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1. Introduction. Let K denote a connected finite 1-dimensional cell 
complex (1, p. 95), G{K) its group of homeomorphisms, and D(K) the group 
of homeomorphisms of K which are isotopic to the identity. The group 
&(K) = G(K)/D(K) is a topological invariant of K and is called the homeotopy 
group of K (4). K may be thought of as a linear graph (connected finite 1-
dimensional simplicial complex) extended to admit loops and multiple edges 
and &(K) as the topological analogue of the automorphism group A(L), (the 
permutations of vertices which preserve edge incidence relations) of a linear 
graph L. From this point of view, questions pertaining to linear graphs and 
their automorphism groups may be considered for cell complexes and their 
homeotopy groups. It is to be noted that even in the special case where K is 
a linear graph, A (K) is not necessarily isomorphic to &(K). This is clear since 
the vertices in K of degree 2 play a role in the computation of A (K) but do not 
in the computation of &(K). However, if K is a linear graph without vertices 
of degree 2, then A (K) = §(K). 

In this paper we obtain a theorem on the structure and existence of 1-dimen­
sional cell complexes K having &(K) = 0, i.e. every homeomorphism of K 
is isotopic to the identity. 

Let ao(K) and a,\{K) denote the number of 0-cells and l-cells, respectively, 
which appear in K, and let N(K) = a>\{K) — aQ(K) + 1 denote the nullity of 
K. 

THEOREM. If !Q(K) = 0, then 

(1.1) a0(K) > 7, ai{K) > 10, and N{K) > 2. 
(1.2) Furthermore, there exist linear graphs, Ky without vertices of degree % 
such that § (K) = 0 and 

(i) K has a0 vertices for all ao > 7, 
(ii) K has a± edges for all a\ > 10, and 

(iii) K has nullity N for all N > 2. 

Remark 1. Conditions (i), (ii), and (iii) are not necessarily satisfied simul­
taneously. 

Remark 2. I. N. Kagno (2, p. 859, footnote) has given an example of a linear 
graph K with 6 vertices and A (K) = 0. But, this graph has vertices of degree 
2 and $(K) ?* 0. 
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2. Replacement A. Associated with each 1-dimensional cell complex L 
which is not homeomorphic to a 1-sphere there is a unique cell complex L2 which 
has the following properties: 

(i) L2 is homeomorphic to L, and 

(ii) L2 has no vertices of degree 2. 

Proof. If v denotes a 0-cell of L having degree 2, then v is an end point of 
exactly two 1-cells (u, v) and (v, w) of L. By replacing these two 1-cells by a 
single 1-cell (u> w), we obtain a cell complex Lf which is clearly homeomorphic 
to L and which has one 0-cell of degree 2 less than L. We note that this replace­
ment fails to yield a cell complex only in the case where v is the 0-cell of a 1-
sphere having exactly one 0-cell in its decomposition. Since L has a finite 
number of cells, the above indicated operation applied a finite number of times 
yields a cell complex L2 having properties (i) and (ii). 

The uniqueness of the complex L2 follows from the fact that, if U and V 
are homeomorphic 1-dimensional cell complexes both not having vertices of 
degree 2, then £7 and Fare isomorphic as cell complexes, i.e. there is a one-to-one 
correspondence between their 0-cells (vertex sets) such that corresponding 
0-cells are joined by k l-cells (edges) in one if and only if they are joined by k 
1-cells in the other. This assertion follows from the fact that the 0-cells of 
degree not equal to 2 are topological invariants of 1-dimensional cell complexes. 
Specifically, if / is a homeomorphism of Uonto V, then the restriction o f / to the 
set of 0-cells (l-cells) of U is readily seen to establish a one-to-one correspon­
dence with the set of 0-cells (l-cells) of F and this correspondence does preserve 
incidence relations between corresponding 0-cells. Note that isomorphic 1-
dimensional cell complexes, with no restriction on the degrees of their 0-cells, 
are homeomorphic. 

Now, let W be any cell complex with no vertices of degree 2 which is homeo­
morphic to L. Since W is homeomorphic to L2 we have, by the preceding re­
marks, W is isomorphic to L2. Thus, L2 is unique. 

3. A lemma. We note the following fact. 

LEMMA. K is a 1-dimensional cell complex such that &(K) = 0 if and only if 
K is homeomorphic to a linear graph K2 which has no vertices of degree 2 and 
A (K2) = 0. 

