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Abstract

We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold defines
an invariant polynomial-valued differential form. We express it in terms of a finite sum of residues of
classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas provide
a pedestrian proof of the Atiyah—Singer formula for a pure Dirac operator in four dimensions and for a
twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more
general formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either a
Campbell-Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.
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1. Introduction

The noncommutative residue on classical pseudodifferential operators introduced by
Wodzicki [14, 15] has a notable property called locality. That is, it corresponds to a
residue density res, (A) dx integrated over an n-dimensional (closed) manifold M:

res(A) =/ resy(A) dx,
M

(1.1)
resy(A) dx :=

o /m:l K00 (A) (¥, §)) dE.

Here o (A)(x, &) denotes the local symbol of A, for a € C, 0,(A)(x, &) denotes the
homogeneous part of degree a of its symbol, with (x, £) varying in the cotangent
bundle of M, and tr denotes the fibrewise trace. As was observed in [7], this extends to
the logarithm A =log Q of an elliptic pseudodifferential operator Q of positive order
with appropriate spectral cut (we call such an operator admissible).

Exponentiating res(log(Q)) leads to the residue determinant,

detres(Q) == eres(log Q),
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first introduced by Wodzicki in the case of operators of order zero (see, for example,
the survey [3]) and further extended by Scott [12] to elliptic pseudodifferential opera-
tors Q with appropriate spectral cuts of positive order. Further logarithmic structures
have since been investigated in [10], in relation to topological quantum field theory.
Here, we show that the logarithmic residue density for a generalized Laplacian Q,

res, (log Q) dx :=

o [ /S , - (log 0 ) ds] dx,
defines an invariant polynomial-valued form in the sense of Weyl (Theorem 3.12). It
then follows from Gilkey’s invariance theory [2] that this logarithmic residue density
can be expressed in terms of Pontryagin and Chern classes.

The presence of a logarithm makes the actual computation of a logarithmic residue
density difficult. However, observing that the symbol of a generalized Laplacian reads

o(Q) = £ + 0-2(0),

where 0.2(Q) is of order smaller than two, enables us to carry out computations
by means of a noncommutative Taylor-type formula (Theorem 5.1) or a Campbell—-
Hausdorff formula (Theorem 4.8), both of which provide ways to compare o (log Q)
with log(|£]?).

A similar procedure applies, on the operator level, to compute the integrated
logarithmic density

/ resy (o (log Q)) dx
M

in the special case of the square of a twisted Dirac operator Dy acting on a twisted
Z-graded spinor bundle £ =S ® W. Indeed, combining the Lichnerowicz formula
(7.2) (which compares D%,V with a Laplace—Beltrami operator AE = (VEY*VE built
from the underlying connection V£ on E) with a Campbell-Hausdorff formula (which
compares log D%V with log AF) yields an expression for the integrated logarithmic
superresidue density sres(log D‘Z,V) in terms of sres(log(A%)) and a finite number of
superresidues of classical operators involving the curvature of V£ (Theorem 7.2). This
integrated logarithmic superresidue density turns out to be proportional to the index of
the chiral Dirac operator D‘Jg, (Theorem 6.3):

ind(DT) = —% / sres, (log D3,) dx. (1.2)
M

This was observed independently by Scott in [12] and the second author in some
unpublished lecture notes delivered at the University of Los Andes, Colombia. Thus,
locality in the Atiyah—Singer index theorem is closely related to the local properties of
the noncommutative residue.

We compute the index in two concrete examples. Our first example is for a
twisted Dirac operator on a flat space (Theorem 8.1), along the lines described
above using a Campbell-Hausdorff formula, and then for a pure Dirac operator in
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four dimensions, using a Taylor-type formula. For the second example, we first
derive simple formulas (see Proposition 9.3) for (super)residues of certain expressions
involving the derivatives of the Christoffel symbols, which can then be used to derive
the index in four dimensions. In this way, we recover the Atiyah—Singer index theorem
for a pure Dirac operator on a four-dimensional spin manifold.

With the perturbative approach adopted here, using either a Campbell-Hausdorff
or a noncommutative Taylor formula, we were, unfortunately, unable to derive the
general Atiyah—Singer formula due to Scott and Zagier announced in [10] and proven
in [11]. This perturbative approach, nevertheless, provides a pedestrian proof in the
cases investigated here, and useful intermediate results such as Theorem 3.12 and
Theorem 5.1, which we feel are of interest in their own right.

