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Abstract

Metric graph properties lie in the heart of the analysis of complex networks, while in this

paper we study their convexity through mathematical definition of a convex subgraph. A

subgraph is convex if every geodesic path between the nodes of the subgraph lies entirely

within the subgraph. According to our perception of convexity, convex network is such in

which every connected subset of nodes induces a convex subgraph. We show that convexity is

an inherent property of many networks that is not present in a random graph. Most convex

are spatial infrastructure networks and social collaboration graphs due to their tree-like or

clique-like structure, whereas the food web is the only network studied that is truly non-convex.

Core–periphery networks are regionally convex as they can be divided into a non-convex core

surrounded by a convex periphery. Random graphs, however, are only locally convex meaning

that any connected subgraph of size smaller than the average geodesic distance between the

nodes is almost certainly convex. We present different measures of network convexity and

discuss its applications in the study of networks.

Keywords: network convexity, convex subsets, convex subgraphs, core–periphery structure

1 Introduction

Metric graph theory is a study of geometric properties of graphs based on a

notion of the shortest or geodesic path between the nodes defined as the path

through the smallest number of edges (Bandelt & Chepoi, 2008). Metric graph

properties have proved very useful in the study of complex networks in the

past (Milgram, 1967; Freeman, 1977; Watts & Strogatz, 1998). Independently of

these efforts, metric graph theorists have been interested in understanding convexity

in a given graph (Harary & Nieminen, 1981; Farber & Jamison, 1986; Van de Vel,

1993; Pelayo, 2013). Consider a simple connected graph and a subgraph on some

subset of nodes S . The subgraph is induced if all edges between the nodes in S in the

graph are also included in the subgraph. Next, the subgraph is said to be isometric if

at least one geodesic path joining each two nodes in S is entirely included within S .

Finally, the subgraph is a convex subgraph if all geodesic paths between the nodes in

S are entirely included within S . For instance, every complete subgraph or a clique

is obviously a convex subgraph. Notice that any convex subgraph is also isometric,

while any isometric subgraph must necessarily be induced.
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Fig. 1. Standard definitions of convexity for different mathematical objects.

(Left) Real-valued function f(x) is convex if the line segment between any two

points (x1, f(x1)) and (x2, f(x2)) is above or on the graph of f, ∀t ∈ [0, 1]: tf(x1) +

(1 − t)f(x2) � f(tx1 + (1 − t)x2). (Middle) Set S ⊂ �2 is convex if the line segment

between any two points x1, x2 ∈ S lies entirely within S , ∀t ∈ [0, 1]: tx1+(1−t)x2 ∈ S .

(Right) Connected subgraph induced by a subset of nodes S is convex if any geodesic

path between two nodes in S goes exclusively through S (diamonds). Otherwise, the

subgraph is non-convex (squares). (Color online)

Fig. 2. Pairs of different graphs with the same or similar number of induced

subgraphs, but varying numbers of convex (diamonds) and non-convex (squares)

subgraphs. For instance, all connected triples of nodes are convex subgraphs in the

first graph of each pair. (Color online)

For better understanding, Figure 1 compares standard definitions of convexity for

different mathematical objects. In all cases, convexity of a mathematical object is

defined through the inclusion of the shortest or geodesic paths between its parts.

Convex subgraphs provide an insight into the metric structure of graphs as

building blocks for embedding them in simple metric spaces (Van de Vel, 1993;

Bandelt & Chepoi, 2008; Pelayo, 2013). See the two graphs shown in the left

side of Figure 2. The first one is a star graph representing hub-and-spokes ar-

rangement found in airline transportation networks (Barthelemy, 2011) and the

Internet (Guimerà et al., 2007). The second one is a bipartite graph suitable for

modeling two-mode affiliation networks (Davis et al., 1941) or word adjacency

networks (Milo et al., 2004). From the perspective of either graph theory or network

science, these two graphs would be deemed different. However, they both contain

no triangles and 10 or 9 connected triples of nodes, which is quite similar. On the

other hand, all connected triples of nodes in the first graph are convex subgraphs

(diamonds), whereas none is convex in the second graph (squares). In this way,

convex subgraphs are very sensitive to how they are intertwined with the rest of the

graph.

One probably noticed that the two graphs differ in the number of nodes and

edges. The right side of Figure 2, therefore, shows two additional graphs that are
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identical up to 3-node subgraphs. Yet, the graphs are obviously different. Looking at

their convex subgraphs again nicely discriminates between the two as all subgraphs

in the first graph are convex.

Convex subgraphs explore convexity in graphs only locally. Define the convex

hull H(S) of a subset of nodes S to be the smallest convex subgraph including

S (Harary & Nieminen, 1981). Since the intersection of convex subgraphs is also a

convex subgraph, H(S) is uniquely defined. Now the hull number of a graph is the

size of the smallest S whose H(S) is the entire graph (Everett & Seidman, 1985).

This number can be interpreted as a convexity-based measure exploring the global

macroscopic structure of a graph. For instance, the hull numbers of the two graphs

in the left side of Figure 2 are 5 and 2, while computing the hull number of a general

graph is NP-hard (Dourado et al., 2009).

The concept of convexity is by no means novel to the study of networks. Social

networks literature defines a clique to be a maximal group of nodes directly connected

by an edge. As such definition might be too crude for larger groups, a k-clique is

defined as a group of nodes at distance at most k (Luce, 1950). For k = 1, one

recovers the original definition of a clique. Finally, a k-clan further restricts that

all geodesic paths must lie within the group (Wasserman & Faust, 1994), which

is precisely our understanding of convexity. Still, there is no restriction on the

maximum distance k in the definition of a convex subgraph. The nodes can be at

any distance as long as the subgraph is convex.

The analysis of small subgraphs or fragments (Batagelj, 1988; Estrada & Knight,

2015) in empirical networks is else known under different terms. Motifs refer to

not necessarily induced subgraphs whose frequency is greater than in an appro-

priate random graph model (Milo et al., 2002). Graphlets, however, are induced

subgraphs that represent specific local patterns found in biological and other

networks (Pržulj et al., 2004). Small subgraphs have proven extremely useful in

network comparison (Milo et al., 2004; Pržulj, 2007) and, recently, for uncovering

higher order connectivity in networks (Xu et al., 2016; Benson et al., 2016). Note

that some of the subgraphs are convex by construction or very (un)likely to be

convex under any random graph model. In this sense, the above work already

provides a glimpse of convexity in complex networks.

In this paper, we study convexity in more general terms by asking “What is

convexity in complex networks?”. (Similarly as a subset of a plane can be convex

or not, while a plane is always convex, a subgraph can be convex or not, whereas

a connected graph would always be convex. Thus, asking “What is convexity of

complex networks?” would make little sense.) We try to answer this question by

expanding randomly grown subsets of nodes to convex subgraphs and observing

their growth, and by comparing the frequency of small convex subgraphs to non-

convex subgraphs. This allows us to study convexity from a global macroscopic

perspective while also locally.

We demonstrate several distinct forms of convexity in graphs and networks.

Networks characterized by a tree-like or clique-like structure are globally convex

meaning that any connected subset of nodes will likely induce a convex subgraph.

This is in contrast with random graphs that are merely locally convex meaning that

only subgraphs of size smaller than the average geodesic distance between the nodes

are convex. Core–periphery networks are found to be regionally convex as they can
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be divided into a non-convex core surrounded by a convex periphery. Convexity

is thus an inherent structural property of many networks that is not present in a

random graph. It can be seen as an indication of uniqueness of geodesic paths in

a network, which in fact unifies the structure of tree-like and clique-like networks.

This property is neither captured by standard network measures nor is convexity

reproduced by standard network models. We therefore propose different measures

of convexity and argue for its use in the future studies of networks.

