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Abstract

In this paper, one model of the universal Teichmüller space is studied. By the method of construction, the
lower bound of the inner radius of univalency by the Pre-Schwarzian derivative of quasidisks with infinity
as an inner point (such as domains bounded by ellipses) is obtained.
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1. Preliminary and introduction

Let D be a quasidisk in the complex plane C. Here ηD denotes its Poincaré density
with Gaussian curvature −4. Furthermore, let D∗

= C \ D, 4 = {z : |z| < 1}. So
4

∗
= C \ 4 and D∗ is a quasidisk in C with ∞ ∈ D∗.

For a holomorphic and locally univalent function f in domain D, define

T f =
f ′′

f ′
= (log f ′)′,

which is called the Pre-Schwarzian derivative of f , and

S f =

(
f ′′

f ′

)′

−
1
2

(
f ′′

f ′

)2

,

which is called the Schwarzian derivative of f . The Pre-Schwarzian derivative of f
vanishes in D if and only if f is a similarity. The Schwarzian derivative of f vanishes
in D if and only if f is a Möbius transformation. Moreover, T f is holomorphic at a
finite point z0 if and only if f is holomorphic and injective around z0. Similarly, S f
is holomorphic at z0 if and only if f is holomorphic (or meromorphic) and injective
around z0.
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In addition, we define the following two Banach spaces of functions φ which are
holomorphic in D:

B∗

1 (D) =

{
φ : φ is holomorphic in D with norm ‖φ‖

∗

D = sup
z∈D

{|φ(z)|η−1
D (z)} < ∞

}
,

B2(D) =

{
φ : φ is holomorphic in D with norm ‖φ‖D = sup

z∈D
{|φ(z)|η−2

D (z)} < ∞

}
.

Let

S(D) = {S f : f is holomorphic and univalent in D},

T (D) = {S f : f is holomorphic and univalent in D

and has quasiconformal extension to C},

S∗(D) = {T f : f is holomorphic and univalent in D},

T ∗(D) = {T f : f is holomorphic and univalent in D

and has quasiconformal extension to C}.

It is known that

T (D) ⊂ S(D) ⊂ B2(D) and T ∗(D) ⊂ S∗(D) ⊂ B∗

1 (D).

When D = 4 = {z : |z| < 1}, T (4) is the famous Bers embedding model of the
universal Teichmüller space. Here T ∗(4) is an alternative model of the universal
Teichmüller space introduced by Astala and Gehring [3] and Zhuravlev [9]. Zhuravlev
proved in [9] that

T ∗(4) =

{ ⋃
θ∈[0,2π)

Lθ

}
∪ L ,

where L and Lθ are disconnected components of T ∗(4) with f bounded in 4 and
limz→eiθ f (z) = ∞, respectively. Furthermore, some concrete properties of Lθ and L
were studied in [8]. It is easy to see that π : φ → φ′

− φ2/2 maps T ∗(D) onto T (D)

with S f = T ′

f − (T f )
2/2, and it was also proved that π is continuous.

Let g : 4 → D be a conformal mapping. Because D is a quasidisk in C, we know
that g has quasiconformal extension, so it is concluded that

Sg ∈ T (4) and Tg ∈ T ∗(4).

For any f holomorphic in 4, we have

‖S f − Sg‖4 = ‖S f ◦g−1‖D,

‖T f − Tg‖
∗

4
= ‖T f ◦g−1‖

∗

D,

which implies that the map 8 : S f → S f ◦g−1 is an isometric homeomorphism of T (4)

onto T (D), which carries the point Sg ∈ T (4) to the origin of T (D). At the same time,
the map 9 : T f → T f ◦g−1 is also an isometric homeomorphism of T ∗(4) onto T ∗(D)

which carries the point Tg to the origin of T ∗(D).
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We define the inner and outer radii of univalency by the Schwarzian derivative of
domain D, denoted by σI (D) and σO(D), respectively, as

σI (D) = sup{σ ≥ 0 : ‖S f ‖D ≤ σ ⇒ f is univalent in D},

σO(D) = sup{‖S f ‖D : f : D → C is univalent}.

From the analysis above, we know that

σI (D) = inf
Sh∈∂T (D)

‖Sh‖D = inf
S f ∈∂T (4)

‖S f − Sg‖4,

where g : 4 → D is conformal. Hence we conclude that σI (D) is the distance from
the point Sg to the boundary of T (4).

