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Abstract

Let E and D be open subsets of Rn+1 such that D is a compact subset of E, and let v be a supertemperature
on E. We call a temperature u on D extendable by v if there is a supertemperature w on E such that
w = u on D and w = v on E\D. Such a temperature need not be a thermic minorant of v on D. We
show that either there is a unique temperature extendable by v, or there are infinitely many. Examples
of temperatures extendable by v include the greatest thermic minorant GMD

v of v on D, and the Perron–
Wiener–Brelot solution of the Dirichlet problem SD

v on D with boundary values the restriction of v to
∂D. In the case where these two examples are distinct, we give a formula for producing infinitely many
more. Clearly GMD

v is the greatest extendable thermic minorant, but we also prove that there is a least
one, which is not necessarily equal to SD

v .
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1. Introduction
Given an open set E in Rn+1, a function u ∈ C2,1(E) that satisfies the standard heat
equation on E is called a temperature. If

W(x, t) =

(4πt)−n/2exp(−|x|2/4t) if t > 0,
0 if t ≤ 0,

then W is a temperature onRn+1\{0}. For any point p0 = (x0, t0) ∈ Rn+1 and any positive
number c, the set

Ω(p0; c) = Ω(x0, t0; c) = {(y, s) ∈ Rn+1 : W(x0 − y, t0 − s) > (4πc)−n/2}

is called the heat ball with centre (x0, t0) and radius c. The heat ball is of increasing
importance and can now be found in several books, including [1, 3, 4, 6]. Temperatures
can be characterised in terms of mean values over heat balls, in that a function
u ∈ C2,1(E) is a temperature if and only if

u(x0, t0) = (4πc)−n/2
"

Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2 u(x, t) dx dt

whenever Ω(x0, t0; c) ⊆ E.
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An extended real-valued function v on E is called a supertemperature on E if it
satisfies the following four conditions:

(δ1) −∞ < v(p) ≤ +∞ for all p ∈ E;
(δ2) v is lower semicontinuous on E;
(δ3) w is finite on a dense subset of E;
(δ4) given any point (x0, t0) ∈ E and positive number ε, there is a positive number

c < ε such that the closed heat ball Ω(x0, t0; c) ⊆ E and the inequality

v(x0, t0) ≥ (4πc)−n/2
"

Ω(x0,t0;c)

|x0 − x|2

4(t0 − t)2 u(x, t) dx dt

holds.

If v is a supertemperature on E, D is an open subset of E, and u is a temperature such
that u ≤ v on D, then u is called a thermic minorant of v on D.

Given an open set D such that D is a compact subset of E, and a supertemperature
v on E, it is well known that the restriction of v to D can be replaced by a temperature
in such a way that the resultant function, perhaps with some modification on ∂D,
is a supertemperature on E. We shall study this phenomenon, using the following
terminology.

Definition 1.1. Let E and D be open sets such that D is a compact subset of E, and
let v be a supertemperature on E. If u is a temperature on D such that the function w
defined by

w =

u on D,
v on E\D,

can be extended to a supertemperature on E, we say that u is extendable by v (to E).

Our starting point is a pair of known results. The first is the following corollary of
[7, Theorem 2.5]. In this, a function f on ∂D is called resolutive if it has a Perron–
Wiener–Brelot solution to the generalised Dirichlet problem, in the sense of [6]. That
solution is denoted by SD

f . Throughout this paper, our notation and terminology
follow [6].

Lemma 1.2. Let E and D be open sets such that D is a compact subset of E, and let v
be a supertemperature on E. Then the restriction of v to ∂D is resolutive for D, and
the function w defined by

w =

SD
v on D,

v on E\D,

can be extended to a supertemperature w majorised by v on E.

The second result is not quite [7, Corollary 3.3] but can be proved by an almost
identical method.
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Lemma 1.3. Let E and D be open sets such that D is a compact subset of E, let v be
a supertemperature on E, and let GMD

v be the greatest thermic minorant of v on D.
Then the function w defined by

w =

GMD
v on D,

v on E\D,

can be extended to a supertemperature w majorised by v on E.

Thus each of SD
v and GMD

v is extendable by v to E.
We note that the temperature u, in the definition of ‘extendable’, is not necessarily

a thermic minorant of v on D. For if SD
v , GMD

v and we use the function w of
Lemma 1.2 in place of the original supertemperature v, then GMD

v is extendable by
w, by Lemma 1.3, but is not a thermic minorant of w on D.

