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SMOOTH PARTITIONS OF UNITY ON BANACH SPACES

R. FRY

ABSTRACT. Itisshown that if aBanach space X admitsa CX-smooth bump function,
and X* is Asplund, then X admits CK-smooth partitions of unity.

1. Introduction. The existence of C-smooth partitions of unity on Banach spaces
is important for the approximation of continuous maps by Ck-smooth functions [BF].
Recall that a Banach space X is said to admit C*-smooth partitions of unity, if for any
open cover {U, }ac Of X, there existsafamily, { fy }qei, Of real-valued, CK-smooth maps
such that:

(i) The sets, support(f,) = {x € X: f,(x) # 0}, are localy finite (each x € X hasa

neighbourhood intersecting only finitely many support (f,)),

(i) 0<fy <1lfordl o,and 3, o = 1,

(iii) For each o € I, we have support(f,) C U,.
Clearly, the existence of C*-smooth partitions of unity on X implies the existence of a
Ck-smooth, real-valued function with bounded, non-empty support (a Ck-smooth bump
function for short), and so the latter condition is a necessary one for X to admit such
smooth partitions. It is an open problem whether or not any Banach space which admits
a C*-smooth bump function admits C*-smooth partitions of unity. This problem has a
positive solution under various additional assumptions on X. For example, it is known
to be true for weakly countably determined X [GTWZ], and for X in which X* isweakly
compactly generated [M1]. Further recent results on smooth partitions of unity can be
found in [M2], [F], [V], and [DGZ2]. In this note we show that the above problem has
a positive solution for Banach spaces X for which X* is Asplund. This includes quasi-
reflexive spaces. We also indicate how slight modifications of our main construction
yields the results of [GTWZ] and [M1].

2. Notation. X shall denote a real Banach space, X* its dual, and X** its second
dual. Operationsinvolving the weak and weak star topologies will be prefixed by w and
w*, respectively. The closed linear span of aset Y C X is written sp(Y). The closed unit
ball of X is denoted By, the unit sphere S, and similar expressionsfor the dual spaces.
For aset I', the Banach space cy(I") is defined by

co(r) = {f: [ —R:Ve>0{ael:|f(a) >} isfinite}.
equipped with the supremum norm. X is said to be an Asplund space if every separable
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subspace has separable dual. X has the Radon-Nikodym Property (RNP), if for each
non-empty, bounded set A C X, and e > O, there exists A € X* and o € R such that
AN{x e X : A(X) > «a} is non-empty with diameter less than e. We note that X* has
the RNP iff X is Asplund (see, e.g., [P]). If X does not contain an isomorphic copy of
l1. wewrite l{ g X. Smoothnessis meant in the Fréchet sense, unless otherwise stated.

We call a Banach space Ck-smooth if it admits a Ck-smooth, real-valued function with
non-empty, bounded support.

A Banach space X is said to admit a separable projectional resolution of the identity
(SPRY) if for the limit ordinal ¢ = deng(X), there exist continuous linear projections,
{To}aer, Wwhere T = [Rg. 1], suchthat if R, = HTTH%

(i) TaTs = Thin(.8)

(i) (Tas1 — To)(X) isseparableforall o« € T
(iii) Foral x e Xande > 0, {a €T : [|Ry(X)|| > €} isfinite
(iv) Foralx e X, x € sp{Ru(X) : « < pu}

We shall require the following two fundamental results.

THEOREM 2.1[FG]. If Xisan Asplund space, then X* admitsa separableprojectional
resolution of the identity. Further, there are a set I' and a bounded, linear injection
T: X* — co(IN).

THEOREM 2.2 [T]. A Banach space X admits CX-smooth partitions of unity iff there
exist a set ' and a coordinatewise smooth homeomor phic embedding of X into co(I) .

3. Main Results.

THEOREM 3.1. Let X be a CX-smooth Banach space for which X* is Asplund. Then X
admits C*-smooth partitions of unity.

PrOOF. We shall construct the map required by Theorem 2.2. We follow the construc-
tion in [M1]. Since X admits a CX-smooth bump function, X is Asplund (see [DGZ1]),
and by Theorem 2.1 there exists a SPRI, {T, }aer, On X*. Wewrite o = T,41 — T, and
o* =T, — T Also, since X admits a CX-smooth bump function, by composing such
a function with suitable smooth bump functions in C*°(R, R), we can construct maps
én € CX(X. [0, 1]), such that for some constant ¢ € (0, 1), we have

_ [0 for|x|| <c/n
o) =11 for x| >1/n "

In asimilar fashion, we can define amap ¢ € CX(X, [0, 1]) with ¢ = 0 on X\By, and
¢ > 0inaneighbourhood of the origin.

