𝐸) acts via ±1 in the underlying representation. Since G is

solvable, 𝐸3𝐺 is a solvable subgroup of Sp2𝑛 (C), for which we have

3 = 𝑀2,2 (Sp2𝑛 (C)) ≤ 𝑀2,2 (𝐸3𝐺) ≤ 𝑀2,2 (𝐺) = 3, (10.1.4)

and hence, 𝑀2,2 (𝐸3𝐺) = 3. Now the arguments in part (d) of the proof of Theorem 4.4, with 𝐺1
replaced by G and E replaced by 𝐸3, show that, first, 𝐸3𝐺 = 𝐸3 · SU3 (2), and, secondly, either
𝐸3 ∩ 𝐺 = Z(𝐸3) = Z(𝐸) or 𝐺 ≥ 𝐸3. In the former case,

|𝐺 | = |𝐸3 ∩ 𝐺 | · |𝐸3𝐺/𝐸3 | = 2|SU3(2) | = 33 · 24,

which is a contradiction since G contains E of order 27. So 𝐺 ≥ 𝐸3, and hence, 𝐺 = 𝐸3 · SU3(2).
(c) 𝐺/𝐸 is in one of the infinite families listed in [Li, Theorem, part (A)]. First, we may have that

𝐺/𝐸 ≤ Γ1(22𝑛) � 𝐶22𝑛−1 · 𝐶2𝑛;

in particular, 4 � |𝐺/𝐸 | if 2 � 𝑛. This rules out the case 2 � 𝑛 ≥ 3 since 2𝑛−1 divides |𝐺/𝐸 | by (10.1.3).
Assume now that 2|𝑛 ≥ 4. By [Zs], 2𝑛−1 − 1 admits a primitive prime divisor ℓ, for which we have
ℓ > 𝑛, ℓ divides |𝐺/𝐸 | by (10.1.3), but not 2𝑛(22𝑛 − 1), a contradiction.

In the imprimitive case, by [Li, Table 12], the subdegrees are (2𝑛 − 1)2 and 2(2𝑛 − 1), none of which
is divisible by 4, whereas one of the subdegrees of 𝐺/𝐸 is divisible by 2𝑛−1.

In the tensor product case, according to [Li, Table 12], the subdegrees are (𝑞 + 1) (𝑞𝑚 − 1) and
𝑞(𝑞𝑚−1 − 1) (𝑞𝑚 − 1) with 𝑞𝑚 = 2𝑛. Since the even subdegree of 𝐺/𝐸 has 2-part equal to 2𝑛−1, we get
2𝑛−1 = 𝑞. As 𝑛 ≥ 3, we have 𝑞2𝑚 = 22𝑛 ≤ 23(𝑛−1) = 𝑞3, whence 𝑚 = 1 = 𝑞, a contradiction.

In all the remaining cases, we again match up the subdegrees listed in [Li, Table 12] to the ones of
𝐺/𝐸 and compare the 2-part of the even subdegree. First, in the case 𝐺/𝐸 � SL𝑎 (𝑞), we either have
𝑞2𝑎 = 22𝑛 and 𝑞 = 2𝑛−1, which is impossible as shown in the preceding case, or 𝑎 = 2, 𝑞6 = 22𝑛, and
𝑞 = 2𝑛−1, which is also impossible, or 𝑎 = 5, 𝑞10 = 22𝑛, and 𝑞 = 2𝑛−1, which is absurd.

In the case 𝐺/𝐸 � 2𝐵2 (𝑞), we have 𝑞4 = 22𝑛 and 𝑞 = 2𝑛−1, which is impossible since 𝑛 ≥ 3.
In the case 𝐺/𝐸 �Ω+

10(𝑞), we have 𝑞16 = 22𝑛 and 𝑞 = 2𝑛−1, which is impossible.
Suppose𝐺/𝐸�Sp6(𝑞). Then 𝑞8 = 22𝑛 and 𝑞 = 2𝑛−1, whence (𝑛, 𝑞) = (4, 2). But then the subdegrees

are 135, 120 but not 136, 119.
Suppose 𝐺/𝐸 � Ω𝜖

2𝑎 (𝑞). Then 𝑞2𝑎 = 22𝑛 and 𝑞𝑎−1 = 2𝑛−1, in which case (𝑎, 𝑞) = (𝑛, 2). Now the
even subdegree is 2𝑛−1 (2𝑛 − 𝜖), so 𝜖 = −.

Suppose 𝐺/𝐸 � SU𝑎 (𝑞). Then 𝑞2𝑎 = 22𝑛 and 𝑞𝑎−1 = 2𝑛−1, in which case (𝑎, 𝑞) = (𝑛, 2). Now the
even subdegree is 2𝑛−1 (2𝑛 − (−1)𝑛), so 2 � 𝑛.

To summarize, with replacing E by 𝐸3 in the case (𝐴, 𝐵1, . . . , 𝐵𝑟 ) = (9, 5, 3, 1) if necessary, we have
shown that

Either 𝐺/𝐸 �Ω−
2𝑛 (2), or 2 � 𝑛 and 𝐺/𝐸 � SU𝑛 (2). (10.1.5)

Now, suppose that we have the first possibility in (10.1.5). Then

Ω−
2𝑛 (2) � 𝐺/𝐸 ≤ O−

2𝑛 (2)

by (10.1.2). However, G injects in the geometric monodromy group 𝐺̃ of F̃ , which is isomorphic to a
subgroup of 21+2𝑛

− ·Ω−
2𝑛 (2) by [KT6, Theorem 11.2.3(ii)] when 𝑛 ≥ 4 and Theorem 4.4(ii) when 𝑛 = 3.
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Comparing the orders of G and 𝐺̃, we conclude that 𝐺/𝐸 = Ω−
2𝑛 (2) and that 𝐺̃ � 21+2𝑛

− · Ω−
2𝑛 (2). The

latter conclusion implies by by [KT6, Theorem 11.2.3(ii)] when 𝑛 ≥ 4 and Theorem 4.4(ii) when 𝑛 = 3
that either 𝐵𝑟 > 1, or 𝐵𝑟 = 1 but 2|𝑛𝑚1 . . . 𝑚𝑟 .

Next, suppose that 2 � 𝑛𝑚1 . . . 𝑚𝑟−1 and 𝐵𝑟 = 1; in particular, 𝑛 ≥ 4 since 𝑛, 𝑟 ≥ 3. Then G injects
in the geometric monodromy group 𝐺̃ of F̃ , which is isomorphic to 21+2𝑛

− · SU𝑛 (2), by [KT6, Theorem
11.2.3(ii)]. Again comparing the orders of G and 𝐺̃, we see that 𝐺/𝐸 = SU𝑛 (2) in (10.1.5), and hence,
(ii) follows.

