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SMOOTH PARTITIONS OF UNITY ON BANACH SPACES

R. FRY

ABSTRACT. It is shown that if a Banach space X admits a Ck-smooth bump function,
and XŁ is Asplund, then X admits Ck-smooth partitions of unity.

1. Introduction. The existence of Ck-smooth partitions of unity on Banach spaces
is important for the approximation of continuous maps by Ck-smooth functions [BF].
Recall that a Banach space X is said to admit Ck-smooth partitions of unityÒ if for any
open cover fUãga2I of XÒ there exists a family, f fãgã2IÒ of real-valued, Ck-smooth maps
such that:

(i) The sets, support(fã) � fx 2 X : fã(x) 6= 0g, are locally finite (each x 2 X has a
neighbourhood intersecting only finitely many support ( fã)),

(ii) 0 � fã � 1 for all ã, and
P
ã fã = 1,

(iii) For each ã 2 I, we have support( fã) ² Uã.
Clearly, the existence of Ck-smooth partitions of unity on X implies the existence of a
Ck-smooth, real-valued function with bounded, non-empty support (a Ck-smooth bump
function for short), and so the latter condition is a necessary one for X to admit such
smooth partitions. It is an open problem whether or not any Banach space which admits
a Ck-smooth bump function admits Ck-smooth partitions of unity. This problem has a
positive solution under various additional assumptions on X. For example, it is known
to be true for weakly countably determined X [GTWZ], and for X in which XŁ is weakly
compactly generated [M1]. Further recent results on smooth partitions of unity can be
found in [M2], [F], [V], and [DGZ2]. In this note we show that the above problem has
a positive solution for Banach spaces X for which XŁ is Asplund. This includes quasi-
reflexive spaces. We also indicate how slight modifications of our main construction
yields the results of [GTWZ] and [M1].

2. Notation. X shall denote a real Banach space, XŁ its dual, and XŁŁ its second
dual. Operations involving the weak and weak star topologies will be prefixed by w and
wŁÒ respectively. The closed linear span of a set Y ² X is written sp(Y). The closed unit
ball of X is denoted BXÒ the unit sphere SX, and similar expressions for the dual spaces.
For a set Γ, the Banach space c0(Γ) is defined by

c0(Γ) =
²

f : Γ ! R : 8è Ù 0Ònã 2 Γ : j f (ã)j ½ èo is finite
¦
Ò

equipped with the supremum norm. X is said to be an Asplund space if every separable
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subspace has separable dual. X has the Radon-Nikodym Property (RNP), if for each
non-empty, bounded set A ² X, and è Ù 0, there exists Λ 2 XŁ and ã 2 R such that
A \ fx 2 X : Λ(x) Ù ãg is non-empty with diameter less than è. We note that XŁ has
the RNP iff X is Asplund (see, e.g., [P]). If X does not contain an isomorphic copy of
l1Ò we write l1 ²

6=
X. Smoothness is meant in the Fréchet sense, unless otherwise stated.

We call a Banach space Ck-smooth if it admits a Ck-smooth, real-valued function with
non-empty, bounded support.

A Banach space X is said to admit a separable projectional resolution of the identity
(SPRI) if for the limit ordinal ñ = dens(X), there exist continuous linear projections,
fTãgã2Γ, where Γ = [@0Ò ñ], such that if Rã = Tã+1�Tã

kTã+1k+kTãk
,

(i) TãTå = Tmin(ãÒå)

(ii) (Tã+1 � Tã)(X) is separable for all ã 2 Γ
(iii) For all x 2 X and è Ù 0, fã 2 Γ : kRã(x)k ½ èg is finite
(iv) For all x 2 X, x 2 spfRã(x) : ã Ú ñg

We shall require the following two fundamental results.

THEOREM 2.1 [FG]. If X is an Asplund space, then XŁ admits a separable projectional
resolution of the identity. Further, there are a set Γ and a bounded, linear injection
T: XŁ ! c0(Γ).

THEOREM 2.2 [T]. A Banach space X admits Ck-smooth partitions of unity iff there
exist a set Γ and a coordinatewise smooth homeomorphic embedding of X into c0(Γ) .

3. Main Results.

THEOREM 3.1. Let X be a Ck-smooth Banach space for which XŁ is Asplund. Then X
admits Ck-smooth partitions of unity.