The rest of the paper is structured as follows. In Section 2, we first study convexity

from a global perspective by analyzing the expansion of convex subsets of nodes.

In Section 3, we support our findings by analyzing convexity also locally through

the frequency of small convex subgraphs. Section 4 discusses various forms of

convexity observed in graphs and networks, and proposes different measures of

convexity. Section 5 concludes the paper with the discussion of network convexity

and prominent directions for future work.

2 Expansion of convex subsets of nodes

We study convexity in different regular and random graphs, synthetic networks, and

nine empirical networks from various domains. These represent power supply lines of

the western US power grid (Watts & Strogatz, 1998), highways between European

cities part of the E-road network in 2010 (Šubelj & Bajec, 2011), coauthorships

between network scientists parsed from the bibliographies of two review papers in

2006 (Newman, 2006), Internet map at the level of autonomous systems reconstructed

from the University of Oregon Route Views Project in 2000 (Leskovec et al., 2007),

protein–protein interactions of the nematode Caenorhabditis elegans collected from

the BioGRID repository in 2016 (Stark et al., 2006), connections between US air-

ports compiled from the Bureau of Transportation Statistics data in 2010 (Kunegis,

2013), citations between scientometrics papers published in Journal of Informetrics,

Scientometrics or JASIST between 2009 and 2013 as in the Web of Science

database (Šubelj et al., 2016), hyperlinks between weblogs on the US presidential

election of 2004 (Adamic & Glance, 2005), and predator–prey relationships between

the species of Little Rock Lake (Williams & Martinez, 2000).

The networks are listed in Table 1. Although some of the networks are directed, all

are represented with simple undirected graphs and reduced to the largest connected

component. Table 1 also shows the basic statistics of the networks including the

number of nodes n and edges m, the average node degree 〈k〉, 〈k〉 = 2m/n, the

average node clustering coefficient 〈C〉 (Watts & Strogatz, 1998) with the clustering

coefficient of node i defined as Ci = 2ti
ki(ki−1)

, where ki is the degree and ti is the

number of triangles including node i, and the average geodesic distance between

the nodes 〈�〉, 〈�〉 = 1
n

∑
i �i, where �i = 1

n−1

∑
j �=i dij and dij is the geodesic distance

between the nodes i and j defined as the number of edges in the geodesic path. The

networks are ordered roughly by decreasing average geodesic distance 〈�〉, which

will become clear later on.

Given a particular network or graph, we define a subset of nodes S to be a convex

subset when the subgraph induced by S is a convex subgraph. In what follows, we

study convexity by analyzing the growth of convex subsets of nodes and observing

how fast they expand. Recall the hull number defined as the size of the smallest
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Table 1. Basic statistics of empirical networks studied in the paper.

Network n m 〈k〉 〈C〉 〈�〉
Western US power grid 4941 6594 2.67 0.08 18.99

European highways 1039 1305 2.51 0.02 18.40

Networks coauthorships 379 914 4.82 0.74 6.04

Oregon Internet map 767 1734 4.52 0.29 3.03

Caenorhabditis elegans 3747 7762 4.14 0.06 4.32

US airports connections 1572 17214 21.90 0.50 3.12

Scientometrics citations 1878 5412 5.76 0.13 5.52

US election weblogs 1222 16714 27.36 0.32 2.74

Little Rock food web 183 2434 26.60 0.32 2.15

These show the number of nodes n and edges m, the average node degree 〈k〉 and

clustering coefficient 〈C〉, and the average geodesic distance between the nodes 〈�〉.

subset S whose convex hull H(S) spans the entire network (Everett & Seidman,

1985). Since H(S) is the smallest convex subgraph including S , the hull number

measures how quickly convex subsets can grow. We here take the opposite stance and

analyze how slowly randomly grown convex subsets expand. We use an algorithm

for expansion of convex subsets, which we present next.

We start by initializing a subset S with a randomly selected seed node. We then

grow S one node at a time and observe the evolution of its size. To ensure convexity,

S is expanded to the nodes of its convex hull H(S) on each step. Every S realized

by the algorithm is thus a convex subset. Newly added nodes are selected among

the neighbours of nodes in S by following a random edge leading outside of S . In

other words, new nodes are selected with the probability proportional to the number

of neighbours they have in S . This ensures that S is a slowly growing connected

subset of nodes. An alternative approach would be to select new nodes uniformly

at random from the neighbouring nodes.

Let Γi denote the set of neighbours of node i. The complete algorithm for convex

subset expansion is given below.

1. Select random seed node i and set S = { i }.
2. Until S contains all nodes repeat the following:

(a) Select node i /∈ S with probability ∝ |Γi ∩ S |.
(b) Expand S to the nodes of H(S ∪ { i }).

Before looking at the results, it is instructive to consider the evolution of S in the

first few steps of the algorithm. Initially, S contains a single node i, S = { i }, which

is a convex subset. Next, one of its neighbours j is added, S = { i, j }, which is still

convex. On the next step, a neighbour k of say j is added to S , S = { i, j, k }. If k

is also a neighbour of i, S is a convex subset. This is expected in a network that is

locally clique-like indicated by high clustering coefficient 〈C〉 > 0.5. Similarly, in a

(locally) tree-like network with zero clustering coefficient 〈C〉 ≈ 0, every connected

triple of nodes including S is expected to be convex. In any other case, S would

have to be expanded with all common neighbours of i and k, which may demand

additional nodes and so on, possibly resulting in an abrupt growth of S . Therefore,

in the early steps of the algorithm, the expansion of convex subsets quantifies the
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Fig. 3. Expansion of convex subsets of nodes in a randomly grown tree (diamonds),

triangular lattice of the same size (squares), and the corresponding random graph

(ellipses). (Top) The fractions of nodes s(t) in the growing convex subsets at different

steps t of our algorithm. The subsets are grown from a seed node selected uniformly

at random and the most central node with the smallest geodesic distance � to

other nodes. The markers are estimates of the mean over 100 runs, while error bars

show the 99% confidence intervals. (Bottom) Highlighted subgraphs show particular

realizations of convex subsets grown from the most central node for 15 steps as

in the plots above. The labels of the nodes indicate the step t in which they were

included in the convex subset. (Color online)

presence of locally tree-like or clique-like structure in a network. In the later steps,

the algorithm explores also higher order connectivity, whether a network is tree-like

or clique-like as a whole. In the extreme case of a tree or a complete graph, every

connected subset of nodes induces either a tree or a clique, which are both convex

subgraphs.

Figure 3 shows the evolution of S in a randomly grown tree on 169 nodes,

triangular lattice with the side of 13 nodes and a random graph (Erdős & Rényi,

1959) with 169 nodes, and the same number of edges as the lattice. The plots

show the fraction of nodes s(t) included in the subset S at different steps t of the

algorithm, t � 0. Note that t is the number of expansion steps (2. step), disregarding

the initialization step (1. step). Hence, s(0) = 1/n, s(1) = 2/n, and s(2) � 3/n. In

general, s(t) � (t + 1)/n.