Finally, assume that we have the second possibility in (10.1.5), so 2 � 𝑛, and, in addition, either
𝐵𝑟 > 1, or 𝐵𝑟 = 1 but 2|𝑚1 . . . 𝑚𝑟−1. Then G injects in the geometric monodromy group 𝐺̃ of F̃ ,
which is 𝐸3 · 𝑆 by [KT6, Theorem 11.2.3(ii)] when 𝑛 ≥ 4 and Theorem 4.4(ii) when 𝑛 = 3, where
𝐸3 � 𝐸 = 21+2𝑛

− and 𝑆 � Ω−
2𝑛 (2). Certainly, 𝐸3𝐺 ≤ 𝐺̃ < Sp2𝑛 (C) still has 𝑀2,2 = 3; see (10.1.4). So

the preceding arguments but applied to 𝐸3𝐺 show that (10.1.5) also holds for 𝐸3𝐺:

Either 𝐸3𝐺/𝐸3 �Ω−
2𝑛 (2), or 𝐸3𝐺/𝐸3 � SU𝑛 (2).

In the former case, we have 𝐸3𝐺 = 𝐺̃, and so the composition factors of G are Ω−
2𝑛 (2) and 𝐶2, all

present. But this contradicts the fact that 𝐺/𝐸 � SU𝑛 (2) (which yields a composition factor PSU𝑛 (2)
when 𝑛 ≥ 4 and 𝐶3 when 𝑛 = 3). So we must have that

𝐸3𝐺/𝐸3 � SU𝑛 (2). (10.1.6)

Recall that 𝐸3𝐺/𝐸3 is a subgroup of 𝑆 = Ω(𝑊), where𝑊 := 𝐸3/Z(𝐸3) = F2𝑛
2 carries the quadratic form

𝑥Z(𝐸3) ↦→ 𝑥2

and symplectic form

(𝑥Z(𝐸3), 𝑦Z(𝐸3)) ↦→ [𝑥, 𝑦],

both invariant under the normal subgroup 𝐺1 := SU𝑛 (2) of 𝐸3𝐺/𝐸3. Assuming 𝑛 > 3 and applying
[KT6, Proposition 8.4.1], we obtain that

𝐸3𝐺/𝐸3 ≤ NO(𝑊 ) (𝐺1) = GU(𝑊1) � Gal(F4/F2),

where𝑊1 := F𝑛4 . Working from a standard basis for the Hermitian form on𝑊1 (over F4) back to a Witt
basis of W (over F2), one can readily check that the Galois automorphism 𝛼 ↦→ 𝛼2 of F4 induces (in that
standard basis) an element of O(𝑊) which is a product of n reflections. Since 2 � 𝑛, this element is not
in 𝑆 = Ω(𝑊). However, since O(𝑊) has index 2 over S and 2 � 𝑛 ≥ 5, GU(𝑊1) ≤ 𝑆. It follows that
𝐸3𝐺/𝐸3 ≤ N𝑆 (𝐺1) � GU𝑛 (2). Now we can use the fact that 𝐺 = O2′ (𝐺) to conclude that

𝐸3𝐺/𝐸3 = SU𝑛 (2). (10.1.7)

Suppose now that 𝑛 = 3. Then, using (10.1.6) and the fact that 𝐸3𝐺/𝐸3 is transitive on both the nonzero
singular vectors and the non-singular vectors of the quadratic space F6

2, and arguing as in part (b)
(recalling that O3 (SU3(2)) = 31+2

+ ), we see that (10.1.7) holds in this case as well.
We have therefore shown that |𝐺 | ≤ |𝐸3𝐺 | = |𝐸3 | · |SU𝑛 (2) | = |𝐸 | · |SU𝑛 (2) |. But 𝐺/𝐸 � SU𝑛 (2)

by (10.1.5), so in fact, 𝐺/𝐸 = SU𝑛 (2). �

In some special instances of the case where 2|𝑚1 . . . 𝑚𝑟 but 2 � 𝑛 of Theorem 10.1, we can also
prove that F ( 𝑓 , 𝑎, 𝑏) has 𝐺geom = 𝐸 · Ω−

2𝑛 (2). [Also see Theorem 11.7 about the ‘generic’ situation.]
To do this, we first prove a general statement.
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Proposition 10.2. Let 𝑘/F𝑝 be an finite extension, 𝑓 (𝑥) ∈ 𝑘 [𝑥] a polynomial of degree A with 𝑝 � 𝐴,
and a an integer

1 < 𝑎 < 𝐴, 𝑝 � 𝑎.

Denote by F 𝑓 ,𝑎 the lisse sheaf on A1 whose trace function at a point 𝑡 ∈ 𝐿, for 𝐿/𝑘 a finite extension, is

−1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿 ( 𝑓 (𝑥) + 𝑡𝑥𝑎).

Then the following statements hold for its 𝐺geom.

(i) 𝐺geom, indeed its 𝐼 (∞), contains elements of order a. In particular, 𝐺geom is not a finite p-group.
(ii) Assume in addition that gcd(𝐴, 𝑎) = 1. Then 𝐺geom contains a subquotient of order (𝐴 − 𝑎)𝑝′ .

Proof. (i) Up to a Tate twist (1/2), F 𝑓 ,𝑎 is the Fourier transform of the Kummer direct image
[𝑎]★(L𝜓 ( 𝑓 ) ):

F 𝑓 ,𝑎 = FT𝜓 (G) for G := [𝑎]★(L𝜓 ( 𝑓 ) ).

The sheaf G is lisse of rank a on G𝑚, its 𝐼 (0)-representation is ⊕𝜒:𝜒𝑎=1L𝜒, and its 𝐼 (∞)-representation
has all slopes 𝐴/𝑎 > 1. By Laumon’s theory of local Fourier Transform (cf. [Ka2, 7.4.2, 7.4.4(2)]), the
𝐼 (∞)-representation of F 𝑓 ,𝑎 is the direct sum

FT𝜓loc(0,∞)(G |𝐼 (0) /Qℓ) ⊕ FT𝜓loc(∞,∞)(G |𝐼 (∞) ).

The first factor is ⊕𝜒:𝜒𝑎=1,𝜒≠1L𝜒. Thus, the subgroup 𝐼 (∞) ≤ 𝐺geom contains elements of order a.
(ii) The 𝐼 (∞)-representation of G has rank a, and all slopes 𝐴/𝑎. By Laumon’s result [Ka2,

7.4.1(1)],the second factor FT𝜓loc(∞,∞)(G |𝐼 (∞) ) has rank 𝐴 − 𝑎 and all slopes 𝐴/(𝐴 − 𝑎). If
gcd(𝐴, 𝑎) = 1, one knows [Ka1, 1.1.4] that the second factor is 𝐼 (∞)-irreducible, and one knows further
that denoting by (𝐴−𝑎)𝑝′ the 𝑝′ part of 𝐴−𝑎, the second factor is the Kummer induction [(𝐴−𝑎)𝑝′ ]★𝑊
of an irreducible 𝐼 (∞)-representation of dimension the p part of 𝐴 − 𝑎. This description of the second
factor makes visible the group 𝜇 (𝐴−𝑎)𝑝′ as a quotient of the wild part of the 𝐼 (∞)-representation of
F 𝑓 ,𝑎. �

Corollary 10.3. Suppose that we are in the case 2 � 𝑛 of Theorem 10.1 and some 𝑚 ∈ {𝑚𝑖 , 𝑚 𝑗 } is even
and strictly positive. Then the local system F ( 𝑓 , 𝑎, 𝑏) has 𝐺geom = 21+2𝑛

− · Ω−
2𝑛 (2).