Because 0,(X") is separable, the unit ball B, of ¢ (X**) is w*-metrizable and w*-
separable. Let {z;}72, be w*-dense in B,, and for each k, let By (7;) be a (relative)
w*-ball of radius 1/k about zZ. Using the w*-density of Bx in B, ([H], Lemma 16F),
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chooseyy, € Bx M By (z). Thenwe have sp{y?, : n.k € N}m D % (X™). Now, from

the properties of aSPRI, wehavethat for any x** € X**,x™* € sp{o%(x*) : a € I'}"f, and
so in particular, for x € X, x € sp{o%(X*) : a € F}W Csplysraelnke N}m.
Sincethey?, and xarein X, and w*-continuousfunctionalson X**, arew-continuouson X,
we have, for every x € X, x € sp{y%, i a € T.n.k e N} =sp{y%, i@ € T.n.k € N},
the last equality following from Mazur’'s Theorem. To ease notation, we relabel the
countable indices of {yg, }n-;, and write simply {yq }2;, which shall be used in the
sequel.

LEMMA 3.2. Let X satisfy the hypothesis of Theorem 3.1. Then, with notation as
above, we have {||R;(X)|| }«er € co(I"). Further, for eachx € X and e > 0, thereare a
finiteset K C I', and a neighbourhood N of x with ||R(y)|| < e for ally € Nand o ¢ K.

ProOOF. We claim that for each x € X, and e > O, thereisafiniteset K C I', so
that |R;(X)|| < e for al o ¢ K. If not, then there existsan x € X, ane > 0, and a
sequence o, € I with ||R}, (X)|| > 2e. Hence, there are z,,, € Bx- with (R}, X)(z,) =
(Rop)(Zen)(X) > €. Set Ky, = (Ru,)(Zey) € By, and Z = $p{U R, (X)}. Now Z is a
separable spacewith the RNP, which is Asplund since X* is assumed Asplund. It follows
from Theorem A [EW] that (Bz,w) is Polish. Since I; g Z, {ky, }2, € Bz contains

aw-Cauchy subsequence [R], which we also write as {k,, }22,. Thus, there exists a ko
with Ky, 2 k. Because Ka, € Ry, (X*), by the properties of a SPRI, for all « € T and
¢ € X7, limy RY(0)(Ke,) = 0. Thus, 0 = limn R, (6)(Ke,,) = R3(¢)(ko). As noted above,
foreachx € X, x € sp{Ry(X) : @ € F}W, and therefore kg = 0. But k,, (X) > € for all
n, and so kg(X) > €. This contradiction establishes the claim, and hence statement one
of the lemma. If the second statement is not true, then therearean xp € Xande > 0
so that for K = {a € T : ||R:(x0)|| > €/2} thereis an x with ||x — Xo|| < €/2, and
a ¢ K with ||R,(X)|| > 2. Choose z € By. such that R, (X)(2) = (R.)(2)(X) > ¢, and
setting k = (R,)(2), we then have k(x) — k(xo) > ¢ —¢/2 = ¢/2. On the other hand,
k(x — X0) < |IK]| [[x — Xo|| < €/2, acontradiction. "

Next, for each «, since 0,(X) is separable, choose { f*}% C 0a(Sx-) separating
on ¢} (X**), and set fjo‘ = Mﬁ Note that since f* = a4(X), for some X" € Sk,
we have that, 17(X) = 06(¢)¥) = o3()§) < [l %] < [lo509]]- It follows
that f*(x) < [[R,(¥)|, and so 3% 275%(x) < [[R;(X)||. Also, from Theorem 2.1, let
T: X** — co(I"1) be acontinuous, linear injection, for some set I';.

Next we enumerate @ = {r;};2), U2, Q" = {p;} 7, and U2 N" = {;}:2. Then for
[ (ST lim)s Vk = (Niys - -+ M), anda = (o, ..., am) € T, wedefineP,, ,, atobe
a projection onto the one dimensional subspace sp{¥, i Yy }. Let F bethe collection
of finite subsets of I', and if a = (g, ..., oam) € '™, we define d(a) to be the distinct

elementsof the set {1, . . . . om}. We also defineS = {(pj. vk, @) € Q™ x N x M},

Let | bethe digoint unionof S x N, F, N, acopy N’ of N, and I';. We define a map
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¢:X— co(l) by

27]7k7| ¢| (Pﬂj-l/k~a(X)) Hozed(a) {23?:1 27m< fm(y(X))z}
0= (o v @, 1) €S XN

(0) = | Maer | Sra 2 "(F50)*Je =K € F

27"¢(x/n) t=neN

2—n’¢n/(x) v=n' c N/

T)(O) t=7v€erl.

We now show that line one maps into co(l). Let ¢ > 0, and fix X, € X. From
Lemma 3.2 we have that {||R%(X0)|| }eer € Co(I), and therefore there are only finitely
many a € I, say N, for which |R;(xo)|| > 1. Letting M = mag<{||R;(xo)H}, we then

ac

haveforae ™

11 {S2(F0a)) < I IR0 < M,

aed(a) "mFl aed(a)

Hence, if max{j.k,1} > M /¢, then line one maps into co(l) since ¢ € [0, 1]. If
max{j,k,1} <M?N /¢, weproceed asfollows. If d(@) = {1, ....am} € FMissuchthat
IR, 00)| < /€/MN for some jo, then

5= g-m foxo))?) < R (%) |2 < €.
%1}(3){”;1 (o)} 1; IR 00)
aed(a)

Again, since{||R(Xo)|| }aer € co(I"), thereisafinitesetK € F with||R:(xo)|| > /¢ /MN
only for o € K. It follows that line one in the definition of ¢ mapsinto co(l). That the
other lines in the definition of ¢ map into co(l) follows similarly. Hence, ¢ maps into
co(l). That ¢ maps continuously into co(l) is established by noting that the lines defining
¢ are equicontinuous using the second statement in Lemma 3.2. Also, ¢ isinjective since
T is, and is coordinatewise Ck-smooth since each line in the definition of ¢ is CX-smooth.