As anticipated above, convex subsets grow one node at a time in a tree graph

(diamonds in Figure 3). Although somewhat counterintuitive, the same slow growth

also occurs in a complete graph (results not shown). Relatively modest growth

is observed in a triangular lattice due to its nearly clique-like structure (squares

in Figure 3). However, in a random graph (ellipses in Figure 3), convex subsets grow

slowly only in the first few steps, due to its locally tree-like structure, upon which

they expand rapidly to include all the nodes.
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5 10 15
0

0.2

0.4

0.6

0.8

1
Western US power grid

%
 n

od
es

 s
(t

)

# steps t
5 10 15

0

0.2

0.4

0.6

0.8

1
European highways

%
 n

od
es

 s
(t

)

# steps t

5 10 15
0

0.2

0.4

0.6

0.8

1
US airports connections

%
 n

od
es

 s
(t

)

# steps t

 

 

network
rewired
random

5 10 15
0

0.2

0.4

0.6

0.8

1
Networks coauthorships

%
 n

od
es

 s
(t

)

# steps t

 

 

network
rewired
random

5 10 15
0

0.2

0.4

0.6

0.8

1
Scientometrics citations

%
 n

od
es

 s
(t

)

# steps t
5 10 15

0

0.2

0.4

0.6

0.8

1
US election weblogs

%
 n

od
es

 s
(t

)

# steps t

5 10 15
0

0.2

0.4

0.6

0.8

1
Caenorhabditis elegans

%
 n

od
es

 s
(t

)

# steps t

5 10 15
0

0.2

0.4

0.6

0.8

1
Little Rock food web

%
 n

od
es

 s
(t

)

# steps t

 

 

network
rewired
random

5 10 15
0

0.2

0.4

0.6

0.8

1
Oregon Internet map

%
 n

od
es

 s
(t

)

# steps t

Fig. 4. Expansion of convex subsets of nodes in empirical networks (diamonds),

randomly rewired networks (squares), and the corresponding Erdős–Rényi random

graphs (ellipses). Plots show the fractions of nodes s(t) in the growing convex subsets

at different steps t of our algorithm. The markers are estimates of the mean over

100 runs, while error bars show the 99% confidence intervals. (Color online)

Figure 4 shows the evolution of S in empirical networks introduced in Table 1,

random graphs with the same number of nodes n and edges m (Erdős & Rényi,

1959) and random graphs with the same node degree sequence k1, k2, . . . , kn. These

are obtained by randomly rewiring the original networks using 10m steps of degree

preserving randomization (Maslov & Sneppen, 2002). For relevant comparison, we

ensure that all realizations of random graphs are simple and connected.

Notice substantial differences between the networks (diamonds in Figure 4).

Convex subsets grow almost one node at a time in the western US power grid and

European highways network. These are both spatial infrastructure networks that

are locally tree-like with very low clustering coefficient 〈C〉 ≈ 0. The same slow

growth is also observed in the coauthorship graph that is locally clique-like with

〈C〉 = 0.74. Note that the lack of any sudden growth indicates that the structure

of these networks is throughout tree-like or clique-like. In other networks, convex

subsets expand relatively quickly in the early steps, whereas the growth settles after

a certain fraction of nodes has been included. This occurs after including 42% of

the nodes in C. elegans protein network, while over 83% in the weblogs graph.

Finally, the growth in the food web is almost instantaneous, where convex subsets

expand by entire trophic levels and thus cover the network in just a couple of steps.
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Erdős–Rényi random graphs fail to reproduce the trends observed in empirical

networks (ellipses in Figure 4). In the top row of Figure 4, random graphs match

the growth in networks only in the first few steps, due to reasons explained

above, whereupon the convex subsets expand quite rapidly. The difference is most

pronounced in the case of the coauthorship graph. We consider this an important

finding as it shows that convexity is an inherent property of some networks. In

contrast, in the bottom rows of Figure 4, convex subsets initially grow faster in

networks than in random graphs, while they settle already after including some

finite fraction of nodes. Notice, however, that the expansion always occurs at about

the same number of steps, which is best observed in the citation network.

Randomly rewired networks show similar trends as random graphs (squares

in Figure 4), yet the convex subsets settle much sooner. In a particular case of C.

elegans protein network, the growth of convex subsets seems to be entirely explained

by node degrees.

According to our perception of convexity, a convex network or graph is such in

which every connected subset of nodes is convex. Convexity is, therefore, associated

with extremely slow growth of convex subsets as in the spatial infrastructure

networks and social coauthorship graph, whereas non-convexity can be identified by

instantaneous growth as in the food web. By measuring this growth, one can analyze

convexity quantitatively. We return to this in Section 4, while next, in Section 2.1,

we first show that the expansion of convex subsets in networks occurs when the

number of steps of our algorithm exceeds the average geodesic distance between the

nodes and, in Section 2.2, that the growth settles when the convex subsets extend to

the network core.

2.1 Size of convex subsets of nodes

Expansion of convex subsets in empirical networks and random graphs occurs at

about the same number of steps of our algorithm (see bottom row of Figure 4).

Below, we show that this happens when the number of steps t of the algorithm

exceeds the average geodesic distance 〈�〉 in a network, t > 〈�〉, or an appropriate

estimate for a regular or random graph.

Top row of Figure 5 shows the evolution of convex subsets S in rectangular

lattices with the side of 5 and 10 nodes (squares), Erdős–Rényi random graphs with

the number of nodes n equal to 1, 000 and 2, 500, and the average node degree

〈k〉 equal to 12.5 and 5, respectively (ellipses), and two empirical networks with

relatively different average geodesic distance 〈�〉 (diamonds). These pairs of graphs

and networks were specifically selected since they show distinct trends with the

expansion occurring at different number of steps t.

The middle row of Figure 5 shows the evolution of S with the steps t rescaled

by the average geodesic distance between the nodes. We use the empirical value

〈�〉 for networks, and the analytical estimates
√
n for lattices and ln n/ln 〈k〉 for

random graphs (Newman, 2010). Notice that the expansion of convex subsets in

graphs and networks occurs when the rescaled number of steps t ln 〈k〉/ln n or t/〈�〉,
respectively, becomes larger than one. There is a sudden transition in random graphs

at t = ln n/ln 〈k〉, while the growth is much more gradual in networks and settles

when 〈�〉 < t < 2〈�〉. Similar trend is observed also in rectangular lattices. In what
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Fig. 5. Expansion of convex subsets of nodes in rectangular lattices with different

number of nodes n (squares), Erdős–Rényi random graphs with different n but the

same number of edges m (ellipses), and empirical networks with different average

geodesic distance 〈�〉 (diamonds). (Top) The fractions of nodes s(t) in the growing

convex subsets at different steps t of our algorithm. (Middle) The graphs of s(t) with

the steps t rescaled by the average geodesic distance between the nodes. (Bottom) The

growth of the diameter D(t) of convex subgraphs at different steps t shown using

the rescaled variables as above. The markers are estimates of the mean over 100

runs, while error bars show the 99% confidence intervals. (Color online)

follows, we give a probabilistic argument for this behaviour relevant for networks

and graphs, while we further formalize the results for random graphs in Appendix 5.

Consider a pair of nodes at the maximum geodesic distance or diameter in the

subgraph induced by S . Let D(t) be the diameter of the subgraph at step t and

let d(t) be the geodesic distance between the mentioned nodes in the complete

network or graph that is internally disjoint from S . Note that S is a convex subset

only if d(t) > D(t). For d(t) � D(t), not all geodesic paths between the mentioned

nodes are included in the subgraph and the expansion of S occurs. If S is small

enough, then the average geodesic distance 〈�〉 in the network is almost identical

as in the remaining network obtained after removing all the nodes in S but the

mentioned ones. Now, assume that D(t) � 〈�〉. Since the mentioned nodes can

be considered arbitrary in the remaining network, simply by the properties of an

average P(d(t) � D(t)) > 0.5. Hence, when the diameter of the subgraph D(t)

exceeds the average geodesic distance 〈�〉 in a network or an appropriate estimate
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for a graph, there is a significant probability that S is not a convex subset and that

the expansion of S will occur.

Bottom row of Figure 5 shows the evolution of subgraph diameter D(t). Due to

small diameter of graphs and networks considered, D(t) initially grows linearly with

the number of steps t. In the case of rectangular lattices, every convex subset S

induces a rectangular sublattice with the side of the sublattice increased by one on

each step t. It is thus easy to see that D(t) = t. In networks and random graphs,

D(t) ≈ t as long as the number of steps t is below the average geodesic distance

〈�〉 in a network or ln n/ln 〈k〉 in a random graph. However, when t � 〈�〉 or

t � ln n/ln 〈k〉, also D(t) � 〈�〉 or D(t) � ln n/ln 〈k〉, and by the above argument the

expansion of S is expected to occur.