Proof. For definiteness, we will assume 𝑚 = 𝑚𝑖 , so that 𝑎 = 2𝑚 + 1. By Theorem 10.1, it suffices to
prove that |𝐺geom | is divisible by some odd prime which does not divide |SU𝑛 (2) |.

First, consider the case 𝑚 > 𝑛/2. Applying Proposition 10.2(i) to the pullback 𝑡 = 1 of F ( 𝑓 , 𝑎, 𝑏),
we see that |𝐺geom | is divisible by 2𝑚 + 1. Since 2𝑚𝑖 ≠ 6, 22𝑚 − 1 has a primitive prime divisor ℓ
by [Zs]. Then ℓ certainly divides both 2𝑚 + 1 and |𝐺geom |. Suppose ℓ divides |SU𝑛 (2) |. Then there is
some 1 ≤ 𝑘 ≤ 𝑛 such that ℓ divides 2𝑘 − (−1)𝑘 . In particular, ℓ | (22𝑘 − 1). The primitivity of ℓ implies
that 2𝑚 divides 2𝑘 . But 2𝑚 > 𝑛 and 2𝑘 ≤ 2𝑛, so 𝑘 = 𝑚. It follows that ℓ divides 2𝑘 − (−1)𝑘 = 2𝑚 − 1,
contradicting the choice of ℓ. Thus ℓ does not divide |SU𝑛 (2) |, as desired.

Assume now that 2 ≤ 𝑚 < 𝑛/2. Suppose that some prime r divides both 2𝑛 + 1 and 2𝑚 + 1. Then r
divides gcd(22𝑛 − 1, 22𝑚 − 1) = 22𝑒 − 1 for 𝑒 := gcd(𝑛, 𝑚). As 2 � 𝑛, e is odd, and so 2𝑒 divides m. But
in this case, r divides 2𝑚 − 1 and so cannot divide 2𝑚 + 1, a contradiction. Thus, 2𝑛 + 1 and 2𝑚 + 1 are
coprime. Hence, by Proposition 10.2(ii) applied to the pullback 𝑡 = 1 of F ( 𝑓 , 𝑎, 𝑏), |𝐺geom | is divisible
by 2𝑛−𝑚 − 1. Note that 𝑛 ≥ 3 and 𝑛 − 𝑚 > 𝑛/2 is odd, so 𝑛 − 𝑚 ≥ 3. By [Zs], 2𝑛−𝑚 − 1 admits a
primitive prime divisor ℓ1. Suppose ℓ1 divides |SU𝑛 (2) |. Then there is some 1 ≤ 𝑘 ≤ 𝑛 such that ℓ1
divides 2𝑘 − (−1)𝑘 . In particular, ℓ1 | (22𝑘 − 1). The primitivity of ℓ1 implies that 𝑛 − 𝑚 divides 2𝑘 , and
hence, 𝑛−𝑚 divides k since 𝑛−𝑚 is odd. But 2(𝑛−𝑚) > 𝑛 ≥ 𝑘 , so 𝑘 = 𝑛−𝑚. It follows that ℓ1 divides
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2𝑘 − (−1)𝑘 = 2𝑛−𝑚 + 1, contradicting the choice of ℓ1. Thus, ℓ1 does not divide |SU𝑛 (2) |, and we are
done in this case as well. �

11. Semicontinuity

First, we recall some results from [Ka2, 8.17, 8.18].
The situation we consider is the following. We are given a normal connected affine noetherian scheme

𝑆 = Spec (𝐴) with A a noetherian normal integral domain with fraction field K, and a chosen algebraic
closure 𝐾 of K. Thus, Spec (𝐾) is a generic point 𝜂 of S, and Spec (𝐾) is a geometric point 𝜂 of S. We
are given 𝑋/𝑆 a smooth S-scheme of relative dimension D, with geometrically connected fibres, and
𝜙 ∈ 𝑋 (𝑆) a section of 𝑋/𝑆. Then 𝜙(𝜂) is a geometric point of X. We are given a finite group G and a
surjective homomorphism

𝜋1 (𝑋, 𝜙(𝜂)) � 𝐺.

For each geometric point s of S, 𝜙(𝑠) is a geometric point of 𝑋𝑠 (and also of X). We have a continuous
group homomorphism

𝜋1 (𝑋𝑠 , 𝜙(𝑠)) → 𝜋1 (𝑋, 𝜙(𝑠)) � 𝜋1 (𝑋, 𝜙(𝜂)).

This last isomorphism is only canonical up to inner automorphism of the target group 𝜋1 (𝑋, 𝜙(𝜂)). By
composition, we get a group homomorphism

𝜋1 (𝑋𝑠 , 𝜙(𝑠)) → 𝐺

which is well defined up to inner automorphism of G. This applies in particular with s taken to be 𝜂.
We are interested in how the image of 𝜋1 (𝑋𝑠 , 𝜙(𝑠)) in G compares with the image of 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) in
G: when are these two subgroups of G conjugate in G? Let us denote these image groups 𝐺𝑠 and 𝐺𝜂 .

Theorem 11.1. There exists a dense open set𝑈 ⊂ 𝑆 such that for any geometric point 𝑠 ∈ 𝑈,𝐺𝑠 and𝐺𝜂

are conjugate subgroups of G. Moreover, for any geometric point 𝑠 ∈ 𝑆, 𝐺𝑠 is conjugate to a subgroup
of 𝐺𝜂 .

Proof. We first reduce to the case when 𝐺𝜂 = 𝐺.
Consider the scheme 𝑋𝜂 , a smooth K-scheme, and compare it to the smooth 𝐾-scheme 𝑋𝜂 . We have

the 𝜋1 short exact sequence

1 → 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) → 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) → Gal(𝐾/𝐾) → 1.

The scheme 𝑋𝜂 has the same function field as X, so the canonical map is surjective:

𝜋1 (𝑋𝜂 , 𝜙(𝜂)) � 𝜋1 (𝑋, 𝜙(𝜂)).

Thus, the image of 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) is G, while the image of 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) is a normal subgroup H of G,
with 𝐺/𝐻 the Galois group of some finite Galois extension 𝐿/𝐾 . View 𝑋𝜂 as 𝑋 ⊗𝐴 𝐾 . Then for the
finite Galois extension 𝐿/𝐾 , 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) and 𝜋1 (𝑋 ⊗𝐴 𝐿, 𝜙(𝜂)) have the same image H.