2. Notation

Given a real, oriented Euclidean vector space V of even dimension n = 2p, there
is a unique Z,-graded complex Clifford module S = S* @ S, the spinor module,
such that the complex Clifford algebra C(V) ® C may be identified with End(S)
and dim(S) = 2”. An auxiliary linear complex space W yields a Z,-graded twisted
Clifford module E =S ® W.

Let

c: AV — C(V)
ey N+ Aeig > cle) - - - cleqy)

be the quantization map. To simplify our notation, we set y; = c(e;), so that the
grading operator reads
F=iPy -y,
Notice that I'> = Id. The cyclicity of the trace, combined with the Clifford relations,
implies that the supertrace str := tr o I' on End(E) satisfies the following property for
a matrix M € End(W) viewed as an element of End(E):
se(My;, -+ - y,) =0 ifk<n, stt(My;---y,) = (=2i) tr(M), 2.1

since dim End(S) = 27. On the other hand, setting
oij = glyvi. vil=gviyj ifi#J, (2.2)
we have that, for any permutation T € X, with signature |7|,

7|

Str(or(1)r(2)0r3)r@) * * * Or(n—)r(n)) = str(y1 -+ V)
4r 2.3)
(=DIl(=i)?
These constructions carry over to bundles, for which we abusively use the same
notation.
Let

E=SQW=ET@®E",
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with EF =ST® W, E- =5~ ® W, be a twisted Z,-graded spinor bundle over an
even n = 2p-dimensional closed Riemannian manifold M whose auxiliary bundle
W is equipped with a connection VY. Let F be a vector bundle over M, and let
C¢(M, F) denote the algebra of classical pseudodifferential operators acting on the
space C*°(M, F) of smooth sections of the vector bundle F.

Let

n
D= c(e)V, e CLM, S)
i=1

be the Dirac operator, where VS is the spinor connection, ¢ stands for Clifford

multiplication and {e; : i =1, ..., n} is an orthonormal tangent frame on M. In local
coordinates we shall also write y; for c(e;).
Let

vE=Vvi@l+10VW
be a connection on the twisted bundle £ = S ® W, and let
n
Dy =) c(e)VE € CUM, E)
i=1
be the corresponding twisted Dirac operator. The chiral Dirac operator D‘J,rv and its
formal adjoint Dy, act from C*(M, E ) to C®(M, E™), and conversely.
3. The logarithmic residue density as an invariant polynomial

Following Gilkey’s notation (see [2, (2.4.3)]), for a multi-index o = (¢ . . . &5), we
introduce formal variables g;;/o = 9, g;; for the partial derivatives of the metric tensor
g on M and the connection w on the external bundle. Let us set

ord(gijja) = la| =y +- - - +ay;  ord(wi/p) = |BI.

Inspired by Gilkey (see [2, (1.8.18) and (1.8.19)]), we give the following definition.

DEFINITION 3.1. We call a classical operator A € C{(M, E) of order a geometric if,
in any local trivialization, the homogeneous components o, ;(A) are homogeneous
of order j in the jets of the metric and of the connection.

REMARK 3.2. A differential operator

A= )" cu(x)d € CLUM, E)

le|<a

is geometric if ¢, (x) is homogeneous of order j = a — || in the jets of the metric and
of the connection VY. Here we use the standard notation 9,% = O, - - - Ogy-
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EXAMPLE 3.3. The Laplace—Beltrami operator

n

1 .
Ag=—— Y 3(/38"0))
V8 i=1,j=1

is geometric.
More generally, [2, (2.4.22)] shows that

Ap = dp_l(sp—l + (Spdp
on p-forms, where
St= (=" w p dyi—1%u41,

is a geometric operator. Indeed, each derivative applied to » reduces the order of
differentiation by one and increases the order in the jets of the metric by one.

EXAMPLE 3.4. The square of the twisted Dirac operator
D} ==Y g (vaf +> FZV,f) + Y eldxedxHVE, VF]
ij k i<j
is a geometric operator.
Geometric operators form an algebra.

LEMMA 3.5. The product of two geometric operators A and B in CL(M, E) is again
a geometric operator.