Regardless of this equivalence, the expansion of convex subsets in networks and

random graphs is still notably different (see middle row of Figure 5). There is a

sudden growth in random graphs at t = ln n/ln 〈k〉, whereas every connected subset

with up to ln n/ln 〈k〉 nodes is almost certainly convex (see derivation in Appendix 5).

We refer to this as local convexity. On the other hand, networks in Figure 5 are

not locally convex with the expansion starting already when t < 〈�〉. Furthermore,

in Section 3, we show that even the most convex infrastructure networks and

coauthorship graph from the beginning of Section 2 do not match the local convexity

of random graphs.

2.2 Non-convex core and convex periphery

Expansion of convex subsets in empirical networks settles after including a certain

fraction of nodes (see bottom rows of Figure 4). Although every run of our algorithm

is of course different, convex subsets actually converge to the same subsets of nodes

in these networks. More precisely, for sufficient number of runs of the algorithm,

each node is included in either more than 90%–95% or less than 10%–15% of

the grown convex subsets, with no node in between. Below, we analyze the convex

subsets grown for 15 steps as in Figures 3–5 and show that these are in fact the

cores of the networks.

Core–periphery structure refers to a natural division of many networks into a

densely connected core surrounded by a sparse disconnected periphery

(Borgatti & Everett, 2000). There exist different interpretations of core–periphery

structure (Holme, 2005) including those based on the k-core decomposition (Seidman,

1983), blockmodeling (Doreian et al., 2005), stochastic block models (Zhang et al.,

2015), conductance cuts (Leskovec et al., 2009), overlapping communities

(Yang & Leskovec, 2012), and others (Rombach et al., 2014). Formally, core–

periphery structure can be defined by requiring that the probability of connection

within the core is larger than between the core and the periphery, which is further

larger than within the periphery. For the division into core and periphery inferred

from the grown convex subsets in the Internet map and airline transportation

network in Figure 6, these probabilities are 36.8‰, 6.5‰, 0.9‰ and 40.4‰, 2.2‰,

0.5‰, respectively.

Hereafter, we refer to the nodes included in at least 90% of the grown convex

subsets as the convexity core or c-core for short and to the remaining nodes as the

periphery. Top row of Figure 7 shows different distributions separately for the nodes
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Fig. 6. Division of (Left) the Internet map and (Right) airline transportation network

into core (diamonds) and periphery (squares). The cores are convex subsets grown

for 15 steps of our algorithm. Network layouts were computed with Large Graph

Layout (Adai et al., 2004). (Color online)

in the c-core (diamonds) and the periphery (squares). These are the distributions of

node degree k and the average geodesic distance to other nodes �, �i = 1
n−1

∑
j �=i dij ,

for C. elegans protein network, and the distribution of corrected node clustering

coefficient Cμ (Batagelj, 2016), where C
μ
i = 2ti

kiμ
and μ is the maximum number of

triangles a single edge belongs to, for airline transportation network due to low

clustering of the former (see Table 1). Notice that the nodes in the c-core have

higher degrees and also clustering coefficient than peripheral nodes, while they also

occupy a more central position in the network with lower geodesic distances to

other nodes. Besides, network degree distribution seems to be entirely governed by

the c-core, whereas the nodes in the periphery follow a different seemingly scale-free

distribution. Although interesting on its own, we do not investigate this further here.

Core–periphery division identified by our algorithm is compared against the k-core

decomposition (Seidman, 1983) that gained much attention recently (Baxter et al.,

2015; Yuan et al., 2016; Hébert-Dufresne et al., 2016). A k-core is a maximal subset

of nodes in which every node is connected to at least k others. It can be identified

by iteratively pruning the nodes with degree less than k until no such node

remains (Batagelj & Zaveršnik, 2011). Since every k-core is a subset of a (k−1)-core

and so on, k-cores form a nested decomposition of a network, with 1-core being the

set of all nodes in a connected network. Nodes in a k-core that are not part of a

(k + 1)-core are called a k-shell. Note that k-cores can be disconnected, which is not

the case for the networks below.

Bottom row of Figure 7 shows the fraction of nodes in the intersection of c-core

and k-core for different k relative to the number of nodes in one subset or the other.

In the case of C. elegans protein network, the c-core is almost entirely included

within the 2-core and contains 88% of the nodes of the 2-core and 95% of the

nodes of the 3-core. In airline transportation network, the c-core best matches the

4-core and contains 90% of its nodes, while it also contains nodes from the 3-shell

and 2-shell. On the other hand, the c-core of the Internet map shows low similarity

to any k-core. Core–periphery structure identified by our algorithm thus differs from

the k-core decomposition. According to our knowledge, this is the first study of

the core–periphery structure based on the inclusion of geodesic paths, whereas the
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Fig. 7. Analysis of the core–periphery structure identified by our algorithm in

empirical networks. (Top) The distributions of node degree k and geodesic distance

� in C. elegans protein network, and the distribution of corrected node clustering

coefficient Cμ in airline transportation network, separately for the nodes in the c-core

(diamonds) and the periphery (squares). (Bottom) Comparison between the c-core

and the k-core decomposition. Plots show the fractions of nodes in the intersection

of c-core and k-core for different k relative to the size of one or the other, and the

Jaccard coefficient of the two subsets. The markers are estimates of the mean over

100 runs, while error bars show the standard deviation. (Color online)

length and number of geodesic paths has already been considered before (Holme,

2005; Cucuringu et al., 2016).

We stress that despite the fact that the c-core of these networks is a convex

subset by definition, a c-core is a non-convex core surrounded by a convex periphery

according to our understanding of convexity. This is because convex subsets expand

very quickly until they reach the edge of the c-core beyond which the growth settles.

In other words, the c-core is the smallest convex subset including the network core.

Convexity in core–periphery networks can, therefore, be interpreted in terms of the

size of the c-core. In this sense, convex infrastructure networks from the beginning

of Section 2 have no c-core, while non-convex food web lacks periphery.

3 Frequency of small convex subgraphs

Section 2 explores convexity in graphs and networks from a global macroscopic

perspective, while in this section we analyze convexity also locally. We study small

connected induced subgraphs or graphlets in biological networks jargon (Pržulj et al.,

2004; Pržulj, 2007) and ask whether induced subgraphs found in empirical networks

are convex subgraphs. Note that this is fundamentally different from expanding

subsets of nodes to convex subgraphs and observing their growth as in Section 2.

We nevertheless expect networks that have proven extremely convex or non-convex

in that global sense to be such also locally.
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Fig. 8. Connected non-isomorphic subgraphs with up to four nodes. Highlighted

subgraphs are convex by construction (diamonds), while the trivial edge subgraph

G0 is shown only for reasons of completeness. (Color online)
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Fig. 9. Frequency of small non-isomorphic subgraphs Gi in empirical networks. Plots

show the number of induced subgraphs gi (squares) and the number of these that

are convex ci (diamonds). The subgraphs Gi are listed in Figure 8, while the lines

are merely a guide for the eye. (Color online)

We consider subgraphs Gi with at most four nodes shown in Figure 8. Note that

prior probabilities of convexity vary across subgraphs. The clique subgraphs G0, G2,

and G8 are convex by construction (diamonds), whereas the path subgraph G3 is

the least likely to be convex. The frequencies of induced subgraphs are computed

with a combinatorial method (Hočevar & Demšar, 2014), while we use our own

implementation for convex subgraphs.