Similarly, we define the inner and outer radii of univalency by the Pre-Schwarzian
derivative of domain D, denoted by σ ∗

I (D) and σ ∗

O(D), respectively, as

σ ∗

I (D) = sup{σ ≥ 0 : ‖T f ‖D ≤ σ ⇒ f is univalent in D},

σ ∗

O(D) = sup{‖T f ‖D : f : D → C is univalent}.

So

σ ∗

I (D) = inf
Th∈∂T ∗(D)

‖Th‖
∗

D = inf
T f ∈∂T ∗(4)

‖T f − Tg‖
∗

4
,

where g : 4 → D is conformal. We can also conclude that σ ∗

I (D) is the distance from
the point Tg to the boundary of T ∗(4).

In [3, 7], it was proved that σI (D) > 0 or σ ∗

I (D) > 0 if and only if D is a quasidisk.
From the above point of view, we establish some formulas to compute the inner
radius of univalency of domain D. As we know, a locally univalent function f
in D is not always wholly univalent in D. With the aid of the inner radius of
univalency, we can judge that a function f is univalent in D when ‖T f ‖

∗

D < σ ∗

I (D)

or ‖S f ‖D < σI (D). Some results have been obtained about the inner radius of
univalency by the Schwarzian derivative such as those for the unit disk (or the half
plane), angular domains, rhombus domains, regular polygons and so on. However, for
the inner radius of univalency by the Pre-Schwarizian derivative, there are a many
things that are unknown. Although the Schwarzian derivative plays an important
role in the study of the universal Teichmüller space, and many important results
have been obtained, it is not easy to deal with the Schwarzian derivative, in general,
because of its complicated form. Therefore, some attempts to replace it by the Pre-
Schwarzian derivative have been made [3]. Although the Pre-Schwarzian derivative
is sometimes called the ‘poor man’s model’, since it does not have much invariance,
this model is interesting when considering geometric function theory. Sometimes the
Pre-Schwarzian derivative model could be more useful although it is less investigated.

In the discussion above, the domain D belongs to C. In other words, the infinity
point ∞ /∈ D. In the study of T (D) which is the Teichmüller space of domain D
by the Schwarzian derivative, whether or not ∞ ∈ D is always ignored because the
Schwarzian derivative is invariant under Möbius transformations. However, in the
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study of T ∗(D), which is the Teichmüller space of domain D by the Pre-Schwarzian
derivative, the two cases when ∞ ∈ D and ∞ /∈ D must be considered separately
because the Pre-Schwarzian derivative is not invariant under Möbius transformations.

In [5], Becker investigated the Teichmüller space of the domain 4
∗
= C \ 4 by the

Pre-Schwarzian derivative. Let 6 be the set of functions F that are meromorphic
and univalent in 4

∗ normalized by F(z) = z + b0 + b1/z + · · · . For any F(z) =

z + b0 + b1/z + · · · , TF = (2b1/z3) + · · · = O(z−3). The norm of the function TF
is defined by

‖TF‖
∗

4∗ = sup
z∈4∗

{|zTF (z)|η−1
4∗ (z)},

which seems to be more natural.
Define

B∗

1 (4∗) = {φ : φ is meromorphic in 4
∗ with ‖φ‖

∗

4∗ < ∞},

and a topological model of the universal Teichmüller space

T ∗(4∗) = {TF : F ∈ 6 and has quasiconformal extension to C}.

Moreover, in [5] it was proved that the model T ∗(4∗) is homeomorphic to the
model T (4∗).

It is known that the map π(φ) = φ′
− φ2/2 : B∗

1 (4∗) → B2(4
∗) is continuous. By

definition, π(S∗(4∗)) = S(4∗) and π(T ∗(4∗)) = T (4∗). Since in [1], Ahlfors has
proved that T (4∗) is an open subset of B2(4

∗) and T ∗(4∗) = π−1(T (4∗)), the
set T ∗(4∗) is also an open subset of B∗

1 (4∗). Moreover, in [4, 6] it was proved
that σ ∗

O(4∗) = 6 and σ ∗

I (4∗) = 1.
The introduction of T ∗(4∗) raises some questions. Is the introduction of

the universal Teichmüller space of domain D∗ with ∞ ∈ D∗ denoted by T ∗(D∗)

necessary? How should the norm of functions in T ∗(D∗) be defined? With the analysis
above, we know that the answers to these questions will help us to compute the inner
radius of univalency of domain D∗ by the Pre-Schwarzian derivative. Let g : 4