Proof. If &(K) = 0, then, since the homeotopy group of a 1-sphere contains 
two elements, K is not homeomorphic to a 1-sphere. Let K2 denote the cell 
complex obtained from K by Replacement A (cf. §2). K2 can fail to be a linear 
graph in exactly two ways: (1) K2 contains a loop (v, v), or (2) K2 contains 
a simple circuit, i.e. two l-cells (u, v)i and (u, v)2 having the same 0-cells as 
end points. Either of these cases implies the existence of a homeomorphism 
which is not isotopic to the identity. Thus K2 is a linear graph homeomorphic 
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to K. Since K2 has no vertices of degree 2, A (K2) ~ §{K2). But, 
$(K2) = § ( I ) . Therefore A (K2) = 0. 

Conversely, 0 = A(K2) = §(K2) « £ ( # ) . 

4. Replacement B. In view of the preceding lemma, K is henceforth 
assumed to be a linear graph having no vertices of degree 2 and A (K) = § (K) 
= 0. 

By a free edge (u, v) at the vertex u we mean an edge (#, v) such that the 
vertex v has degree 1. 

Associated with K there is a unique connected subgraph Ki of K which has the 
following properties: 

(i) Ki has no vertices of degree 1, and 
(ii) K can be reconstructed from K\ by adding free edges at vertices of Ki one at 

a time. 

Proof. Let F denote the set of closed free edges of K and V the set of vertices 
having degree not equal to 1 of those edges which are in F. We shall show that 
K\ = (K — F) U F is the unique graph having properties (i) and (ii). Note 
that K\ consists precisely of those edges of K both of whose vertices have 
degree (in K) greater than 2. 

That Ki is a connected subgraph of K with no vertices of degree 1 is clear. 
With respect to (ii), we note that any ordering of the elements of F defines a 
reconstruction of K from Kh i.e. just replace the free edges one at a time in 
the given order. 

We now show that, if W is a connected subgraph of K having properties (i) 
and (ii), then W is the subgraph K\. 

Let (u, v) be an edge of W. Since W has no vertices of degree 1 and K has no 
vertices of degree 2, every vertex of W must have degree (in K) greater than 2. 
Thus, (u, v) is an edge of K±. Conversely, let (5, t) be an edge of K\. Since 
(s, t) is not a free edge, (s, t) must be an edge in W. For, if this were not the 
case, it would be impossible to reconstruct K from W as indicated in (ii). 
Therefore, W is equal to K\. 

Remark. It is clear that the nullity of a graph is not changed when a free 
edge is adjoined at a vertex of the given graph. Thus, N(Ki) = N(K). 

5. Proof of part (1.1) of the theorem. We first show that, if N(K)<2, 
then §(K) ^ 0. 

If N(K) — 0, then K is a tree. If K is a closed 1-cell, then &(K) contains two 
elements. If K is not a closed 1-cell, then it is easy to define a path in K which 
terminates at a vertex which has at least two free edges. Thus, !Q(K) 9e 0. 

If N(K) = 1, then K contains exactly one circuit. Let S denote the set of 
vertices which lie on this circuit. Since K has no vertices of degree 2, at each 
vertex in 5 there is a tree. If one of these trees is not a free edge, then § (K) 9e 0. 
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If all of these trees are free edges, then any homeomorphism of K onto itself 
induced by moving the vertices of S into adjacent vertices in 5 is non-trivial. 
Therefore, $(K) ^ 0 whenever N(K) = 1. 

If N(K) > 2, then let Kx denote the subgraph of K obtained by Replacement 
B (cf. §4) and K2 the cell complex obtained from K\ by Replacement A (cf. 
§2). 

K2 cannot contain any loops. For Kx is homeomorphic to K2 and K could 
not, in this case, be reconstructed from K\ by the adjunction of free edges. 
In particular, #0(^2) > 2. 

If #0(^2) = 2, then K2 is the cell complex [(u, v)i. . . (u,v)i\ (i = N(K) + 1). 
Here the reconstruction of K necessitates adjoining distinct numbers of free 
edges at isolated interior points of the 1-cells of K2 and one free edge at either 
vertex u or v. Thus, a0(K) > 9 whenever its associated cell complex K2 has 
ao(K2) = 2. Specifically, if N(K) = 2, then the only possible K2 without loops 
must be homeomorphic to [(w, v)i(u, v)2{u, v)z\. Thus, if N(K) = 2, then 
ao(K) > 9. 