Figure 9 shows the frequencies of induced (squares) and convex (diamonds)

subgraphs Gi in networks from Table 1. In the case of infrastructure networks, most

induced subgraphs are convex subgraphs. Similar holds for the coauthorship graph.
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Fig. 10. Probability of convex subgraphs Gi in empirical networks Pi (diamonds)

and the corresponding Erdős–Rényi random graphs P̃i (squares). The frequencies of

subgraphs Gi are shown in Figure 9, while the lines are merely a guide for the eye.

(Color online)

On the contrary, only a small fraction of subgraphs is convex in the food web or the

weblogs graph (mind logarithmic scales). These are precisely the networks that were

identified as either particularly convex or non-convex by the expansion of convex

subsets in Figure 4. This confirms that convexity is an inherent property of some

networks independent of the specific view taken. There are a few differences relative

to before which we discuss below.

Let gi be the number of induced subgraphs Gi in a network and let ci be the

number of these that are convex subgraphs. The empirical probability Pi that a

randomly selected subgraph Gi is convex is then

Pi =
ci

gi
(1)

In Appendix 5, we also derive the analytical priors P̃i that a random subgraph Gi is

convex in a corresponding Erdős–Rényi random graph. As already shown in Section

2.1, random graphs are locally convex meaning that any connected subgraph with

up to ln n/ln 〈k〉 nodes is expected to be convex. This includes also the subgraphs

Gi in all but very dense graphs.

Figure 10 shows the empirical probabilities Pi (diamonds) excluding those of clique

subgraphs for obvious reasons. As observed above, most subgraphs are convex in

the infrastructure networks with Pi ≈ 80%, while almost none is convex in the

food web or the weblogs graph with Pi ≈ 0%. Notice, however, that no square
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Fig. 11. Expansion of convex subsets of nodes in (Left) globally convex collaboration

graph, (Middle) regionally convex Internet map, and (Right) locally convex random

graph. Graphs show particular realizations of convex subsets grown from the most

central node with the smallest geodesic distance � to other nodes. The nodes included

in the growing subsets by construction are shown with diamonds, while squares are

the nodes included by expansion to convex subsets. The labels of the nodes indicate

the step t in which they were included, while the layouts were computed with Large

Graph Layout (Adai et al., 2004). (Color online)

subgraph G5 is convex in the coauthorship graph that was previously classified as

convex. Yet, only seven subgraphs G5 appear in the entire network, thus a random

subgraph is still more likely to be convex. Non-negligible fractions of subgraphs are

convex Pi > 50% also in the Internet map and C. elegans protein network. Recall

that both of these networks have a pronounced core–periphery structure with a

relatively small c-core (see Section 2.2). The majority of subgraphs is thus found in

the periphery which is convex.

Figure 10 shows also the prior probabilities P̃i (squares) that are consistently

higher P̃i > Pi and tend to 100% in sparse networks. Note that notably lower P̃i

in airline transportation network, the weblogs graph and the food web are due to

much higher density of these networks 〈k〉 > 20 (see Table 1). In the case of all

other networks, every subgraph Gi is almost certainly convex in a corresponding

random graph P̃i ≈ 100%. Hence, even the most convex infrastructure networks do

not match the local convexity of random graphs, despite being considerably more

convex from a global point of view.

4 Measures of convexity in networks

Sections 2 and 3 explore convexity from a local and global perspective, and

demonstrate various forms of convexity in graphs and networks (see Figure 11).

In contrast to other networks, convex subsets expand very slowly in tree-like

infrastructure networks and clique-like collaboration graph. We refer to this as

global convexity. On the other hand, random graphs are locally convex meaning that

any small connected subgraph is almost certainly convex. Finally, core–periphery

networks consist of a non-convex c-core surrounded by a convex periphery, which

we denote regional convexity. Note, however, that convex periphery is only a specific

type of regional convexity.

In what follows, we introduce different measures of convexity in graphs and

networks. In Section 4.1, we propose a measure called c-convexity suitable for
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assessing global and regional convexity, while, in Section 4.2, we propose different

measures of local convexity.

4.1 Global and regional convexity in networks

Global and regional convexity in graphs and networks can be assessed by measuring

the growth of convex subsets within our algorithm presented in Section 2. Recall s(t)

being the fraction of nodes included in the convex subsets at step t of the algorithm,

s(t) � (t+ 1)/n, where n is the number of nodes in a network. Furthermore, let t′ be

the number of steps needed for the convex subsets to expand to the entire network,

s(t′) = 1. For notational convenience, let s(t) = 1 for every t � t′.
We define the growth at step t of the algorithm as Δs(t) = s(t) − s(t − 1), which

is compared against the growth in an appropriate null model. A common choice is

to select some random graph model in order to eliminate the effects that are merely

an artifact of network density or node degree distribution (Erdős & Rényi, 1959;

Newman et al., 2001). However, random graphs are locally convex and thus can not

be used as a non-convex null model. For this reason, we rather compare networks,

and also random graphs, with a fully convex graph. Such graph is a collection of

cliques connected together in a tree-like manner in which the growth equals 1/n at

each step t. Notice that this definition includes also a tree and a complete graph

that are both convex graphs.

Let c be a free parameter properly explained below, c � 1. We define c-convexity

Xc of a network as the difference Δs(t) − 1/n over all steps t of the algorithm, which

is subtracted from one in order to get higher values in convex networks where

Δs(t) ≈ 1/n. Hence,

Xc = 1 −
t′∑

t=1

c
√

Δs(t) − 1/n

= 1 −
t′∑

t=1

c
√

s(t) − s(t − 1) − 1/n (2)

= 1 −
n−1∑
t=1

c
√

max{s(t) − s(t − 1) − 1/n, 0 } (3)

For c = 1, most of the terms of the sum in Equation (2) cancel out and 1-convexity

X1 can be written as

X1 = 1 −
t′∑

t=1

s(t) − s(t − 1) − 1

n

= 1 − s(t′) + s(0) +
t′

n

=
t′ + 1

n
(4)

X1 simply measures the number of steps needed to cover the network t′ relative to

its size n, X1 ∈ [0, 1]. In this way, X1 is an estimate of global convexity in a network.

In core–periphery networks, X1 can also be interpreted in terms of a non-convex

c-core defined in Section 2.2. Let nc be the number of nodes in the network c-core
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Table 2. Global and regional convexity in graphs and networks.

Network X1 X1 X̃1 X1.1 X1.1 X̃1.1

Western US power grid 0.95 0.32 0.24 0.91 0.10 0.01

European highways 0.66 0.23 0.27 0.44 −0.02 0.06

Networks coauthorships 0.91 0.09 0.06 0.83 −0.05 −0.09

Oregon Internet map 0.68 0.36 0.06 0.53 0.20 −0.09

Caenorhabditis elegans 0.57 0.54 0.07 0.43 0.40 −0.13

US airports connections 0.43 0.24 0.00 0.30 0.16 −0.07

Scientometrics citations 0.24 0.16 0.02 0.04 0.00 −0.13

US election weblogs 0.17 0.12 0.00 0.06 0.04 −0.08

Little Rock food web 0.03 0.03 0.02 −0.06 −0.02 −0.02

Columns show c-convexity of empirical networks Xc, randomly rewired networks Xc and the

corresponding Erdős–Rényi random graphs X̃c. The values are estimates of the mean over

100 runs.

and let 〈�〉 be the average distance between the nodes. Then,

X1 ≈ 2〈�〉 + 1

n
+

n − nc

n

= 1 − nc − 2〈�〉 − 1

n
(5)

where 2〈�〉 is approximately the number of steps needed for the convex subsets to

cover the network c-core, which actually occurs at some step 〈�〉 < t < 2〈�〉 as

shown in Section 2.1, and n − nc is the number of nodes in the convex periphery. In

this way, X1 is an estimate of regional convexity in a network.