PROOF. We shall construct the map required by Theorem 2.2. We follow the construc-
tion in [M1]. Since X admits a Ck-smooth bump function, X is Asplund (see [DGZ1]),
and by Theorem 2.1 there exists a SPRI, fTãgã2Γ, on XŁ. We write õ = Tã+1 � Tã, and
õŁ = TŁ

ã+1 � TŁ
ã. Also, since X admits a Ck-smooth bump function, by composing such

a function with suitable smooth bump functions in C1(RÒ R), we can construct maps
ûn 2 Ck(XÒ [0Ò 1]), such that for some constant c 2 (0Ò 1), we have

ûn(x) =
(

0 for kxk Ú cÛn
1 for kxk ½ 1Ûn



In a similar fashion, we can define a map ò 2 Ck(XÒ [0Ò 1]) with ò � 0 on XnBX, and
ò Ù 0 in a neighbourhood of the origin.

Because õã(XŁ) is separable, the unit ball Bã of õŁã(XŁŁ) is wŁ-metrizable and wŁ-
separable. Let fzãng1n=1 be wŁ-dense in Bã, and for each k, let B1Ûk(zãn ) be a (relative)
wŁ-ball of radius 1Ûk about zãn . Using the wŁ-density of BX in Bã ([H], Lemma 16F),
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choose yãnÒk 2 BX \ B1Ûk(zãn ). Then we have spfyãnÒk : nÒ k 2 NgwŁ

¦ õŁã(XŁŁ). Now, from

the properties of a SPRI, we have that for any xŁŁ 2 XŁŁ, xŁŁ 2 spfõŁã(xŁŁ) : ã 2 ΓgwŁ

, and

so in particular, for x 2 X, x 2 spfõŁã(XŁŁ) : ã 2 ΓgwŁ

² spfyãnÒk : ã 2 ΓÒ nÒ k 2 NgwŁ

.
Since the yãnÒk and x are in X, and wŁ-continuous functionals on XŁŁÒ are w-continuous on X,

we have, for every x 2 X, x 2 spfyãnÒk : ã 2 ΓÒ nÒ k 2 Ngw
= spfyãnÒk : ã 2 ΓÒ nÒ k 2 Ng,

the last equality following from Mazur’s Theorem. To ease notation, we relabel the
countable indices of fyãnÒkg1nÒk=1, and write simply fyãng1n=1, which shall be used in the
sequel.

LEMMA 3.2. Let X satisfy the hypothesis of Theorem 3.1. Then, with notation as
above, we have fkRŁ

ã(x)kgã2Γ 2 c0(Γ). Further, for each x 2 X and è Ù 0, there are a
finite set K ² Γ, and a neighbourhood N of x with kRŁ

ã(y)k � è for all y 2 N and ã Û2 K.

PROOF. We claim that for each x 2 X, and è Ù 0, there is a finite set K ² Γ, so
that kRŁ

ã(x)k Ú è for all ã Û2 K. If not, then there exists an x 2 X, an è Ù 0, and a
sequence ãn 2 Γ with kRŁ

ãn
(x)k ½ 2è. Hence, there are zãn 2 BXŁ with (RŁ

ãn
x)(zãn ) =

(Rãn)(zãn )(x) Ù è. Set kãn = (Rãn )(zãn) 2 BXŁ, and Z = spf[1
n=1Rãn(XŁ)g. Now Z is a

separable space with the RNP, which is Asplund since XŁ is assumed Asplund. It follows
from Theorem A [EW] that (BZÒw) is Polish. Since l1 ²

6=
Z, fkãng1n=1 2 BZ contains

a w-Cauchy subsequence [R], which we also write as fkãng1n=1. Thus, there exists a k0

with kãn

w! k0. Because kãn 2 Rãn(X
Ł), by the properties of a SPRI, for all ã 2 Γ and

û 2 XŁŁ, limn RŁ
ã(û)(kãn ) = 0. Thus, 0 = limn RŁ

ã(û)(kãn) = RŁ
ã(û)(k0). As noted above,

for each x 2 X, x 2 spfRŁ
ã(x) : ã 2 ΓgwŁ

, and therefore k0 = 0. But kãn(x) Ù è for all
n, and so k0(x) ½ è. This contradiction establishes the claim, and hence statement one
of the lemma. If the second statement is not true, then there are an x0 2 X and è Ù 0
so that for K = fã 2 Γ : kRŁ

ã(x0)k ½ èÛ2g there is an x with kx � x0k Ú èÛ2, and
ã Û2 K with kRŁ

ã(x)k ½ 2è. Choose z 2 BXŁ such that RŁ
ã(x)(z) = (Rã)(z)(x) Ù è, and

setting k = (Rã)(z), we then have k(x) � k(x0) Ù è � èÛ2 = èÛ2. On the other hand,
k(x � x0) � kkk kx� x0k Ú èÛ2, a contradiction.