It is known that, for some open subsets D such as heat balls, there is only one
temperature u on D that is extendable by a given supertemperature v. See [5,
Theorem 6] for details. On the other hand, if there are two distinct temperatures
u1 and u2 on D that are extendable by v, then there are infinitely many. This is
because, whenever 0 < α < 1, the temperature αu1 is extendable by αv, and (1 − α)u2

is extendable by (1 − α)v, so that αu1 + (1 − α)u2 is extendable by αv + (1 − α)v = v.
Even if SD

v = GMD
v , there may still be infinitely many temperatures on D that are

extendable by v, as the following example shows.

Example 1.4. We take E = Rn+1 and v the characteristic function of Rn× ]0,∞[. Given
any ball B in Rn, we take D = B × (] − 1, 1[∪ ]1, 2[). Since the set B × {−1, 1} is a null
set for the Riesz measure associated with v, [8, Theorem 12] implies that SD

v = GMD
v .

By Lemma 1.2, the function w1 defined by

w1 =

S D
v on D,

v on E\D,

can be extended to a supertemperature on E. We now define D+ = B× ]1, 2[ and
D− = B× ] − 1, 1[. Then SD

v = SD−
v on D− and SD

v = SD+
v on D+. If C = B× ] − 1, 2[,

then C = D and the function

w2 =

SC
v on C,

v on E\C = E\D,

can be extended to a supertemperature on E. Furthermore SC
v = SD−

v on D−, but
SC

v < SD+
v on D+ because SC

v < 1 = v on B × {1}. Therefore w2 < w1 on D+. Thus
SD

v and SC
v are both temperatures on D that are extendable by v, but they are not equal.

Hence there are infinitely many such temperatures.
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2. The least extendable temperature

Example 1.4 also shows that SD
v may not be the least temperature on D that is

extendable by v. However this is because of the choice of v and a different choice
can satisfy this equation. There is a smallest supertemperature v0 on E such that v0 = v
on E\D, and SD

v0
= v0 on D, as we now show.

Theorem 2.1. Let E and D be open sets such that D is a compact subset of E, and let
v be a supertemperature on E. Then the class F of all supertemperatures w on E such
that w = v on E\D has a minimal element v0 for which SD

v0
= v0 on D.

Proof. If B is an open superset of D such that B is a compact subset of E, then v has a
lower bound K on ∂B. Now the minimum principle shows that the restrictions to B of
all members ofF are lower bounded by K. Thus the function u = infF is locally lower
bounded on E, so that its lower semicontinuous smoothing û is a supertemperature
on E which equals u wherever the latter is lower semicontinuous, by [6, Theorem
7.13]. Therefore û = v on E\D, so that û ∈ F and F has a minimal element. Applying
Lemma 1.2, we see that the function w0, defined by

w0 =

SD
û on D,

û = v on E\D,

can be extended to a supertemperature majorised by û on E. That extension belongs to
F , so that it also majorises û and hence the two are equal. �

3. A formula for extendable temperatures

For the case where SD
v and GMD

v are distinct, we can give a formula for an infinity
of temperatures on D that are extendable by v. The key to this is [8, Theorem 7(b)],
which we state below as Lemma 3.1.

We use the following notations. If ν is a nonnegative Borel measure on an open set
E and A is a ν-measurable set, we denote the restriction of ν to A by νA. If D is an
open subset of E, we denote the extended Green function of D by G=

D (see [2, 8] for
details), and define the function G=

Dν by

G=
Dν(p) =

∫
E

G=
D(p; q) dν(q)

for all p ∈ D.
We require a classification of the boundary points of E in which we use the

following notations for upper and lower half-balls. Given any point p0 = (x0, t0)
in Rn+1 and r > 0, we put H(p0, r) = {(x, t) : |x − x0|