For c > 1, c-convexity Xc also takes into account the growth of convex subsets

itself by emphasizing any superlinear growth in s(t). Consequently, Xc becomes

negative in a network with a sudden expansion of convex subsets as it occurs in

random graphs, Xc ∈ (−∞, 1]. Note that the sum in Equation (3) does not have

to be computed entirely. After the growth of convex subsets settles, all subsequent

terms of the sum are zero or close to zero, and thus negligible even for very large

networks. We approximate Xc from the first 100 terms of the sum in Equation (3),

which is sufficient for our purposes here.

Table 2 shows c-convexity Xc of empirical networks from Table 1, randomly

rewired networks Xc and the corresponding Erdős–Rényi random graphs X̃c.

The results confirm our observations from Section 2. c-convexity is much higher

in networks than random graphs with Xc > Xc > X̃c in all cases except the

food web. This is best observed in the values of 1.1-convexity X1.1 that are

negative in random graphs X̃1.1 < 0. Standard models of small-world and scale-free

networks (Watts & Strogatz, 1998; Barabási & Albert, 1999) also fail to reproduce

convexity in these networks (results not shown). According to 1-convexity X1, most

convex networks are tree-like power grid and clique-like coauthorship graph with

X1 > 0.9. Both these networks are globally convex. On the other hand, the food

web is the only network that is truly non-convex with X1.1 < 0. C. elegans protein

network represents a particular case of a regionally convex network with X1 > 0.5

which is merely a consequence of its degree distribution X1 ≈ X1. Other regionally
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convex networks are also the Internet map and airline transportation network

with X1 ≈ 0.5. Convexity of information networks, however, is very moderate

with X1.1 ≈ 0.

The c-convexity is a global measure of convexity in graphs and networks such

as the hull number of a graph (Everett & Seidman, 1985) introduced in Section

1. Yet, it has a number of advantages over the hull number. It is not sensitive

to small perturbations, has polynomial computational complexity and also a clear

interpretation in core–periphery networks.

4.2 Local convexity in networks

Local convexity in graphs and networks can be assessed either by measuring the

growth of convex subsets in the first few steps of our algorithm or by computing

the probabilities of convex subgraphs as done in Section 3. We start with the latter.

As before, consider subgraphs Gi with up to four nodes shown in Figure 8. Recall

gi being the number of induced subgraphs Gi in a network, ci the number of these

that are convex, and Pi the empirical probability that a subgraph Gi is convex

defined in Equation (2). The probability P that a randomly selected subgraph of a

network is convex is then

P =
∑
i

gi∑
i gi

Pi

=

∑
i ci∑
i gi

(6)

Furthermore, let g̃i be the average number of induced subgraphs Gi in a correspond-

ing Erdős–Rényi random graph and P̃i the analytical probability that a subgraph

Gi is convex derived in Appendix 5. The probability P̃ that a randomly selected

subgraph of a random graph is convex is then

P̃ =
∑
i

g̃i∑
i g̃i

P̃i (7)

First two columns of Table 3 show the probability of convex subgraphs P in

empirical networks from Table 1 and the corresponding random graphs P̃ . Observe

that the probability is much higher in random graphs than networks with P < P̃

in all cases except the food web. As shown in Section 2.1, random graphs are

locally convex with P̃ ≈ 100% as long as the average distance between the nodes

ln n/ln 〈k〉 is larger than the size of the subgraphs. Notice that globally convex

infrastructure networks are also fairly locally convex with P ≈ 80%. Some local

convexity P > 50% is observed also in regionally convex networks such as the

Internet map and C. elegans protein network, where most of the subgraphs are

found in the convex periphery. On the other hand, airline transportation network

is not locally convex with P ≈ 0%, even though the network is regionally convex.

However, as one can observe in Figure 6, the periphery of airline transportation

network consists of mostly pendant nodes, which is ignored by the subgraphs.

In the remaining, we assess local convexity in graphs and networks also by

measuring the growth of convex subsets in the first few steps of our algorithm

from Section 2. In particular, we measure the number of steps for which the convex
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Table 3. Local convexity in graphs and networks.

Network P P̃ L1 (Lt) L̃1 ln n/ln 〈k〉
Western US power grid 77.0% 99.4% 6 (14) 9 8.66

European highways 83.2% 97.6% 7 (16) 7 7.54

Networks coauthorships 53.3% 71.3% 7 (17) 4 3.77

Oregon Internet map 56.0% 86.4% 3 4 4.40

Caenorhabditis elegans 77.8% 97.6% 2 5 5.79

US airports connections 5.5% 12.9% 2 3 2.38

Scientometrics citations 30.5% 89.2% 3 4 4.30

US election weblogs 2.7% 6.0% 2 2 2.15

Little Rock food web 2.2% 0.3% 2 2 1.59

Columns show the probability of convex subgraphs in empirical networks P and the

corresponding Erdős–Rényi random graphs P̃ , and the maximum size of convex subsets in

networks Lc and graphs L̃c. The values in brackets are the values of Lt that are different

from L1, while last column is the analytically derived estimate of L̃1. The values are estimates

of the mean over 100 runs.

subsets grow one node at a time and therefore no expansion occurs. The fraction

of nodes s(t) included in the convex subsets at step t of the algorithm must thus

be s(t) ≈ (t + 1)/n. This gives an estimate of local convexity seen as the maximum

size of the subsets of nodes that are still expected to be convex. Note that this is

different than above where we have fixed the maximum size and also the type of

subgraphs, while we grow random subsets of nodes below.

We define the maximum size of convex subsets Lc as

Lc = 1 + max{ t | s(t) < (t + c + 1)/n } (8)

where c is a free parameter different than in Equation (2), c > 0. For c = 1, L1

measures the maximum size of the subsets of nodes that on average require less

than one additional node in order to be convex s(t) < (t + 2)/n. For c = t, one gets

a more relaxed definition Lt requiring that less than one additional node needs be

included for each node in the subset or, equivalently, at each step t of the algorithm

s(t) < (2t + 1)/n. To account for randomness, we use the lower bound of the 99%

confidence interval of s(t) in Equation (8).

Second two columns of Table 3 show the maximum size of convex subsets Lc

in empirical networks from Table 1 and the corresponding Erdős–Rényi random

graphs L̃c. Consider first the values of L1 and L̃1. These, further, confirm that random

graphs are locally more convex than networks with L1 � L̃1 in all cases except one.

Notice also that L̃1 well coincides with the analytical estimate for random graphs

ln n/ln 〈k〉 derived in Appendix 5. In regionally convex or non-convex networks,

only very small subsets of nodes are expected to be convex with L1 � 3. On the

contrary, much larger subsets are convex in globally convex infrastructure networks

and collaboration graph with L1 ≈ 7.

Considering also the relaxed definitions Lt and L̃t, only three values change

in Table 3. The maximum size of convex subsets more than doubles in globally

convex networks with Lt ≈ 16, while the values remain exactly the same in all other
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networks Lt = L1 and random graphs L̃t = L̃1. Hence, under this loose definition,

globally convex networks are actually even more locally convex than random graphs.

Global convexity in networks thus implies also strong local convexity. Regionally

convex networks, however, are not necessarily locally convex. This is due to a specific

type of regional convexity observed in networks. Although a convex periphery can

cover a large majority of the nodes in a network, these are by definition disconnected

and are connected only through a non-convex c-core as shown in Section 2.2.

Therefore, one can not grow large convex subsets solely out of the nodes in the

periphery.

5 Conclusions

In this paper, we have studied convexity in complex networks through mathematical

definition of a convex subgraph. We explored convexity from a local and global

perspective by observing the expansion of convex subsets of nodes and the frequency

of convex subgraphs. We have demonstrated three distinct forms of convexity in

graphs and networks.