∗
→ D∗

be conformal in D∗
\ {∞} with g(∞) = ∞, g′(∞) = 1. We define

B∗

1 (D∗) =

{
φ : φ is meromorphic in D∗ with

‖φ‖
∗

D∗ = sup
z∈D∗

|g−1(z)φ(z)|η−1
D∗(z) < ∞

}
,

T ∗(D∗) =

{
T f : f is meromorphic and univalent in D∗ with lim

z→∞

(
f (z)

z
− 1

)
= 0

and f has quasiconformal extension to C
}
.

So for any F ∈ 6,

‖TF − Tg‖
∗

4∗ = ‖TF◦g−1‖
∗

D∗ .
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It is concluded that φ : TF → TF◦g−1 is an isometric homeomorphism of T ∗(4∗)

onto T ∗(D∗). Furthermore,

σ ∗

I (D∗) = inf
Th∈∂T ∗(D∗)

‖Th‖
∗

D∗ = inf
TF ∈∂T ∗(4∗)

‖TF − Tg‖
∗

4∗ .

Because D∗ is a quasidisk, the conformal map g : 4
∗
→ D∗ has a quasiconformal

extension and Tg ∈ T ∗(4∗). Since T ∗(4∗) is an open subset of B∗

1 (4∗), we can
conclude that

σ ∗

I (D∗) = dist(Tg, ∂T ∗(4∗)) > 0.

Furthermore, T ∗(D∗) is an open subset of B∗

1 (D∗). In fact, for any T f̃ ∈ T ∗(D∗),
we need to prove that there exists a constant r > 0, such that for any meromorphic
and locally univalent function h in D∗ with ‖Th − T f̃ ‖

∗

D∗ < r , then Th ∈ T ∗(D∗).
Since T f̃ ◦g ∈ T ∗(4∗) and T ∗(4∗) is an open set, there exist a constant r > 0 such
that {φ : ‖φ − T f̃ ◦g‖

∗

4∗ < r} ⊂ T ∗(4∗). So for the h above,

‖Th − T f̃ ‖
∗

D∗ = ‖Th◦g − T f̃ ◦g‖
∗

4∗ < r,

so that h ◦ g is univalent and has quasiconformal extension. So h is univalent and also
has quasiconformal extension, which implies that Th ∈ T ∗(D∗).

2. A sufficient condition for quasiconformal extension

In the study of the universal Teichmüller space, it is important to judge whether a
function F ∈ 6 can be quasiconformally extended to C. To be specific, under what
additional condition can F be quasiconformally extended to C? In [5], Becker gave
some answers to this question.

However, we can think over this question in a different point of view, it can be
regarded as consisting of two parts.

(1) When does there exist a quasiconformal mapping F∗ of 4 such that F and F∗

have equal continuous extensions to |z| = 1?
(2) If F and F∗ have this property, when do they together form a locally

homeomorphic mapping of C?

To the second question, there are some answers. For instance, if F and F∗ extend to
locally homeomorphic mappings of the closed domains 4∗ and 4, then they determine
a global homeomorphism.

In 1974, Ahlfors [2] proved the theorem as follows.

THEOREM A. If f is holomorphic and locally univalent in 4, then the inequality∣∣∣∣σ f ′′

f ′
+ σ 2

− σz

∣∣∣∣ ≤ k|σz| (0 ≤ k < 1),

together with 1/σ = 0 on ∂4 and σz/σ
2 in 4, is sufficient to imply that f has

(1 + k)/(1 − k)-quasiconformal extension.
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By the similar method, we can also get the following.

LEMMA 1. If F ∈ 6 and locally univalent in 4
∗, then the inequality∣∣∣∣σ F ′′

F ′
+ σ 2

− σz

∣∣∣∣ ≤ k|σz|

is sufficient to imply that F has a (1 + k)/(1 − k)-quasiconformal extension where σ

satisfies 1/σ = 0 on {|z| = 1} and (σz/σ
2) 6= 0 in 4∗.

For the completeness of the paper, we give the proof of Lemma 1.