Next, for each ã, since õã(XŁ) is separable, choose f f ãj g1j=1 ² õã(SXŁ) separating

on õŁã(XŁŁ), and set f̃ ãj =
fãj

kTã+1k+kTak
. Note that since f ãj = õã(xŁj ), for some xŁj 2 SXŁ,

we have that, f ãj (x) = õã(xŁj )(x) = õŁã(x)(xŁj ) � kõŁã(x)k kxŁj k � kõŁã(x)k. It follows
that f̃ ãj (x) � kRŁ

ã(x)k, and so
P1

j=1 2�j f̃ ãj (x) � kRŁ
ã(x)k. Also, from Theorem 2.1, let

T: XŁŁ ! c0(Γ1) be a continuous, linear injection, for some set Γ1.

Next we enumerate Q = frjg1j=1, [1
n=1Qn = föjg1j=1, and [1

n=1Nn = fójg1j=1 Then for
öj = (rj1 Ò    Ò rjm ), ók = (nk1 Ò    Ò nkm ), and a = (ã1Ò    Ò ãm) 2 Γm, we define Pöj Òók Òa to be
a projection onto the one dimensional subspace spfPm

i=1 rji y
ãi
nji
g. Let F be the collection

of finite subsets of Γ, and if a = (ã1Ò    Ò ãm) 2 Γm, we define d(a) to be the distinct
elements of the set fã1Ò    Ò ãmg. We also define S = f(öjÒ ókÒ a) 2 Qm ðNm ð Γmg1m=1.
Let I be the disjoint union of S ð N, F , N, a copy N0 of N, and Γ1. We define a map

https://doi.org/10.4153/CMB-1998-023-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-023-9


148 R. FRY

ê: X ! c0(I ) by

ê(x)(ì) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

2�j�k�lûl

�
Pöj ÒókÒa(x)

� Q
ã2d(a)

²P1
m=1 2�m

�
f̃ ãm (x)

�2
¦

ì =
�
(öjÒ ókÒ a)Ò l� 2 S ðNQ

ã2K

²P1
m=1 2�m

�
f̃ ãm (x)

�2
¦
ì = K 2 F

2�nò(xÛn) ì = n 2 N
2�n0ûn0 (x) ì = n0 2 N0

T(x)(ç) ì = ç 2 Γ1
We now show that line one maps into c0(I ). Let è Ù 0, and fix x0 2 X. From

Lemma 3.2 we have that fkRŁ
ã(x0)kgã2Γ 2 c0(Γ), and therefore there are only finitely

many ã 2 Γ, say N, for which kRŁ
ã(x0)k ½ 1. Letting M = max

ã2Γ
fkRŁ

ã(x0)kg, we then

have for a 2 Γm

Y
ã2d(a)

² 1X
m=1

2�m
�

f̃ ãm (x0)
�2
¦
� Y

ã2d(a)
kRŁ

ã(x0)k2 � M2N

Hence, if maxf jÒ kÒ lg Ù M2NÛè, then line one maps into c0(I ) since ûl 2 [0Ò 1]. If
maxf jÒ kÒ lg � M2NÛè, we proceed as follows. If d(a) = fã1Ò    Ò ãmg 2 F m is such that
kRŁ

ãj0
(x0)k Ú pèÛMN for some j0, then

Y
ã2d(a)

² 1X
m=1

2�m
�

f̃ ãm (x0)
�2
¦
� Y

ã6=ãj0
ã2d(a)

kRŁ
ã(x0)k2 è

M2N
Ú è

Again, since fkRŁ
ã(x0)kgã2Γ 2 c0(Γ), there is a finite set K 2 F with kRŁ

ã(x0)k ½ pèÛMN

only for ã 2 K. It follows that line one in the definition of ê maps into c0(I ). That the
other lines in the definition of ê map into c0(I ) follows similarly. Hence, ê maps into
c0(I ). That ê maps continuously into c0(I ) is established by noting that the lines defining
ê are equicontinuous using the second statement in Lemma 3.2. Also, ê is injective since
T is, and is coordinatewise Ck-smooth since each line in the definition of ê is Ck-smooth.