Global convexity refers to a tree-like or clique-like structure of a network in which

convex subsets grow very slowly, and thus any connected subset of nodes is likely to

be convex. Globally convex networks are spatial infrastructure networks and social

collaboration graphs. This is, in contrast, with random graphs (Erdős & Rényi,

1959), where there is a sudden expansion of convex subsets when their size exceeds

ln n/ln 〈k〉 nodes. In fact, the only network studied that is globally less convex than

a random graph is the food web.

Random graphs, however, are locally convex meaning that any connected sub-

graph with up to ln n/ln 〈k〉 nodes is almost certainly convex. Globally convex

networks are also fairly locally convex, or even more convex than random graphs

under a loose definition of local convexity, whereas almost any other network

studied is locally less convex than a random graph. On the other hand, most of

these networks are regionally convex.

Regional convexity refers to any type of heterogeneous network structure that

is only partly convex. For instance, networks with core–periphery structure can be

divided into a non-convex c-core surrounded by a convex periphery. Such are the

Internet map, C. elegans protein and airline transportation networks. Note that

this type of regional convexity does not necessarily imply local convexity. This is

because the nodes in convex periphery are generally disconnected and are connected

only through the non-convex c-core.

We have proposed different measures of local, regional, and global convexity

in networks. Among them, c-convexity can be used to assess global convexity

and measures whether the structure of a network is either tree-like or clique-like,

differently from random graphs. There are many measures that separate networks

from random graphs like the average node clustering coefficient (Watts & Strogatz,

1998) and network modularity (Newman & Girvan, 2004). However, these clearly

distinguish between tree-like structure of infrastructure networks and clique-like

structure of collaboration graphs. Yet, the two regimes are equivalent according to

c-convexity. This is because they represent the border cases of networks with deter-

ministic structure. The fact might be interesting since many of the results in network
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science are known only for tree-like or locally tree-like networks (Dorogovtsev et al.,

2008; Newman, 2010).

Convexity is thus an inherent structural property of many networks. Random

graph models (Erdős & Rényi, 1959; Newman et al., 2001) and also standard

network models (Watts & Strogatz, 1998; Barabási & Albert, 1999) fail to reproduce

convexity in networks. This is not surprising as most models are based on the

existence of individual edges between the nodes and not on the inclusion of the entire

geodesic paths. Development of realistic models of network convexity represents an

important direction for future work. The study of convexity should also be extended

to directed and weighted networks, where the definition of geodesic paths changes,

and disconnected networks, where geodesic paths are ill-defined.

Frequency of small subgraphs is often used in network comparison or align-

ment (Pržulj, 2007; Yaveroğlu et al., 2014) and for revealing distinct classes of

networks (Milo et al., 2004). While the frequency of non-induced subgraphs or

motifs (Milo et al., 2002) must necessarily be compared against some null model,

induced subgraphs or graphlets (Pržulj et al., 2004) are specific local structures found

in networks. Moreover, convex subgraphs are special types of induced subgraphs

and might as such enable even more detailed classification of networks. This could

also represent an important contribution to understanding geometric properties of

networks (Clough & Evans, 2016, 2017).

Another prominent direction for future work is to investigate convexity in

the context of different mesoscopic structures observed in networks. We have

studied convexity only in the case of core–periphery structure (Borgatti & Everett,

2000) and proposed a novel characterization of core and periphery, which might

be of separate interest. However, other examples include also node communi-

ties (Girvan & Newman, 2002), overlapping communities (Palla et al., 2005), disas-

sortative groups (Newman & Leicht, 2007), role models (Reichardt & White, 2007),

and hierarchical structure (Clauset et al., 2008). In fact, many community detec-

tion methods adopt a definition of community that can actually be seen as an

approximation of a convex subgraph (Rosvall & Bergstrom, 2008).

Network convexity is an indication of uniqueness of geodesic paths in a network.

The geodesic paths are mostly unique in convex infrastructure networks due to high

cost of connections, while largely redundant in a non-convex food web in order

for the ecosystem to survive. Convex networks thus represent locally self-sufficient

systems. As such convexity can be seen as a measure of network redundancy, a

concept closely related to robustness and resilience (Albert et al., 2000; Barabási,

2016).

Convexity is probably most commonly associated with its benefits in mathemat-

ical optimization (Boyd & Vandenberghe, 2004; Hallac et al., 2015). For instance,

many NP-complete problems in general graphs become polynomial in chordal

graphs (Gavril, 1974) which can be seen as a model of convex graphs. There seems

to be no good reason why such results could not be derived also for convex networks.
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Guimerà, R., Sales-Pardo, M., & Amaral, L. A. N. (2007). Classes of complex networks

defined by role-to-role connectivity profiles. Nature Physics, 3(1), 63–69.
Hallac, D., Leskovec, J., & Boyd, S. (2015). Network lasso: Clustering and optimization in

large graphs. Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 387–396.
Harary, F., & Nieminen, J. (1981). Convexity in graphs. Journal of Differential Geometry,

16(2), 185–190.
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Rényi, A., & Szekeres, G. (1967). On the height of trees. Journal of the Australian Mathematical

Society, 7(4), 497–507.

Rombach, M., Porter, M., Fowler, J., & Mucha, P. (2014). Core-periphery structure in networks.

SIAM Journal on Applied Mathematics, 74(1), 167–190.

Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal

community structure. Proceedings of the National Academy of Sciences of the United States

of America, 105(4), 1118–1123.

Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.

Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006).

BioGRID: A general repository for interaction datasets. Nucleic Acids Research, 34(1),

535–539.
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Appendix A: Size of convex subsets in random graphs

In this appendix, we approximate the probability P̃G that a random induced

connected subgraph G is convex in a random graph Erdős & Rényi (1959). The

sampling procedure generating subgraphs G is selecting the nodes of the graph

randomly with constant probability and discarding any induced subgraphs that are

not connected. Thus, each induced connected subgraph G with a fixed number of

nodes has the same probability of being generated. Note that this procedure is not

equivalent to the expansion of convex subsets of nodes in Section 2, but we use it

as an indicator of the convex growth in random graphs.
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Let n be the number of nodes in a random graph, p the probability of an edge,

and 〈k〉 the expected node degree, 〈k〉 = p(n−1). Our results below are of asymptotic

nature. We say that a property holds almost certainly if the probability that it holds

in a random graph with the expected node degree 〈k〉 � 1 limits to one when

the size of the graph n grows to infinity. In particular, we show that any induced

connected subgraph G with up to ln n/ln 〈k〉 nodes is almost certainly convex.

We first analyze the internal structure of subgraph G. Denote its nodes with

1, 2, . . . , s. Since subgraph G is connected, it must include a spanning tree on s − 1

edges. Furthermore, G is a subgraph of a random graph with edge probability p. The

probability of existence of any of
(
s
2

) − (s− 1) =
(
s−1
2

)
possible edges of subgraph G

that are not on the spanning tree of G is p. The probability that subgraph G has no

additional edge besides the edges of the spanning tree is then

(1 − p)(
s−1
2 ) ≈ e−p(s−1

2 )

= e− 〈k〉(s−1)(s−2)
2(n−1)

For s2 � n, the above expression is close to one. Thus, a random induced connected

subgraph G with much less than
√
n nodes is almost certainly a tree. Since each tree

on nodes 1, 2, . . . , s has the same probability to appear, we deduce that subgraph G

is a random tree. The average geodesic distance and also the diameter of a random

tree on s nodes is almost certainly in O(
√
s) (Meir & Moon, 1970; Rényi & Szekeres,

1967), while the exact expressions are
√

π
2
s and 2

√
2πs, respectively.