PROOF. Since the product A B has symbol

iyl
o(AB) ~Z( ;)' 8¢a(A)d%0 (B),

we have

_ilel

Oarpk(AB)= ( ;), 0 04-i(A)3¢0p_j(B)
loe| +i+j=k :

where a is the order of A and b is the order of B and where o (C) denotes the symbol

of the operator C. Thus, if the homogeneous components o,_;(A) and op_;(B)

have degree i and j, respectively, in the jets of the metric and of the connection, the

homogeneous component 0,15 (AB) is homogeneous of degree i + j + |o| =k. O

Following [1], we call a second order differential operator acting on C*°(M, E)
with leading symbol |£|> a generalized Laplacian on E. Since generalized Laplacians
are expected to be geometric (see the examples in Section 1), we assume that gener-
alized Laplacians are geometric without further specification. Note that a generalized
Laplacian is admissible (see Appendix A). The following result provides a way to
build families of geometric operators. See Appendix A for details on spectral cuts.

PROPOSITION 3.6. Let Q € C4(M, E) be a generalized Laplacian with spectral cut
6. Then, for any geometric operator A € CL(M, E), the family A(z) :=AQy is a
family of geometric operators.
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PROOF. By Lemma 3.5, it is sufficient to prove the result for A = . For convenience,
we drop the explicit mention of the spectral cut.
Since
1
Q7 =5— | A(Q—-n"dx,
2im r
where I' is a contour described in Appendix A (see formula (A.2)), we need

to investigate the resolvent R(Q, ) = (Q — 2L the homogeneous components
02— j(R(Q, 1)) of the symbol of which are defined inductively on j by

o_2(R(Q, 1) = (02(0) ",
02— j(R(Q, 1) = —0_2(R(Q, 1))
(=)l

|
ktl+Hal=ji<j ¢

(3.1)

X Dg oy (Q)DYo—2—1(R(Q, 1))

Using (3.1), one shows, by induction on j, that o_;_;(R(Q, A)) is a finite sum of
expressions of the type

=) =D DProy 1, (Q) - - - DFF Doy, (Q),

with |I| + |«| = j, |@| = | B]|. Substituting this into

1
Gzz—j(QZ)(x,*;‘):—z.—/?»ZU—z—j(R(Q,)»))(x,S)d)», (3.2)
T Jr

and applying repeated integrations by parts to compute the Cauchy integrals,

2; JEEP = i dn = (e EEE D @ R = D) oy
i Jr k!

leads to a combination of symbols of the type

E1“ P D DEYoy 4, (Q)(x, &) - - - D Doy 1, (Q)(x, £), (3.3)

with |/| + |o| = j and || = |B]|. Since o7_;(Q) is homogeneous of order / in the jets
of the metric and of the connection, it follows that, for any complex number z, the
symbol o2, ; (Q%) is homogeneous of order j as it is a linear combination of products
of homogeneous expressions of order j; in the jets of the metric and of the connection
such that ji +-- -+ jr = J. O

The notion of a geometric operator extends to logarithms of admissible operators
as defined in Appendix A.

DEFINITION 3.7. We say that the logarithm logy A (see formula (A.4) in Appendix A)
of an admissible operator A € C4(M, E) of order a with spectral cut 6 is geometric
if, in any local trivialization, the homogeneous components o_; o(loggA) (see
Appendix A) are homogeneous of order j in the jets of the metric and of the
connection.
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REMARK 3.8. This can be generalized to any log-polyhomogeneous operator A of
order a and logarithmic degree k, by requiring that all the coefficients o,—;;(A)
(see Appendix A) for [l € {0, ..., k} in the logarithmic expansion of the symbol are
homogeneous of order a — j in the jets of the metric and of the connection.

COROLLARY 3.9. The logarithm of a generalized Laplacian is a geometric operator.

PROOF. Again, we drop the explicit mention of the spectral cut. Differentiating (3.3)
with respect to z at zero shows that o_; o(log Q)(x, &) is a linear combination of
symbols of the type

E172 4D DY o2 1, (Q)(x, €) - - - D DPr o1, (Q)(x, &),

with |/| 4+ || = j, and |a| = |B|. Hence, the symbol o_ ¢(log Q) is homogeneous of
order j as it is a linear combination of products of homogeneous expressions of order
Ji (with j1 + - - - 4 jkx = j) in the jets of the metric and of the connection. a

REMARK 3.10. This is a particular instance of a more general result, namely that
the derivative A’(0) at zero of a holomorphic germ A(z) € CL(M, E) of geometric
operators around zero is also geometric. This follows from the expression (see, for
example, [9])

(@ (A (@DNa()-j = 3:(0a()— (A(2)))

of the homogeneous components of the symbol of the derivative A’(0) in terms of the
derivative of the homogeneous components of the symbol of A(z). Here «(z) is the
order of A(z).