Now replace S by T:=the normalization of S in L (i.e., the Spec of the integral closure of A in L),
replace X by 𝑋𝑇 := 𝑋 ×𝑆 𝑇 , and replace 𝜙 by the section 𝜙𝑇 (in terms of the finite map 𝑓 : 𝑇 → 𝑆, 𝜙𝑇
is (𝜙 ◦ 𝑓 ) × 𝑖𝑑𝑇 as map to 𝑋 ×𝑆 𝑇). In this new situation, the image H of 𝜋1 ((𝑋𝑇 )𝜙𝑇 (𝜂) , 𝜙𝑇 (𝜂)) is equal
to the image of 𝜋1 (𝑋𝑇 , 𝜙𝑇 (𝜂)). Because 𝐿/𝐾 is separable (being Galois), one knows that 𝑓 : 𝑇 → 𝑆 is
both finite and surjective. Being finite, it is proper. Thus, f is closed. Hence, the image of a dense open
set 𝑉 = 𝑇 \ 𝑍 of T contains the dense open set𝑈 := 𝑆 \ 𝑓 (𝑍) of S.
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Returning to the original notation (𝑋, 𝑆, 𝜙, 𝐺), this completes reduction to the case when 𝐺𝜂 = 𝐺,
for G the image of 𝜋1 (𝑋, 𝜙(𝜂)). In this case, every 𝐺𝑠 is visibly (conjugate to) a subgroup of G, by the
homomorphism

𝜋1 (𝑋𝑠 , 𝜙(𝑠)) → 𝜋1 (𝑋, 𝜙(𝑠)) � 𝜋1 (𝑋, 𝜙(𝜂)).

Let 𝐸 → 𝑋 denote the finite etale G-covering classified by the surjection

𝜋1 (𝑋, 𝜙(𝜂)) � 𝐺.

Precisely because this is a surjection, E is connected. Being finite etale over X, which is in turn smooth
over the normal scheme S, we see that E is itself smooth over S, of relative dimension d. Let us denote by

𝑔 : 𝐸 → 𝑆

the structural morphism.
Then 𝐸𝑠 is a finite etale G-covering of 𝑋𝑠 , but it may not be connected. One has 𝐺𝑠 = 𝐺 if and

only if 𝐸𝑠 , which is smooth over s of dimension d, is itself connected ( or equivalently geometrically
irreducible, being smooth over s). [Indeed, the index of𝐺𝑠 in G is the number of geometrically irreducible
components of 𝐸𝑠 .]

For any prime ℓ invertible on S, theFℓ -rank of the stalk at s of 𝑅2𝑑𝑔! (Fℓ) is the number of geometrically
irreducible components of 𝐸𝑠 . By general constructibility theorems, 𝑅2𝑑𝑔! (Fℓ) is a constructible sheaf
on S, so on a dense open set has constant rank. But at the generic point 𝜂, the rank is one (precisely
because 𝐺𝜂 = 𝐺). Therefore, the rank is one on some dense open set U. Thus, for every 𝑠 ∈ 𝑈, we have
𝐺𝑠 = 𝐺. [If there is no prime ℓ invertible on S, pick any two distinct primes, say 2, 3, and work separately
on 𝑆[1/2] and on 𝑆[1/3].] For a more direct proof, see [EGA, 9.7.8] or [StPr, Lemma 37.27.5]. �

Corollary 11.2. Hypotheses and notations as in Theorem 11.1, suppose that for some geometric point
𝑠0 ∈ 𝑆, 𝐺𝑠0 = 𝐺. Then 𝐺𝜂 = 𝐺𝑠0 = 𝐺, and hence, there exists a dense open set U of S such that we
have 𝐺𝑠 = 𝐺 for every geometric point 𝑠 ∈ 𝑆.

Proof. We have the inclusion, up to conjugation, 𝐺𝑠0 ⊂ 𝐺𝜂 . We also have the inclusion 𝐺𝜂 ⊂ 𝐺,
simply via the map 𝜋1 (𝑋𝜂 , 𝜙(𝜂)) → 𝜋1 (𝑋, 𝜙(𝜂)). Thus, 𝐺 = 𝐺𝑠0 ⊂ 𝐺𝜂 ⊂ 𝐺, whence 𝐺𝜂 = 𝐺, and we
apply Theorem 11.1. �

Here is a particular instance of Corollary 11.2.

Proposition 11.3. Let p be a prime, 𝑞 = 𝑝 𝑓 , 𝜒 a (possibly trivial) multiplicative character of F×𝑞 , 𝑟 ≥ 2
an integer, and let 𝐴 > 𝐵1 > . . . > 𝐵𝑟 ≥ 1 be integers with gcd(𝐴, 𝐵1, . . . , 𝐵𝑟 ) = 1 and 𝑝 � 𝐴𝐵1 . . . 𝐵𝑟 .
Consider the local system F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) on A𝑟/F𝑞 with trace function for any finite extension
𝐿/F𝑞

(𝑡1, . . . , 𝑡𝑟 ) ∈ 𝐿𝑟 ↦→ − 1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡1𝑥𝐵1 + . . . + 𝑡𝑟𝑥𝐵𝑟

)
𝜒(𝑥),

in characteristic p, of rank 𝐷 = 𝐴− 1 if 𝜒 = 1 and 𝐷 = 𝐴 otherwise, with geometric monodromy group
𝐺 = 𝐺geom. Given a choice 𝑖0 ∈ [1, 𝑟] and a polynomial 𝑓 (𝑥) ∈ F𝑝 [𝑥] of the form

𝑓 (𝑥) =
∑

1≤𝑖≤𝑟 , 𝑖≠𝑖0

𝑎𝑖𝑥
𝐵𝑖 ,

denote by F (𝐴, 𝐵𝑖0 , 𝑓 , 𝜒) the local system on A1/𝐾 𝑓 with

𝐾 𝑓 := F𝑞 (all coefficients of 𝑓 )
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whose trace function, for any finite extension 𝐿/𝐾 𝑓 , is

𝑡 ∈ 𝐿 ↦→ − 1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖0 + 𝑓 (𝑥))𝜒(𝑥),

and by F (𝐴, 𝐵𝑖0 , 𝑓 = 0, 𝜒), the local system on A1/F𝑞 whose trace function, for any finite extension
𝐿/F𝑞 , is

𝑡 ∈ 𝐿 ↦→ − 1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖0 )𝜒(𝑥).

Suppose that F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒) has finite geometric monodromy group G and that the specialized
local system F (𝐴, 𝐵𝑖0 , 𝑓 = 0, 𝜒) has the same geometric monodromy group G. Then in the A𝑟−1/F𝑝 of
possible f, there is an open dense set 𝑈 ⊂ A𝑟−1 such that for any 𝑓 ∈ 𝑈, the specialized local system
F (𝐴, 𝐵𝑖0 , 𝑓 = 0, 𝜒) has the same geometric monodromy group G.

Here are some examples. In the first two of these examples, we are given 𝑟 + 1 integers

𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0

with 2|𝑛𝑚1 . . . 𝑚𝑟 , gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1.