Notice that subgraph G is convex iff no two nodes of 1, 2, . . . , s have a geodesic

path that is internally disjoint from G. Besides, for each node i of subgraph G, the

remaining graph obtained after removing all the nodes of G but i is still a random

graph with edge probability p = 〈k〉/(n − 1) and the average degree 〈k′〉 = p(n − s).

In such a graph, the expected number of nodes at the geodesic distance at most d

from node i is approximately 1+ 〈k′〉+ 〈k′〉(〈k′〉 −1)+ · · ·+ 〈k′〉(〈k′〉 −1)d−1 � 〈k′〉d �
〈k〉d (Newman, 2010). We denote with Γi(d) the set of nodes at the geodesic distance

at most d from a given node i also called the dth neighbourhood of node i, i � s.

Let r be a number such that 2r+1 is greater than the diameter of subgraph G but

as close as possible. By the above results, 2r + 1 ≈ c1

√
s + O(1) for some constant

c1 > 0. If for each pair of nodes i and j of subgraph G there is no edge connecting

the nodes in the rth neighbourhood Γi(r) with the nodes in the rth neighbourhood

Γj(r), subgraph G must be convex, i, j � s. Since the sizes of these neighbourhoods

are on average smaller than 〈k〉r , there is at most 〈k〉r〈k〉r(s
2

)
possible edges. Hence,

the probability P̃G that subgraph G is convex is

P̃G � (1 − p)〈k〉2r(s2)

Taking the logarithm of both sides, we find

ln P̃G � 〈k〉2r

(
s

2

)
ln

(
1 − 〈k〉

n − 1

)

≈ 〈k〉2r+1

n − 1

(
s

2

)
and thus

P̃G � e− 〈k〉c1
√
s+O(1)

n−1 (s2)

https://doi.org/10.1017/nws.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.37


Convexity in complex networks 201

For s � log〈k〉 n and large enough n, the probability P̃G is close to one meaning that

subgraph G is convex.

On the other hand, since the average geodesic distance in subgraph G is almost

certainly c2

√
s for some constant c2 > 0, there is a non-trivial fraction f > 0 of

nodes at the geodesic distance at least c2

√
s. Similar as before let r be a number such

that 2r + 1 is less then the average geodesic distance in subgraph G but as close as

possible, 2r + 1 ≈ c2

√
s − O(1). Recall that the expected number of nodes in the rth

neighbourhood Γi(r) at the geodesic distance exactly r from node i is approximately

〈k′〉(〈k′〉 − 1)r−1 (Newman, 2010), which is greater than (〈k〉/2)r assuming 〈k〉 � 1

and s2 � n. These nodes are also called the surface of the neighbourhood. Now let

i and j be a pair of nodes of subgraph G at the geodesic distance at least 2r + 1 in

G, i, j � s. If the rth neighbourhoods Γi(r) and Γj(r) are not disjoint, then subgraph

G is not convex. Assuming that the neighbourhoods are disjoint, subgraph G is still

not convex if there exists an edge between the nodes of the surfaces of the two

neighbourhoods. Let A be the event that all
(
s
2

)
pairs of rth neighbourhoods Γi(r)

and Γj(r) are disjoint, and let AG be the event that subgraph G is convex. The

probability P̃G can then be written as

P̃G = P (AG| A)P (A)

� P (AG| A)

� (1 − p)(〈k〉/2)2rf(s2)

and by the same sequence of arguments as above, we obtain

P̃G � e− (〈k〉/2)c2
√
s−O(1)

n−1 f(s2)

For s � log2
〈k〉/2 n and large enough n, the probability P̃G is close to zero meaning

that subgraph G is not convex.

To gain mathematical completeness of the above results, one would have to analyze

also non-average cases of the properties considered. In particular, one would have

to analyze what if the diameter and the average geodesic distance in subgraph G are

not c
√
s for some constant c > 0, and what if the sizes of the dth neighbourhoods

Γi(d) are not 〈k〉d, i � s. Since the tails of the probability distributions of these events

are thin (Rényi & Szekeres, 1967; Meir & Moon, 1970; Newman, 2010), while we

are here only interested in the asymptotic behaviour and not in the exact constants

of the threshold functions, we leave such analyses to be performed elsewhere.

Finally, consider the expansion of convex subsets of nodes within our algorithm

from Section 2. In the first few steps of the algorithm, the subsets grow one node

at a time and the induced subgraphs are convex trees. This can be anticipated since

any random induced connected subgraph with much less than
√
n nodes is almost

certainly a random tree and any such tree with up to ln n/ln 〈k〉 nodes is almost

certainly convex. The sudden expansion of convex subsets occurs between O(log〈k〉 n)
and O(log2

〈k〉/2 n) nodes, while the exact threshold function suggested by the above

calculations is the solution s of the equation n = 〈k〉√
s
(
s
2

)
.
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Appendix B: Probability of convex subgraphs in random graphs

Figure 8 shows all connected non-isomorphic subgraphs Gi with up to four nodes.

In this appendix, we derive the probabilities P̃i that a randomly selected induced

subgraph Gi is convex in a random graph (Erdős & Rényi, 1959). As before, let n be

the number of nodes in the graph, p the probability of an edge and 〈k〉 the expected

node degree, 〈k〉 = p(n − 1).

First, recall that the clique subgraphs G0, G2, and G8 are convex by construction.

P̃0 = 1

P̃2 = 1

P̃8 = 1

Next, we consider the star subgraph G4. Denote the central node of subgraph G4

with 1, the pendant nodes with 2, 3, 4, and the remaining nodes with 5, 6, . . . , n. Notice

that subgraph G4 is convex iff no two nodes of 2, 3, 4 have a common neighbour

other than 1. Let Ai be the event that subgraph G4 is convex in a graph induced by

the nodes of G4 ∪ { i }, i � 5. The event Ai occurs iff node i is connected to at most

one of the nodes 2, 3, 4. Hence,

P(Ai) = (1 − p)3 + 3p(1 − p)2

= 1 − 3p2 + 2p3

Since the events Ai are independent, the probability P̃4 equals

P̃4 = (1 − 3p2 + 2p3)n−4

For other subgraphs with diameter two G1, G5, G6, and G7, the derivation is

analogous.

P̃1 = (1 − p2)n−3

P̃5 = (1 − 2p2 + p4)n−4

P̃6 = (1 − 2p2 + 3p3)n−4

P̃7 = (1 − p2)n−4

For the path subgraph G3, one must take a different approach. Denote the nodes

of subgraph G3 with 1, 2, 3, 4, where 1, 4 are the pendant nodes. Let A1 be the event

that nodes 1, 4 have no common neighbour, and that nodes 1, 3 and 2, 4 have no

common neighbour other than 2 and 3, respectively. Furthermore, let A2 be the

event that there is no path of length three connecting nodes 1, 4 that is outside of

subgraph G3. Then, P̃3 = P(A1)P(A2| A1).

The event A1 occurs iff each node i � 5 is either connected to at most one of the

nodes 1, 2, 3, 4 or is connected to a pair of connected nodes 1, 2 or 2, 3 or 3, 4. Hence,

P(A1) =
(
(1 − p)4 + 4(1 − p)3 + 3(1 − p)2p2

)n−4

= (4p4 − 6p3 − 3p2 + 8p − 3)n−4

On the other hand, the probability P(A2|A1) can be computed as follows. The event

A2 occurs iff no pair of neighbours of nodes 1, 4 other than 2, 3 is connected. Since

nodes 1, 4 have c = p(n − 4) other neighbours on average, there are c2 of such pairs
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given A1 and

P(A2| A1) = (1 − p)c
2

The probability P̃3, thus, reads

P̃3 = (4p4 − 6p3 − 3p2 + 8p − 3)n−4(1 − p)p
2(n−4)2

https://doi.org/10.1017/nws.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2017.37