w
Adopting Gilkey’s notation (see [2, Section 2.4]) let us denote by Pf,’kvy » (which

we write Pf’ k.p if £ =) the linear space consisting of p-form-valued invariant
polynomials that are homogeneous of order k in the jets of the metric and of the
connection VY. Note that, by invariant, we mean that the polynomials agree in any
coordinate system around xg which is normalized with respect to the point xy, that is,
such that g;;(xo) = 6;—; and i g;;j(xo) = 0. Also, the order in the jets of the metric is
defined to be ord(0y g;;) = et/

EXAMPLE 3.11. The scalar curvature rj; belongs to ’Prf » o Since it reads
2 2
rM=2 E (ai,jgij - ai,l‘gjj)
i.j

in the Riemannian normal coordinate system.

THEOREM 3.12. The logarithmic residue density of a generalized Laplacian Q on E,
Ry (x, Q) :=resy(logy Q) dx

1
= (277,')" |:/;§M tr(Cf—n,O(IOge Q)(_x’ %‘)) d%—] dx,

(34)
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w
is an invariant polynomial in Pﬁ,’z n, and R,(x, Q) is therefore expressed in terms of
Pontryagin forms of the tangent bundle and Chern forms on the auxiliary bundle.

PROOF. By Proposition 3.6 the logarithm (we drop the spectral cut) log O is
geometric, so that o_,(log Q)(x, &) is homogeneous of degree n in the jets of the
metric and of the connection. Integrating this expression in & on the unit cosphere

w
shows that the residue density lies in P;f,’,z n-

w
The result follows since P,f’nv, n 1s generated by Pontryagin forms on the tangent
bundle (see [2, Theorem 2.6.2]) and Chern forms on the auxiliary bundle. O

REMARK 3.13. The logarithmic residue density is clearly additive on direct sums
E{ & E; of vector bundles over a closed manifold M,

Rn(x, Q1 ® Q2) = Ry (x, Q1) + Ru(x, Q2),

but there is, a priori, no reason why it should be multiplicative on tensor products
E| ® Ey — My x M; of vector bundles E; over closed manifolds M;.

4. The logarithmic residue density via the Campbell-Hausdorff formula

The Campbell-Hausdorff formula provides a first approach to computing a local
logarithmic residue density. By the results of Okikiolu [6], for two admissible classical
pseudodifferential operators with scalar leading symbols A and B in C¢(M, E), and,
under suitable technical assumptions on their spectrum to ensure that their logarithms
are well defined,

o0
log(AB) ~log A + log B + Z c® (log A, log B). 4.1)
k=2

Here, C®)(log A, log B) are Lie monomials given by

N (=7 Adp)*1(Adg)?t - - - (Adp)¥i (Adg)Pi
c®p. 0y = (=1’ (Adp Adg 0
P O=2 G (1+ 30 Ben! - aj1pyl - B!

which vanish if 8; > 1, or if 8; =0 and «; > 1, and where the inner sum runs over
j-tuples of pairs («;, Bi) such that o; + B; >0 and Z{:l o + Bi =k. In
formula (4.2), Adp(Q) =[P, Q] and the symbol ~ means that, for any integer N,
the difference

(Q), 42)

j=1

n+1
Fy(A, B) :=1og(AB) —log A—log B— Y C®(log A, logB)  (4.3)
k=2
is of order smaller than —N. The fact that the leading symbols are scalar ensures that
the order of C® (log A, log B) decreases as k increases. Hence, it provides a good
control on the asymptotics since the adjoint operations adjyg 4 and adj,g p decrease the
order by one unit.
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PROPOSITION 4.1 (See [6]). Let A, B € C¢L(M, E) be invertible elliptic operators
with scalar leading symbols such that A, B and their product AB have well-defined
logarithms. Then F,(A, B), defined as in (4.3), where n is the dimension of the
underlying manifold M, is a trace-class operator and hence its Wodzicki residue
vanishes. Both its trace and its residue vanish (see also [12]),

res(log(AB) —log A —log B) = 0. 4.4)

The proof in [6] is based on an expansion on the level of symbols which we now
describe for future use. We consider the algebra FS(U) of formal symbols on an open
subset U of R”, equipped with the symbol product x given by

(— )Ial

o1 xo2(x, E) =)

aeN"

I o1(x, §)d7 o2 (x, §).

Let {0, T}« := 0 * T — T x 0 denote the associated star bracket.