(i) 𝑝 = 2, 𝑞 = 2 𝑓 , 𝐴 = 𝑞𝑛 + 1, 𝑟 ≥ 2, 𝐵𝑖 = 𝑞𝑚𝑖 + 1 for 1 ≤ 𝑖 < 𝑟 , and either (𝑚𝑟 > 0, 𝐵𝑟 = 𝑞𝑚𝑟 + 1)
or (𝐵𝑟 = 1, 𝑚𝑟 = 0, and 2|𝑛𝑚1 . . . 𝑚𝑟−1). Suppose that 2|𝑛𝑚𝑖0 and gcd(𝑛, 𝑚𝑖0) = 1. Then
F (𝐴, 𝐵𝑖0 , 𝑓 = 0,1) has the same geometric monodromy group G as does F (𝐴, 𝐵1, . . . , 𝐵𝑟 ,1) –
namely, the group 21+2𝑛 𝑓

− · Ω−
2𝑛 (𝑞). Simplest example: 𝑖0 = 1 and 𝑚1 = 𝑛 − 1. The calculations of

the monodromy groups are Theorem 11.2.3 (ii) and Theorem 10.3.13(iii) of [KT6] for 𝑞𝑛 > 8 and
Theorem 4.4 for 𝑞𝑛 = 4, 8.

(ii) 𝑝 > 2, 𝑞 = 𝑝 𝑓 , 𝜒 is either 1 or the quadratic character 𝜒2, 𝐴 = (𝑞𝑛 + 1)/2, 𝐵𝑖 = (𝑞𝑚𝑖 + 1)/2,
1 ≤ 𝑖 ≤ 𝑘 , where 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0 are integers with 2|𝑛𝑚1 . . . 𝑚𝑟 , gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1,
and 𝜒 = 1 or 𝜒 = 𝜒2. Suppose that 2|𝑛𝑚𝑖0 and gcd(𝑛, 𝑚𝑖0) = 1. Then F (𝐴, 𝐵𝑖0 , 𝑓 = 0, 𝜒) has the
same geometric monodromy group G as does F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒), namely the image of Sp2𝑛 (𝑞)
in one of its irreducible Weil representations of degree D, with 𝐷 = 𝐴 − 1 for 𝜒 = 1 and 𝐷 = 𝐴
for 𝜒 = 𝜒2. Simplest example: 𝑖0 = 1 and 𝑚1 = 𝑛 − 1. The calculations of the monodromy groups
are Theorem 11.2.3 (i) and Theorem 10.3.13(i) of [KT6].

(iii) p arbitrary, 𝑞 = 𝑝 𝑓 . In this third example, 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1 are all odd,
and gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1, 𝜒 is a character of F×

𝑞2 of order dividing 𝑞 + 1. Suppose that
gcd(𝑛, 𝑚𝑖0) = 1. Then F (𝐴, 𝐵𝑖0 , 𝑓 = 0, 𝜒) has the same geometric monodromy group G as does
F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒), namely the image of SU𝑛 (𝑞) in a Weil representation of degree D, with
𝐷 = 𝐴 − 1 for 𝜒 = 1 and 𝐷 = 𝐴 for 𝜒 ≠ 1. Simplest example: 𝑖0 = 1 and 𝑚1 = 𝑛 − 2. The
calculations of the monodromy groups are Theorem 11.2.3 (iii) and Theorem 10.3.13(ii) of [KT6].

Remark 11.4. In the above examples, we need the existence of an index 𝑖0 such that gcd(𝑛, 𝑚𝑖0) = 1. So
we have nothing to say about one-parameter specializations in cases such as (𝑛, 𝑚1, . . . 𝑚𝑟 ) = (6, 3, 2)
or (15, 6, 5, 3) or (30, 5, 3, 2).

A second problem is that in the examples, although we know 𝐺geom for an open dense set U of f ’s,
we do not know which subgroups of 𝐺geom can occur for f ’s not in U, nor for which f these smaller
groups occur.

Next, we consider some one- and two-parameter systems in characteristic 𝑝 = 2. We begin with a
lemma on generalized Pink–Sawin sheaves.
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Lemma 11.5. Let p be a prime, 𝑛 ≥ 1 an integer, 𝑘/F𝑝 a finite extension, and 𝑓 (𝑥) ∈ 𝑘 [𝑥] a polynomial
of the form

𝑓 (𝑥) =
𝑛∑
𝑖=1

𝑎𝑖𝑥
1+𝑝𝑖

, 𝑎𝑛 ∈ 𝑘×.

Denote by F 𝑓 the lisse sheaf onA1/𝑘 whose trace function at a point 𝑡 ∈ 𝐿, for 𝐿/𝑘 a finite extension, is

𝑡 ↦→ (−1/
√

#𝐿)
∑
𝑥∈𝐿

𝜓𝐿 ( 𝑓 (𝑥) + 𝑡𝑥);

that is, F 𝑓 is, up to the Tate twist (1/2) which makes it pure of weight zero, the Fourier Transform
𝐹𝑇𝜓 (L𝜓 ( 𝑓 ) ). Then there exists an explicit finite extension 𝐿0/𝑘 such that for every finite extension
𝐿1/𝐿0 and every 𝑡 ∈ 𝐿1, |Trace(Frob𝑡 ,𝐿1 |F 𝑓 ) | is either 0 or 𝑝𝑛.

Proof. This is an instance of the argument of [vG-vV, Section 5]. Write

𝑓 (𝑥) = 𝑥𝑅(𝑥)

for 𝑅(𝑥) the additive polynomial
∑𝑛

𝑖=1 𝑎𝑖𝑥
𝑝𝑖 . Then

|Trace(Frob𝑡 ,𝐿1 |F 𝑓 ) |2 = (1/#𝐿1)
∑

𝑥,𝑦∈𝐿1

𝜓𝐿1 (𝑥𝑅(𝑥) + 𝑡𝑥 − 𝑦𝑅(𝑦) − 𝑡𝑦) =

(substituting (𝑥, 𝑦) ↦→ (𝑥 + 𝑦, 𝑦) and remembering that 𝑅(𝑥 + 𝑦) = 𝑅(𝑥) + 𝑅(𝑦)),

= (1/#𝐿1)
∑

𝑥,𝑦∈𝐿1

𝜓𝐿1 ((𝑥 + 𝑦)𝑅(𝑥 + 𝑦) + 𝑡𝑥 + 𝑡𝑦 − 𝑦𝑅(𝑦) − 𝑡𝑦) =

= (1/#𝐿1)
∑
𝑥∈𝐿1

𝜓𝐿1 (𝑥𝑅(𝑥) + 𝑡𝑥)
∑
𝑦∈𝐿1

𝜓𝐿1 (𝑦𝑅(𝑥) + 𝑥𝑅(𝑦)).

For the inner sum, the Trace𝐿1/F𝑝 of 𝑦𝑅(𝑥) + 𝑥𝑅(𝑦) is equal to the Trace𝐿1/F𝑝 of

𝑦(
∑
𝑖

𝑎𝑖𝑥
𝑝𝑖 ) + 𝑦(

∑
𝑖

(𝑎𝑖𝑥) 𝑝
−𝑖 ).

Let us denote by

𝑊𝑅 (𝐿1) :=

{
𝑥 ∈ 𝐿1 | (

∑
𝑖

𝑎𝑖𝑥
𝑝𝑖 ) + (

∑
𝑖

(𝑎𝑖𝑥) 𝑝
−𝑖 ) = 0

}
.