Finally, we show that ê�1 is continuous using the method of [GTWZ]. Because ê is
injective and continuous, we will establish the continuity of ê�1 if we can show that
ê(xp) ! ê(x0) implies xp ! x0 for fx0g [ fxpg1p=1 ² X. This will be proven by showing
that ê(xp) ! ê(x0) implies that fx0g [ fxpg1p=1 is relatively norm compact. The fact that
fx0g [ fxpg1p=1 is bounded follows from line three in the definition of ê. Indeed, choose
n 2 N so that ò(x0Ûn) Ù 0. Then ê(xp)(n) ! ê(x0)(n) 6= 0, and the definition of ò now
implies that for only finitely many p do we have ê(xp)(n) = 0, the remaining xp lying in
nBX We next show that fx0g [ fxpg1p=1 is totally bounded.

Let è Ù 0, and first suppose x0 = 0. Choose n00 Ù cÛè. Then line four implies that
ûn00

(xp) ! 0, and hence there exists an N with p Ù N implying kxpk Ú è. Therefore, the
tail of fxpg1p=1 lies within è of a one dimensional subspace, and so is totally bounded.
This gives us that fx0g [ fxpg1p=1 is relatively norm compact, and we are done.
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Let è Ù 0, and suppose x0 6= 0. Because x0 2 spfyãn : ã 2 ΓÒ n 2 Ng, there is
an l0 Ù 1Ûè and a triple (öjÒ ókÒ a) 2 S with k(I � Pöj Òók Òa)(x0)k Ú cÛl0. From the
definition of ûn and the fact that the f ãm are separating, we have from lines one and two
that ê(x0)(öjÒ ókÒ a) = 0 and ê(x0)

�
d(a)

�
= 2ë, for some ë Ù 0. Therefore, there is an

N such that p Ù N implies both ê(xp)(öjÒ ókÒ a) Ú ë2�j�k�l0�1 and ê(xp)
�
d(a)

� Ù ë.

From these inequalities, we have ûl0

�
(I � Pöj ÒókÒa)(xp)

� Ú 1Û2 for p Ù N, and so
k(I � Pöj ÒókÒa)(xp)k Ú 1Ûl0 Ú è for all p Ù N. This establishes that for p Ù N, we
have dist

�
xpÒPöj ÒókÒa(X)

� Ú è, and since Pöj Òók Òa(X) is one dimensional, this gives us that
fx0g [ fxpg1p=1 is totally bounded, and thus relatively norm compact. The result now
follows from Theorem 2.2.

Recall that X is said to be quasi-reflexive if X has finite codimension in XŁŁ under the
canonical embedding. The classical example of a non-reflexive, quasi-reflexive Banach
space is the James space. We have the following.

COROLLARY 3.3. Let X be a Ck-smooth, quasi-reflexive Banach space. Then X admits
Ck-smooth partitions of unity.

PROOF. Since closed subspaces of quasi-reflexive spaces are quasi-reflexive, and
separable, quasi-reflexive spaces have separable dual, we have that X quasi-reflexive
implies X Asplund. Further, X is quasi-reflexive iff XŁ is quasi-reflexive, and so by
Theorem 3.1 we are done.

REMARKS. 1. If XŁ is Asplund, then X has the RNP, and so for k Ù 1 the existence
of a Ck-Gâteaux smooth bump function on X implies that X is superreflexive [MPVZ].

2. The hypothesis that XŁ is Asplund was used only in establishing Lemma 3.2,
and for the existence of a linear injection T: X ! C0(Γ), for some Γ. By changing the
assumptions on X or XŁ and modifying the proof of Lemma 3.2, we can recover the
results of [GTWZ] and [M1].

Indeed, if X is Ck-smooth and weakly countably determined, then X is a weakly
countably determined Asplund space, hence it admits a linear injection T: X ! C0(Γ),
and the maps Rã: XŁ ! XŁ in Theorem 3.1 can then be chosen to be wŁ�wŁ-continuous.
Hence, for û 2 XŁŁ and ã 2 Γ, RŁ

ã(û) 2 X, and so if k0 is a wŁ-limit point of fkãng1n=1, we
have RŁ

ã(û)(kãn ) ! RŁ
ã(û)(k0), and Lemma 3.2 can be completed as before. This gives

the result in [GTWZ].
If X is Ck-smooth and XŁ is weakly compactly generated with K ² XŁ weakly compact

such that sp(K) = XŁ, then it admits a linear injection T: X ! C0(Γ), and it can be shown
(see [M1]) that the separating functionals, f ãj 2 õã(SXŁ) in Theorem 3.1, can be chosen
to lie in N(ã)õa(K), where N(ã) 2 R are such that N(ã)õa(K) ² K. It follows from this
that the functionals kãn from Lemma 3.2 can be chosen to lie in K, and hence kãn

w! k0,
for some k0 2 K, and Lemma 3.2 follows. This gives the result in [M1].
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