EXAMPLE 4.2. If o is polynomial, then this formal power series of symbols with
decreasing order becomes a finite sum, as in the following example which is of interest
to us:

{E1%, the = (Ly + AY)T,

where we define

n n
=20 Y &0y, and A,:=-) 0. (4.5)
a=1 a=1

We define ad:;k by induction on k, setting adzo(r)zr and ad:’;(kH) (1) :=
{0, ad’* (1)).

EXAMPLE 4.3. adrgp(f) =(Ly+ A)frisa symbol of order ord(t) + k.
Here is another example of interest to us.

EXAMPLE 4.4.

—_\lel
flog 6P, w1 = 3 D

|a|=0

:_212 é’|23x] E) — Z |$|2 057 (x, £) (4.6)

of log E[*07 T (x, &)

+2 Z Sl’sjazxjt(x,é)—l—--- )

4 "X
2= 8

We now specialize to the algebra FS¢(U) of polyhomogeneous formal symbols.
The resolvent of a polyhomogeneous formal symbol o of order a,

r(o ) =0 —o0) (4.7)

https://doi.org/10.1017/5144678871100108X Published online by Cambridge University Press


https://doi.org/10.1017/S144678871100108X

62 J. Mickelsson and S. Paycha [10]

as a solution to (A — o) »r =1, has homogeneous components o,_;(r«(o, A)) of

degree a — j in (&, AV 4) defined, inductively on j, by

o—a(ri(o, 1) = (04 — M),
=0—q—j (re(o, 1)) = —0_4(rs(0, 1))
(_i)lal o o
x Y ———D{oui(0)Dfo—ai(ru(0, 1))
o al
k+l+|al=j,l<j

(4.8)

DEFINITION 4.5. We call a formal symbol o in FSq(U) admissible with spectral
cut 0 if, for every (x, §) € T*U — {0}, the leading symbol matrix ol (x, &) has no
eigenvalue in a conical neighbourhood of the ray Ly = {re’? : ¥ > 0}. In particular,
such a symbol is elliptic.

The logarithm of an admissible formal polyhomogeneous symbol o is defined by
(see, for example, [6]):

log, (0) := %(az /F A=) dk) ,

‘z=0
for a contour I' which encloses the eigenvalues of the leading symbol of o. The
Campbell-Hausdorff formula for admissible formal polyhomogeneous symbols o
and t with scalar leading symbols reads (see [6, Lemma 2.7]):

o0
log, (0 x ) ~log,0 +log, T + Z Cc®(log,0, log,7), 4.9
k=2

where ka)(log*o, log,7) are Lie monomials defined as in (4.2), and adp(Q) is
replaced by

ady,(q) :={p, gl :=p*q —q*p.
The beginning of the expansion in equation (4.1) reads:
log, (o * ) ~log, o0 + log, 7 + %{log*o, log, 7}
+ ﬁ{log* o, {log,o, log, 7}, }«
— zllog, 7. {log,0. log, 7]}

- ﬁ{log*r, {log, o, {log,o, log, T}i}ls}e - -

(4.10)

REMARK 4.6. If 7 is classical, then ka)(log |€]?, 7) is classical since the bracket
{log |£]?, o'}, with a classical symbol o is classical.

REMARK 4.7. If t has negative order, then the order oy of C,Ek)(log €%, T) is
negative and decreases with k. Indeed, oz corresponds either to the order of

{log |£]?, C® (log |£], 7)),

which, by (4.6), is oy — 1, or to the order of {, ka)(log |f§|2, T)}%, which is ord(7) +
oy and, hence, smaller than o.

https://doi.org/10.1017/5144678871100108X Published online by Cambridge University Press


https://doi.org/10.1017/S144678871100108X

[11] Logarithmic residue density of a generalized Laplacian 63

THEOREM 4.8. The logarithmic residue density (3.4) of a generalized Laplacian Q
on E is a finite sum of residue densities of classical symbols:

B 5 n(=1)
res, (log Q) = res, (log, (|£| *G(Q)(x,é)))+j; TR

x Y 1es, (CP(log €%, (|€]72 % 0-2(Q)(x, £))*UTDy),
=2

k

n (_1)] ) (i

:,; G e (€1 0@, )70 @11)

L (=1)

i X_; (j + D!
]_

x Y res(C (log [E17, (1E] 72 % 02(Q)(x, £))*0 D)),
k=2

where we have set
o(Q)(x, ) = []* + 02(Q) (x, §).