Equivalently,𝑊𝑅 (𝐿1) is the set of zeroes in 𝐿1 of the additive polynomial

𝑃𝑅 (𝑥) :=
𝑛∑
𝑖=1

𝑎𝑝
𝑛

𝑖 𝑥𝑝
𝑛+𝑖 +

𝑛∑
𝑖=1

𝑎𝑝
𝑛−𝑖

𝑖 𝑥𝑝
𝑛−𝑖
.

The sum

(1/#𝐿1)
∑
𝑦∈𝐿1

𝜓𝐿1 (𝑦𝑅(𝑥) + 𝑥𝑅(𝑦)) = (1/#𝐿1)
∑
𝑦∈𝐿1

𝜓𝐿1 (𝑦𝑃𝑅 (𝑥)),

which is 1 if 𝑃𝑅 (𝑥) = 0, and zero otherwise.
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Take for 𝐿0 a field containing F𝑝2 and each of the 𝑝2𝑛 zeroes of 𝑃𝑅 (𝑥). [Notice that the highest-
degree term of 𝑃𝑅 (𝑥) is 𝑎𝑝

𝑛

𝑛 𝑥𝑝
2𝑛 and its lowest-degree term is 𝑎𝑛𝑥, so its derivative is the nonzero

constant 𝑎𝑛, and hence, 𝑃𝑅 (𝑥) has 𝑝2𝑛 distinct zeroes over F𝑝]. Then

|Trace(Frob𝑡 ,𝐿1 |F 𝑓 ) |2 =
∑

𝑥∈𝑊𝑅 (𝐿1)
𝜓𝐿1 (𝑥𝑅(𝑥) + 𝑡𝑥).

One checks that the map 𝑥 ↦→ 𝜓𝐿1 (𝑥𝑅(𝑥) + 𝑡𝑥) is a 𝜇𝑝-valued character of the finite abelian group
𝑊𝑅 (𝐿1), so the sum

∑
𝑥∈𝑊𝑅 (𝐿1) 𝜓𝐿1 (𝑥𝑅(𝑥) + 𝑡𝑥) is either 0, if the character is nontrivial, or is #𝑊𝑅 (𝐿1).

But over any extension 𝐿1/𝐿0,𝑊𝑅 (𝐿1) = 𝑊𝑅 (𝐿0), whose cardinality is 𝑝2𝑛. �

Corollary 11.6. Keep the notation and assumption of Lemma 11.5. For every finite extension 𝐿1/𝐿0
and every 𝑡 ∈ 𝐿1, Trace(Frob𝑡 ,𝐿1 |F 𝑓 ) is either 0 or ±𝑝𝑛𝜁 for some 𝜁 ∈ 𝜇𝑝 .

Proof. The trace lies in Z[𝜁𝑝] and divides 𝑝2𝑛 in that ring, so is a unit at all places outside p, while
at the unique place over p of Q(𝜁𝑝), it and its complex conjugate each have absolute value 𝑝𝑛. By the
product formula, this trace, divided by 𝑝𝑛, is an element of Z[𝜁𝑝] all of whose absolute values (at all
places) are 1, and hence is a root of unity in Z[𝜁𝑝]. �

Theorem 11.7. Let 𝑝 = 2, 𝑞 = 𝑝 𝑓 , 𝑟 ≥ 2, 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0, gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1,
2|𝑛𝑚1 . . . 𝑚𝑟 , and set 𝐴 = 𝑞𝑛 + 1, 𝐵𝑖 = 𝑞𝑚𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑟 − 1, and either 𝐵𝑟 = 𝑞𝑚𝑟 + 1 with 𝑚𝑟 ≥ 1 or
(𝐵𝑟 , 𝑚𝑟 ) = (1, 0). Recall (see [KT6, Theorem 11.2.3(ii)] and Theorem 4.4) that the local system

Fup := F (𝐴, 𝐵1, . . . , 𝐵𝑟 )

has 𝐺geom,Fup =: 𝐺up equal to 21+2𝑛 𝑓
− � SU𝑛 (𝑞) if 𝐵𝑟 = 1 and 2 � 𝑛𝑚1 . . . 𝑚𝑟−1, and 21+2𝑛 𝑓

− · Ω−
2𝑛 (𝑞)

otherwise. Assume in addition that (𝑞, 𝑟, 𝑛, 𝑚1, 𝑚2) ≠ (2, 2, 3, 1, 0). Fix a choice of 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 . If
𝑖 = 𝑗 , set 𝑑 := 1. If 𝑖 < 𝑗 , set 𝑑 := 2 and assume 𝑟 ≥ 3. For f in the space A𝑟−𝑑 of all polynomials

𝑓 (𝑥) =
∑

1≤𝑘≤𝑟 , 𝑘≠𝑖, 𝑗
𝑐𝑘𝑥

𝐵𝑘 ,

denote by F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) the local system on A𝑑 whose trace function is

𝑡 ∈ 𝐿 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑓 (𝑥))

when 𝑖 = 𝑗 and

(𝑠, 𝑡) ∈ 𝐿2 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑠𝑥𝐵 𝑗 + 𝑓 (𝑥))

when 𝑖 < 𝑗 . Then one of the following statements holds.

(i) There is an open dense set𝑈 ⊂ A𝑟−𝑑 such that for any 𝑓 ∈ 𝑈, F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) has𝐺geom the group
𝐺up.

(ii) 𝑖 = 𝑗 , and for all 𝑓 ∈ G𝑟−1
𝑚 , F (𝐴, 𝐵𝑖 , 𝐵𝑖 , 𝑓 ) has 𝐺geom the extraspecial 2-group 21+2𝑛 𝑓

− .

In particular, conclusion (i) holds if 𝑖 < 𝑗 . Moreover, conclusion (ii) holds if and only if 𝑖 = 𝑗 and 𝐵𝑖 = 1.

Proof. We first note that each F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) is a pullback of Fup, so its geometric monodromy group
𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) is a subgroup of𝐺up, well defined up to conjugacy in𝐺up = 𝐸 ·𝑆, where 𝐸 = 21+2𝑛 𝑓

−
and 𝑆 = SU𝑛 (𝑞), respectively 𝑆 = Ω−

2𝑛 (𝑞). We further note that, so long as all coefficients of f are
nonzero, the group 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) is an irreducible subgroup of Sp𝑞𝑛 (C); cf. [KT4, Prop. 2.4]. By
the specialization Theorem 11.1, there is a subgroup 𝐺0 ≤ 𝐺up, well defined up to conjugacy in 𝐺up,
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and a dense open set 𝑈 ⊂ A𝑟−𝑑 such that for every 𝑓 ∈ 𝑈, 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) is conjugate to 𝐺0.
Concretely, there is a nonzero polynomial 𝑃(𝑥𝑘 | 1 ≤ 𝑘 ≤ 𝑟, 𝑘 ≠ 𝑖, 𝑗) in 𝑟 − 𝑑 variables over F𝑞 such
that any 𝑓 (𝑥) =

∑
1≤𝑖≤𝑚, 𝑖≠𝑖, 𝑗𝑠 𝑐𝑖𝑥

𝐵𝑖 with 𝑃(𝑐𝑘 | 1 ≤ 𝑘 ≤ 𝑟, 𝑘 ≠ 𝑖, 𝑗) ≠ 0 lies in U. Let us denote
𝑈up ⊂ A𝑟 (with coordinates (𝑠1, . . . , 𝑠𝑟 )) the dense open set on which 𝑃(𝑠𝑘 | 1 ≤ 𝑘 ≤ 𝑟, 𝑘 ≠ 𝑖, 𝑗) ≠ 0.
Replacing P by 𝑃

∏
𝑘≠𝑖, 𝑗 𝑥𝑘 , we reduce to the case when every 𝑓 ∈ 𝑈 has all coefficients nonzero, and

hence, for every 𝑓 ∈ 𝑈, 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) is an irreducible subgroup of Sp𝑞𝑛 (C). In particular, the
group 𝐺0 is an irreducible subgroup of Sp𝑞𝑛 (C).