PROOF. We can assume that F is meromorphic and locally univalent in 4∗. Define
the extension

W (z) =

F(z), z ∈ 4∗,

G

(
1
z

)
, z ∈ 4,

where G is sense-reserving and k-quasiconformal in 4
∗ with G = F on {|z| = 1}.

If we set G = F + u with u = 0 on |z| = 1, then u should satisfy

|F ′
+ uz| ≤ k|uz|. (1)

In addition, we should require that |uz| 6= 0 in 4∗. Under these conditions it is evident
that W will be a k-quasiconformal extension of F .

If we choose

u =
F ′

σ
,

with 1/σ = 0 on |z| = 1 and (σz/σ
2) 6= 0 in 4∗, then (1) becomes∣∣∣∣σ F ′′

F ′
+ σ 2

− σz

∣∣∣∣ ≤ k|σz|,

which implies that F has a quasiconformal extension.
When F is not meromorphic and locally univalent on {|z| = 1}, we can change W (z)

into the limitation of Wr (z) as r → 1+, where Wr (z) is the extension function
of Fr (z) = F(r z). 2

3. Estimation for the inner radius of univalency of domains with infinity as
an inner point

As an application of Lemma 1 and the definition of ‖T f ‖
∗

D∗ , we can estimate the
inner radius of univalency of domain D∗

= C \ D with ∞ ∈ D∗.
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THEOREM 2. Let D∗ be a quasidisk in C with ∞ ∈ D∗, and let λ be the
quasiconformal reflection across ∂ D∗, then

σ ∗

I (D∗) ≥ inf
w∈D∗

(|λw(w)| − |λw(w)|)|g−1(w)|

|w − λ(w)|ηD∗(w)
.

PROOF OF THEOREM 2. Let w = g(z) be the conformal mapping from 4
∗

onto D∗, so we construct

τ =
λ ◦ g

g
and σ = −

g′

g

1
1 − τ

= −
g′

g − λ ◦ g
. (2)

We know that
1
σ

=
g − λ ◦ g

g
= 0 on |z| = 1

and

σz = −
g′

g

τz

(1 − τ)2 ,

where

τz =
λwgz + λwgz

g
=

λwgz

g
6= 0 in 4∗.

Let F be meromorphic and locally univalent in 4
∗; by Lemma 1 and replacing (2)

into (1), we have∣∣∣∣−g′

g

1
1 − τ

F ′′

F ′
+

(g′)2

g2

1

(1 − τ)2 +
g′′

g

1
1 − τ

−
(g′)2

g2

1
1 − τ

+
g′

g

∂zτ

(1 − τ)2

∣∣∣∣
≤

∂zτ

(1 − τ)2 ,

that is ∣∣∣∣−(1 − τ)

(
F ′′

F ′
−

g′′

g′

)
+

g′

g
τ + ∂zτ

∣∣∣∣ ≤ k|∂zτ |. (3)

The inequality implies that F has a (1 + k)/(1 − k)-quasiconformal extension. It
follows from (2) that∣∣∣∣ z

η4∗

(
F ′′

F ′
−

g′′

g′

)
−

z∂z(gτ)

g(1 − τ)η4∗

∣∣∣∣ ≤ k
|z||∂z(gτ)|

|g(1 − τ)η4∗ |
. (4)

It is easy to see that if F satisfies the inequality∣∣∣∣ z

η4∗

(
F ′′

F ′
−

g′′

g′

)∣∣∣∣ ≤ inf
z∈4∗

k|z||∂z(gτ)| − |z∂z(gτ)|

|g(1 − τ)η4∗ |
, (5)

then F must satisfy inequality (3), which implies that F is univalent. Because

‖TF◦g−1‖
∗

D∗ = ‖TF − Tg‖
∗

4∗ = sup
z∈4∗

∣∣∣∣ z

η4∗

(
F ′′

F ′
−

g′′

g′

)∣∣∣∣, (6)
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we can see, from (4) and (5), that if F satisfies

‖TF◦g−1‖
∗

D∗ ≤ inf
z∈4∗

k|z||∂z(gτ)| − |z∂z(gτ)|

|g(1 − τ)η4∗ |
,

then F is univalent in 4
∗ and F ◦ g−1 is univalent in D∗. So

σ ∗

I (D∗) ≥ sup
0≤k<1

{
inf

z∈4∗

k|z||∂z(gτ)| − |z∂z(gτ)|

|g(1 − τ)η4∗ |

}
= inf

z∈4∗

|z||∂z(gτ)| − |z∂z(gτ)|

|g(1 − τ)η4∗ |

= inf
w∈D∗

(|λw(w)| − |λw(w)|)|g−1(w)|

|w − λ(w)|ηD∗(w)
. 2

By using Theorem 2, we can get a lower bound of σI (D∗), where D is an ellipse
domain.