Finally, we show that ¢~ is continuous using the method of [GTWZ]. Because( is
injective and continuous, we will establish the continuity of ¢~* if we can show that
((%p) — (o) implies Xy — Xo for {Xo} U {Xp}32; C X. Thiswill be proven by showing
that {(Xp) — ((%o) impliesthat {Xo} U {Xp}2; is relatively norm compact. The fact that
{Xo} U {Xp}p2; is bounded follows from line three in the definition of ¢. Indeed, choose
n € N sothat {(xo/n) > 0. Then ¢(x,)(n) — ¢(Xo)(n) # 0, and the definition of & now
implies that for only finitely many p do we have {(x,)(n) = 0, the remaining X, lying in
nBx. We next show that {xo} U {X,} 2 is totally bounded.

Let e > 0, and first suppose Xo = 0. Choose nj > ¢/e. Then line four implies that
¢ény (%) — 0, and hence there exists an N with p > N implying [|%,|| < e. Therefore, the
tail of {xp}p2; lies within e of a one dimensional subspace, and so is totally bounded.
Thisgivesusthat {Xo} U {Xp}32; isrelatively norm compact, and we are done.
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Let ¢ > 0O, and suppose xo # 0. Because Xo € sp{y%: a € I',n € N}, there is
anlo > 1/e and atriple (pj.v.@) € S with ||[(I — P, ., a)(X0)|| < ¢/lo. From the
definition of ¢, and the fact that the f& are separating, we have from lines one and two
that ((xo)(pj. vk @) = 0 and ((xo)(d(a)) = 2y, for some > 0. Therefore, there is an
N such that p > N implies both ¢(X,)(gj. i @) < n277%0~1 and ((x,)(d(@)) > 1.
From these inequalities, we have ¢|o((l — Pﬂjﬂ,/k_a)(xp)) < 1/2for p > N, and so
[0 = Py ana)Op)|| < 1/l < € for @l p > N. This establishes that for p > N, we
have dist(xp, P 5,/k_a(X)) <, andsince P, ,, a(X) is one dimensional, this gives us that
{Xo} U {Xp}p2; is totally bounded, and thus relatively norm compact. The result now
follows from Theorem 2.2. ]

Recall that X is said to be quasi-reflexiveif X hasfinite codimensionin X** under the
canonical embedding. The classical example of a non-reflexive, quasi-reflexive Banach
spaceis the James space. We have the following.

COROLLARY 3.3. Let X bea Ck-smooth, quasi-reflexive Banach space. Then X admits
Ck-smooth partitions of unity.

PROOF. Since closed subspaces of quasi-reflexive spaces are quasi-reflexive, and
separable, quasi-reflexive spaces have separable dual, we have that X quasi-reflexive
implies X Asplund. Further, X is quasi-reflexive iff X* is quasi-reflexive, and so by
Theorem 3.1 we are done. "

RemMARKS. 1. If X* is Asplund, then X has the RNP, and so for k > 1 the existence
of a C*-Gateaux smooth bump function on X implies that X is superreflexive [MPVZ].

2. The hypothesis that X* is Asplund was used only in establishing Lemma 3.2,
and for the existence of alinear injection T: X — Co(I), for some I'. By changing the
assumptions on X or X* and modifying the proof of Lemma 3.2, we can recover the
results of [GTWZ] and [M1].

Indeed, if X is Ck-smooth and weakly countably determined, then X is a weakly
countably determined Asplund space, hence it admits a linear injection T: X — Co(I"),
andthe mapsR,: X* — X* in Theorem 3.1 can then be chosento be w* — w*-continuous.
Hence, for ¢ € X* and o € ', R(¢) € X, and soif kg isaw*-limit point of {ky, }22;, we
have R: (¢)(Kx,) — R (¢)(ko), and Lemma 3.2 can be completed as before. This gives
theresult in [GTWZ].

If X is CK-smooth and X* isweakly compactly generated with K C X* weakly compact
such that sp(K) = X*, thenit admitsalinear injection T: X — Co(I"), and it can be shown
(see [M1]) that the separating functionals, f* € 04 (Sx-) in Theorem 3.1, can be chosen
to liein N(a)oa(K), where N(o) € R are such that N(a)oa(K) C K. It follows from this
that the functionals k,,, from Lemma 3.2 can be chosento lie in K, and hencek,, A ko,
for somekyp € K, and Lemma 3.2 follows. This givesthe result in [M1].
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