Because𝑈up ⊂ A𝑟 is a dense open set, Fup on A𝑟 and Fup |𝑈up on𝑈up have the same 𝐺geom – namely,
𝐺up. Both 𝐺up and the arithmetic group 𝐺arith,Fup ,F2 are finite, with 𝐺up � 𝐺arith,Fup ≤ Sp𝑞𝑛 (C), with
the quotient 𝐺arith,Fup ,F2/𝐺up a finite cyclic group. In the case 𝑆 = Ω−

2𝑛 (𝑞), one knows that

NSp𝑞𝑛 (C) (𝐺up) ≤ 𝐸 · O−
2𝑛 (𝑞) · 𝐶 𝑓

contains𝐺up with index dividing 2 𝑓 . In the case 𝑆 = SU𝑛 (𝑞), our assumptions imply that (𝑛, 𝑞) ≠ (3, 2),
whence S is simple and

NSp𝑞𝑛 (C) (𝐺up) ≤ 𝐸 · GU𝑛 (𝑞) · 𝐶2 𝑓

contains𝐺up with index dividing 2 𝑓 (𝑛+1); see [KT6, Proposition 8.4.1(b2)]. [For completeness, we note
that when 𝑆 = SU𝑛 (𝑞) with (𝑛, 𝑞) = (3, 2),𝐺arith,Fup ,F2 has index 2 over𝐺geom,Fup by Theorem 4.4(iii).]

Thus, over any extension 𝐿/F𝑞2𝑛+2 , 𝐺arith,Fup ,𝐿 = 𝐺up. By the finite group version [KaS, Theorem
9.7.13] of Deligne’s equidistribution theorem, applied to Fup |𝑈up , over any sufficiently large finite
extension 𝐿/F𝑞2𝑛+2 , every element 𝛾 ∈ 𝐺up is conjugate to some Frobenius Frob(𝑠1 ,...𝑠𝑟 ) ,𝐿 with
(𝑠1, . . . , 𝑠𝑟 ) ∈ 𝑈up (𝐿). Such a Frobenius is Frob𝑠𝑖 ,𝑠 𝑗 ,𝐿 on F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) for

𝑓 (𝑥) =
∑

1≤𝑘≤𝑚, 𝑘≠𝑖, 𝑗

𝑠𝑘𝑥
𝐵𝑘 .

Now view 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) as a subgroup of 𝐺up. Then Frob𝑠𝑖 ,𝑠 𝑗 ,𝐿 lies in 𝐺arith,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) , so
normalizes 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) . But 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) is conjugate in 𝐺up to 𝐺0, and hence, every
conjugacy class in 𝐺up contains an element that normalizes 𝐺0. Thus, the normalizer N𝐺up (𝐺0) of 𝐺0
in 𝐺up meets every conjugacy class in 𝐺up. Therefore,

N𝐺up (𝐺0) = 𝐺up,

whence

𝐺0 � 𝐺up.

In particular, 𝐸𝐺0/𝐸 is a normal subgroup of the simple group 𝐺up/𝐸 � 𝑆, whence 𝐸𝐺0 = 𝐸 or
𝐸𝐺0 = 𝐺up. Note that any proper subgroup of E has order ≤ 𝑞2𝑛 and so cannot be irreducible on C𝑞𝑛 ,
and thus, the only irreducible subgroup of E is E itself. Furthermore, 𝑀2,2 (𝐸) = 𝑞2𝑛 > 𝑞 + 1, whereas
𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) with 𝑖 < 𝑗 has the same 𝑀2,2 as that of 𝐺up, which is equal to 𝑞 + 1, by Theorems
9.1 and 9.2. Hence, in the former case, we must have that 𝐺0 = 𝐸 , 𝑖 = 𝑗 , and furthermore, 𝐵𝑖 = 1 by
Proposition 10.2, and thus, conclusion (ii) holds by Theorem 11.1.

In the latter case, (𝐸 ∩ Z(𝐸)𝐺0)/Z(𝐸) is a normal subgroup of

𝐺up/Z(𝐸) = (𝐸/Z(𝐸) · 𝑆
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that is contained in 𝐸/Z(𝐸). But S acts irreducibly on 𝐸/Z(𝐸) = F2𝑛 𝑓
2 , so either 𝐸 ∩ Z(𝐸)𝐺0 = Z(𝐸)

or Z(𝐸)𝐺0 ≥ 𝐸 . However, since 𝐸𝐺0 = 𝐺up and 𝐺0 � 𝐺up, the first possibility leads to 𝐺up/Z(𝐸) �
𝐸/Z(𝐸) × 𝑆, which is impossible. So Z(𝐸)𝐺0 ≥ 𝐸 , in which case we have

𝐺0 = [𝐺0, 𝐺0] = [Z(𝐸)𝐺0,Z(𝐸)𝐺0] ≥ [𝐸, 𝐸] = Z(𝐸)

(since Z(𝐸) = Z(𝐺up)), whence 𝐺0 = Z(𝐸)𝐺0 = 𝐸𝐺0 = 𝐺̃ and (i) holds.
Assume now that 𝑖 = 𝑗 and 𝐵𝑖 = 1. By Corollary 11.6, 𝜑(𝑥) ∈ {±𝑞𝑛, 0} for all 𝑥 ∈ 𝐺0, where 𝜑

denotes the character of the underlying representation. It follows that [𝜑, 𝜑]𝐺0 = 𝑞2𝑛 |Z(𝐺0) |/|𝐺0 |. As
Z(𝐺0) = Z(𝐸) � 𝐶2 and 𝜑 ∈ Irr(𝐺0), we conclude that |𝐺0 | = 2𝑞2𝑛 = |𝐸 |, and hence, 𝐺0 = 𝐸 . �

Here is the odd-p analogue of the above result:

Theorem 11.8. Let 𝑝 > 2, 𝑞 = 𝑝 𝑓 , 𝑟 ≥ 2, 𝑛 > 𝑚1 > . . . > 𝑚𝑟−1 > 0, gcd(𝑛, 𝑚1, . . . , 𝑚𝑟−1) = 1, and
𝐴 = 𝑞𝑛 + 1, 𝐵𝑖 = 𝑞𝑚𝑖 + 1, 1 ≤ 𝑖 ≤ 𝑟 − 1, and 𝐵𝑟 = 1. Recall (see [KT6, Theorem 11.2.3(i-bis)]) that the
local system