If a0(K) = 3, then K2 must be of the form 

[(u, v)i. . . (w, »)*(», w)i . . . (IF, w)y(w, u)i. . . (w, w)*]. 

If one of the subscripts i, j , or ^ does not appear, then K2 is the one-point union 
of two cell complexes of the type considered in the previous paragraphs. Thus, 
a0(K) > 9. If the circuit [(u, v)(v, w)(w, u)] appears in K2, then, since K2 has 
no vertices of degrees 2, K2 must contain at least two simple circuits. Hence, 
we must adjoin at least three free edges. Thus, a0(K) > 8 whenever a0(K2) = 3. 

We shall now assume that 4 < a0(K) < 6. K must have at least one vertex 
of degree 1. This follows from the result of I. N. Kagno (3) that every linear 
graph K with 6 or less vertices and having no vertices of degree less than 3 
must have A (K) 9^ 0. Thus, ao(Ki) < 5. Recall that K\ is a linear graph which 
has no vertices of degree 1. When we consider K2 we note that either (I) K2 

is a linear graph (with no vertices of degree 1 or 2), or (2) K2 is not a linear 
graph. 

In case (1), K2 is a linear graph tabulated by Kagno (3) and it is easy to 
verify that K cannot be reconstructed from K2. 

In case (2), since K2 9^ Kh we have a cell complex such that ao(K2) < 4. 
Since we have already considered the cases N(K2) < 3, it remains only to 
examine those cell complexes such that a0(K2) = 4 and N(K2) > 3. These 
remaining cases also lead to a contradiction of the assumption ao(K) < 6. 

If N(K) = 3, then the only possible K2 without loops which is not a linear 
graph and such that ao(K2) = 4 is the complex 

[(/, u)i(t, u)2(u, v)(v, w)i(v, w)2(w, /)]. 

This complex has two simple circuits. Hence at least two free edges must be 
added in the reconstruction of K. Thus, a0(K) > 8. 

If N(K) = 4, since K2 contains seven ( = N(K2) — 1 + a0(K2)) edges and 
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no free edges, then K2 must contain at least one simple circuit. If K2 contains 
one simple circuit, then the complex obtained from K2 by the removal of one 
1-cell of this simple circuit must be a linear graph having six edges and no 
vertices of degree 1 or 2. Thus, this graph must be the complete 4-point. It is 
easy to verify that the K2 in this case cannot be associated with a K such that 
ao(K) < 6 and &(K) = 0. If K2 contains two or more simple circuits, then 
ao(K2) > 8. 

If N(K) > 5 and a0(K2) = 4, then ax{K2) = N(K2) - 1 + a0(K2) > 8. 
Thus, K2 must contain at least two simple circuits. Hence ao(K) > 8. 

Therefore, in every case, we have shown that, if !Q(K) = 0, then a0(K) > 7. 
Furthermore, we have obtained the result ai(K) = N(K) — 1 + a0(K) > 10 
for all K such that &{K) = 0. 

6. Proof of part (1.2) of the theorem. The following graph M given 
by I. N. Kagno (3, p. 510), is an example of a graph such that § ( M ) = 0, 
a0(M) = 7, and ai(M) = 12: 

M = [(g, r) (g, s) (g, t) (g, v) (g} w) (r, u) (r, v) (r, w) (s, t) (s, u) (t, w) (u, v)]. 

The graph Mk obtained from M by adjoining k free edges at k isolated interior 
points of the edge (s, u) is a graph such that &(Mk) = 0, ao(Mk) = 7 + 2k, 
and ax{Mk) = 12 + 2& for all k > 0. 

The graph Ve obtained from Mk by adjoining a free edge at the vertex g is a 
graph such that H(Lk) = 0, a0(L

k) = 8 + 2&, and <n(L*) = 13 + 2& for all 
k > 0. 

The following graph Q is an example of a graph such that &(Q) = 0, 
ai{Q) = 10, and N(Q) = 2 : 

( ? = [ ( * . P) (P, g) (?, r) (r, o) (o, s) {p, t) (g, u) (r, v) (s, w) (s, p)]. 

If we add the edge (p, r) to Q we obtain a graph R, such that §(i2) = 0 and 
ai(R) = 11. 

If Qk denotes the graph obtained from Q by adjoining k 1-cells (o, p) each 
having a distinct number ( > 3) of free edges attached at isolated points of their 
interiors, then Qk is a graph such that &(Qk) = 0 and N(Qk) = 2 + k for all 
& > 0. 
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