2 + (t − t0)2 < r2, t < t0} and
H∗(p0, r) = {(x, t) : |x − x0|

2 + (t − t0)2 < r2, t > t0}. Let q be a boundary point of the
bounded open set D. In our classification of boundary points, we always suppose that
the boundary of D does not contain any polar set whose union with D would give
another open set. We call q a normal boundary point if every lower half-ball centred at
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q meets the complement of D. If this condition fails, and also for every r > 0 we have
H∗(q, r) ∩ D , ∅, then q is called a semisingular boundary point. The set of all normal
boundary points of D is denoted by ∂nD and that of all semisingular points by ∂ssD. A
similar classification is made relative to the adjoint equation, by interchanging H and
H∗ throughout. This leads, in particular, to the idea of a point q ∈ ∂D being a cothermal
normal boundary point if every upper half-ball centred at q meets the complement of
D; the set of all such points is denoted by ∂∗nD. A point q ∈ ∂nE is called regular
if limp→q SE

f (p) = f (q) for all f ∈ C(∂E); a point q ∈ ∂∗nE is called coregular if this
holds relative to the adjoint equation. A point q = (y, s) ∈ ∂ssE is called regular if
lim(x,t)→(y,s+) SE

f (x, t) = f (y, s) for all f ∈ C(∂E).

Lemma 3.1. Let E and D be open sets such that D is a compact subset of E, and
let Y be the complement in ∂D of the set of coregular points of ∂∗nD. Let v be a
supertemperature on E, and let ν be its associated Riesz measure. Then we have
GMD

v = SD
v + G=

DνY on D.

We can now give our formula for temperatures on D that are extendable by v, which
gives an infinity of such functions in the case where SD

v , GMD
v .

Theorem 3.2. Let E and D be open sets such that D is a compact subset of E, and
let Y be the complement in ∂D of the set of coregular points of ∂∗nD. Let v be a
supertemperature on E and let ν be its associated Riesz measure. If µ is a measure
on E such that 0 ≤ µ ≤ νY , then the function w defined on E\∂D by

w =

SD
v + G=

Dµ on D,
v on E\D,

is a temperature on D and can be extended to a supertemperature majorised by v on
E. Moreover,

lim
p→q, p∈D

G=
Dµ(p) = 0

whenever q is a regular point of ∂nD\Y, and

lim
p→q+, p∈D

G=
Dµ(p) = 0

whenever q is a regular point of ∂ssD\Y.

Proof. To prove the extendability, we first suppose that v ≥ 0, so that we can write
v = GEν + GME

v on E. Given a measure µ on E such that 0 ≤ µ ≤ νY , we put
v1 = GE(ν − µ) and v2 = GEµ + GME

v on E. Then v1 and v2 are supertemperatures
on E and v = v1 + v2. By [8, Lemma 6], G=

Dµ is a temperature on D because µ is
supported in ∂D. By Lemma 1.2, the function w1 defined by

w1 =

SD
v1

on D,
v1 on E\D,
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can be extended to a supertemperature majorised by v1 on E. Moreover, by Lemma 1.3,
the function w2 defined by

w2 =

GMD
v2

on D,
v2 on E\D,

can be extended to a supertemperature majorised by v2 on E. Furthermore, Lemma 3.1
shows that GMD

v2
= SD

v2
+ G=

Dµ on D, so that w1 + w2 = SD
v + G=

Dµ = w on D, and hence
w1 + w2 = w on E\∂D. It follows that w can be extended to a supertemperature
majorised by v1 + v2 = v on E.

In the general case, we choose an open superset C of D such that C is a compact
subset of E. Then v is lower bounded on C, so that we can apply the case just proved
to v − m on C, where m = infC v, noting that νC is the Riesz measure associated with
v − m on C. Thus, if µ is a measure on E such that 0 < µ ≤ νY , then the function w3
defined by

w3 =

SD
v−m + G=

DµC on D,
v − m on C\D,

is a temperature on D and can be extended to a supertemperature majorised by v − m
on C. The addition of m to w3 gives the restriction of w to C\∂D and the extendability
follows.

To prove the last part, we first put vµ = GEµ. Then, by [8, Theorem 3],

G=
Dµ(p) =

∫
E

(
GE(p; q) −

∫
∂D

GE(·; q) dωD
p

)
dµ(q)

= GEµ(p) −
∫
∂D

GEµ dωD
p

= vµ(p) − S D
vµ(p)

for all p ∈ D. The function vµ is a temperature on E\Y , so that it is continuous on
∂D\Y . Therefore

lim
p→q, p∈D

S D
vµ(p) = vµ(q)

whenever q is a regular point of ∂nD\Y , and

lim
p→q+, p∈D

S D
vµ(p) = vµ(q)

whenever q is a regular point of ∂ssD\Y . The result follows. �
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