Fup := F (𝐴, 𝐵1, . . . , 𝐵𝑟 )

has 𝐺geom,Fup =: 𝐺up equal to

𝑝
1+2𝑛 𝑓
+ � SU𝑛 (𝑞)

if 2 � 𝑛𝑚1 . . . 𝑚𝑟−1, and

𝑝
1+2𝑛 𝑓
+ � Sp2𝑛 (𝑞)

otherwise. Fix a choice of 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 . If 𝑖 = 𝑗 , set 𝑑 := 1. If 𝑖 < 𝑗 , set 𝑑 := 2 and assume 𝑟 ≥ 3. For
f in the space A𝑟−𝑑 of all polynomials

𝑓 (𝑥) =
∑

1≤𝑘≤𝑟 , 𝑘≠𝑖, 𝑗
𝑐𝑘𝑥

𝐵𝑘 ,

denote by F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) the local system on A𝑑 whose trace function is

𝑡 ∈ 𝐿 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑓 (𝑥))

when 𝑖 = 𝑗 and

(𝑠, 𝑡) ∈ 𝐿2 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑠𝑥𝐵 𝑗 + 𝑓 (𝑥))

when 𝑖 < 𝑗 . Then one of the following statements holds.

(i) There is an open dense set𝑈 ⊂ A𝑟−𝑑 such that for any 𝑓 ∈ 𝑈, F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 ) has𝐺geom the group
𝐺up.

(ii) 𝑖 = 𝑗 , and for all 𝑓 ∈ G𝑟−1
𝑚 , F (𝐴, 𝐵𝑖 , 𝐵𝑖 , 𝑓 ) has 𝐺geom the extraspecial p-group 𝑝1+2𝑛 𝑓

+ .

In particular, conclusion (i) holds if 𝑖 < 𝑗 . Moreover, conclusion (ii) holds if and only if 𝑖 = 𝑗 and 𝐵𝑖 = 1.

Proof. We can follow the proof of Theorem 11.7 almost verbatim. Note that since 𝑛 ≥ 2, 𝑆 = Sp2𝑛 (𝑞),
respectively SU𝑛 (𝑞) with 2 � 𝑛, is quasisimple. We also use the fact that 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ) has no
nontrivial 𝑝′-quotient to show that if 𝐺0 is contained in 𝐸Z(𝑆), then 𝐺0 ≤ 𝐸 for 𝐸 = 𝑝1+2𝑛 𝑓

+ . �
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We can be much more precise in the quasisimple case:

Theorem 11.9. Let p be a prime, 𝑞 = 𝑝 𝑓 , 𝑟 ≥ 2. Suppose that either

(a) 𝑝 > 2, 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 0 with 2|𝑛𝑚1 . . . 𝑚𝑟 , gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1, 𝐴 = (𝑞𝑛 + 1)/2,
𝐵𝑖 = (𝑞𝑚𝑖 + 1)/2, 1 ≤ 𝑖 ≤ 𝑟 , and 𝜒 = 1 or 𝜒2; or

(b) 𝑛 > 𝑚1 > . . . > 𝑚𝑟 ≥ 1 with 2 � 𝑛𝑚1 . . . 𝑚𝑟 , gcd(𝑛, 𝑚1, . . . , 𝑚𝑟 ) = 1, 𝐴 = (𝑞𝑛 + 1)/(𝑞 + 1),
𝐵𝑖 = (𝑞𝑚𝑖 + 1)/(𝑞 + 1), 1 ≤ 𝑖 ≤ 𝑟 , and 𝜒𝑞+1 = 1.

Recall (see [KT6, Theorem 11.2.3(i), (iii)]) that the local system

Fup := F (𝐴, 𝐵1, . . . , 𝐵𝑟 , 𝜒)

has 𝐺geom,Fup =: 𝐺up equal to the image of 𝑆 := Sp2𝑛 (𝑞) in case (a) and 𝑆 := SU𝑛 (𝑞) in case (b), in
a Weil representation of degree 𝐷 = rank(Fup). Fix a choice of 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 . If 𝑖 = 𝑗 , set 𝑑 := 1. If
𝑖 < 𝑗 , set 𝑑 := 2 and assume 𝑟 ≥ 3. For f in the space A𝑟−𝑑 of all polynomials

𝑓 (𝑥) =
∑

1≤𝑘≤𝑟 , 𝑘≠𝑖, 𝑗
𝑐𝑘𝑥

𝐵𝑘 ,

denote by F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 , 𝜒) the local system on A𝑑 whose trace function is

𝑡 ∈ 𝐿 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑓 (𝑥))𝜒(𝑥)

when 𝑖 = 𝑗 and

(𝑠, 𝑡) ∈ 𝐿2 ↦→ −1
√

#𝐿

∑
𝑥∈𝐿

𝜓𝐿
(
𝑥𝐴 + 𝑡𝑥𝐵𝑖 + 𝑠𝑥𝐵 𝑗 + 𝑓 (𝑥))𝜒(𝑥)

when 𝑖 < 𝑗 . Then we have the following results.

(i) If 𝑖 = 𝑗 , there is an open dense set𝑈 ⊂ A𝑟−1 such that for any 𝑓 ∈ 𝑈, F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 , 𝜒) has 𝐺geom
the group 𝐺up.

(ii) In the case 𝑖 < 𝑗 , for any 𝑓 ∈ (G𝑚)𝑟−2 (i.e., for any f having all coefficients nonzero),
F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 , 𝜒) has 𝐺geom the group 𝐺up.

Proof. To prove (i), we follow the proof of Theorem 11.7 almost verbatim. In the Sp case, we have
𝑛 > 𝑚1 > 𝑚2 ≥ 0, so 𝑛 ≥ 2, and Sp2𝑛 (𝑞) is quasisimple for any odd q. In the SU case, we have
𝑛 > 𝑚1 > 𝑚2 ≥ 1 are all odd, so 𝑛 ≥ 5, and SU𝑛 (𝑞) is again quasisimple. We also use the fact
that 𝐺geom,F (𝐴,𝐵𝑖 ,𝐵 𝑗 , 𝑓 ,𝜒) is irreducible on F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 , 𝜒) of rank 𝐷 > 1 to see that 𝐺0 cannot be
contained in the image of Z(𝑆).

To prove (ii), we use the fact that when 𝑖 < 𝑗 , for any f all of whose coefficients are nonzero,
F (𝐴, 𝐵𝑖 , 𝐵 𝑗 , 𝑓 , 𝜒) has the same 𝑀2,2 as Fup; cf. Theorem 2.3 and Corollary 2.5. The result is then
immediate from Theorem 8.2 in the Sp case (since 𝑟 ≥ 3 implies 𝑛 ≥ 3 here), and from Theorem 8.4 in
the SU case (since 𝑟 ≥ 3 implies 𝑛 ≥ 7 here). �
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