THEOREM 3. Let D be an ellipse domain where the ratio of the minor axis to the
major axis is q, so then

σ ∗

I (D∗) ≥
2q

q + 1
,

where D∗
= C \ D.

PROOF OF THEOREM 3. We may assume without loss of generality that D∗ is
bounded by the ellipse {eiθr + (e−iθ )/r | 0 ≤ θ < 2π}, where r > 1 is fixed, so then

q =
r − (1/r)

r + (1/r)
and r2

= (1 + q)/(1 − q).

The function w = g(z) = r z + 1/(r z) maps 4
∗ onto D∗, g(z) is conformal

in 4
∗
\ {∞} and g(∞) = ∞. The function

φ(w) =
1
2

(
w −

√
w2 − 4

)
(φ(∞) = 0),

maps D∗ onto the disk |z| < 1/r . It follows that

λ = φ + r2φ,

is a quasiconformal reflection across ∂ D∗.
After the above preparation, next we compute

inf
w∈D∗

(|λw(w)| − |λw(w)|)|g−1(w)|

|w − λ(w)|ηD∗(w)
.
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We know that

g−1(w) =
2

r
(
w −

√
w2 − 4

) ,

ηD∗(w) =
r/2|1 − w(w2

− 4)−(1/2)
|

1 −
∣∣(r/2)

(
w −

√
w2 − 4

)∣∣2 ,

λw = φw + r2φw = φw + r2φw,

λw = φw + r2φw = φw + r2φw,

where

φw =
1
2 [1 − w(w2

− 4)−1/2
] and φw = 0.

So

λw = r2φw = r2 1
2

[
1 − w(w2 − 4)−1/2

]
,

λw = φw = 1/2[1 − w(w2
− 4)−1/2

],

|λw| − |λw| =
1
2 (r2

− 1)|1 − w(w2
− 4)−1/2

|,

|w − λ(w)| = |w − φ − r2φ| =

∣∣∣∣w −
1
2

(
w −

√
w2 − 4

)
− r2 1

2

(
w −

√
w2 − 4

)∣∣∣∣.
Hence

inf
w∈D∗

(|λw(w)| − |λw(w)|)|g−1(w)|

|w − λ(w)|ηD∗(w)

= inf
w∈D∗

(r2
− 1)/2|1 − w(w2

− 4)−1/2
|2/

(
r
∣∣w −

√
w2 − 4

∣∣)∣∣∣w −
(
w −

√
w2 − 4

)
/2 − r2

(
w −

√
w2 − 4

)
/2

∣∣∣
×

1 −
∣∣(r/2)

(
w −

√
w2 − 4

)∣∣2

(r/2)|1 − w(w2 − 4)−1/2|

= inf
w∈D∗

(r2
− 1)/r1/

∣∣w −
√

w2 − 4
∣∣∣∣∣w −

(
w −

√
w2 − 4

)
/2 − r2

(
w −

√
w2 − 4

)
/2

∣∣∣
×

1 −
∣∣r/2

(
w −

√
w2 − 4

)∣∣2

r/2
.

Let ζ = w −
√

w2 − 4, then |ζ | < 2/r and w = (ζ/2) + (2/ζ ),

inf
w∈D∗

(|λw(w)| − |λw(w)|)|g−1(w)|

|w − λ(w)|ηD∗(w)

= inf
|ζ |<(2/r)

(r2
− 1)/r

|ζ/2 + 2/ζ − ζ/2 − r2/2ζ |

1 − r2/4|ζ |
2

r/2
=

r2
− 1

r2 =
2q

q + 1
.
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So

σ ∗

I (D∗) ≥
2q

1 + q
. 2

REMARK. Because q is the ratio of the minor axis to the major axis of the ellipse
and q < 1, we find that

2q

1 + q
< 1 and

2q

1 + q
→ 1 (q → 1),

which is compatible with σ ∗

I (4∗) = 1.
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