PROOF. We write

o (Q)(x, &) = [E* % (1 + |&] 2 % 0-2(Q)(x, £)).
Applying the Campbell-Hausdorff formula (4.9) to o = |£|? and
T=1+&?%0-2(Q)

yields
o(log Q)(x, §) ~log,0(Q)(x, §)

~2log |£] +log, (IE] 7% x 0 (Q)(x, &)
+Y P (og £, log, (1 + 6] 72 x 02(0)))
k=2

~ - D *(j+1)
2 log |‘s|+;1 (Hl)!(m *02(0)(x, &))*V

+) P log £7, log, (1 + €] * 02(Q))).
k=2

This shows that 5
log,o(Q) — log |§]

is a classical symbol since the logarithm,

NOO (=D’ -2 #(j+1)
log, T ;(HI)!M *0-2(Q)(x, £))*UHD,

is classical and, hence, the corresponding Lie monomials are classical by Remark 4.6.
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Applying Remark 4.7 to
v =log,(1+ 57> x 02(Q)),

which has negative order, shows that

P (log |£1%, log, (1 + 16|72 % 0-2(Q)))

has order smaller than —k. Since the residue vanishes on symbols of order smaller
than —n, and

(€172 % 02(Q)(x, &))*UTD

has order no larger than —(j + 1), implementing the residue yields

resy (log Q) = res, (log, (I€] > * 0(Q)(x, £)))

+ Y res, (CF (log &> » log, (1 + €] % % 02(Q)))).

k=2
Replacing
log, (5172 % 0 (Q)(x, £)) = log, (1 + [§] % x 022(Q))
by its expansion yields the result. O

5. The logarithmic residue density via a noncommutative Taylor expansion

A noncommutative Taylor-type formula provides an alternative way to express
logarithmic residue densities. We extend the formulas for noncommutative Taylor
expansions derived in [8] to formal polyhomogeneous symbols.

Given an analytic function,

$(2)=do+d1z+ 2"+,
and an admissible symbol o in FS.(U), we write
1
D, (0) = — / re(A, 0)Pp(A) dA, 5.1
2imw r

where the resolvent, r,(A, ), is defined by (3.1) and I is a contour which encloses the
eigenvalues of the leading symbol of o. Applying this to the higher derivative, ¢p®),

yields
1
o00) =5 [ G- eV
2im r
(5.2)
k! —k—1
- /(x —o)*F=Dg ) da.
2im Jr
If o =|€|9 + 04, with o, of order smaller than g, then the x-resolvent reads
x
O €1+ 02g) =100 1E1D + Y ren (s [E19) (0", (5.3)

n=1
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where, for symbols 1, . . ., 7, in FS.(U), we have set

Fan (A, |§|q)(rl Q- Q)
N (ki + -+ kg +n— D!
Kki+Dki+k+1)---(ki1+---4+kp_1+n—1)

5.4
k|=0

ad({l) (1)) x ad({}) (ra) %+ -+ adeﬁ)(m)(x o

with |k|=k1 + - -+ ky,and k! = k1! - - - kL.

Second quantized functionals are defined on tensor products of symbols in terms
of Cauchy integrals, by analogy with ordinary functionals on symbols (see (5.1)), but
using quantized resolvents, r.;, instead of the ordinary resolvent, r,.

To an analytic function ¢ (z) and an admissible symbol o, we assign a map called
the second quantization of ®(x), defined on (FS.(U))®" by

Dy (0) 1 (FSa(U)®" — FSa(U)

1
t1®...®fn}—).—/I”*n()»,(f)(l'l®"'®Tn)¢()")d)‘-
2im r

One easily derives the following noncommutative Taylor-type formula from (5.4):

Pun(0)(T1 ® -+ - Q)

_ i ad;kl(rl) * - -*ad;k" (tn)
e Kk + Dk ko +2) - (k- 4k 1)

(5.5)

(D(\kl-i-n)(ov).

Applying (5.3) to o = |§,-‘|2 + 0.2, where o., has order smaller than two, we
have

D.(0) = DL (7)) + Z D, (110 2)). (5.6)

Applying this with ¢ = log yields
log, (o) — log, (I€*)

=) > OEE Gk 4+ p — 1)

p=1 [k|=0 (5.7)

*k *k
|€|12 (0<2) * ad|$\2(0<2) R adléfé (0<2)

: |§|—2(|k\+p).
Kk + Dkt + k2 +2) - K1+ + kp T p)

Finally, implementing the noncommutative residue leads to the following formula for
the logarithmic residue density.
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THEOREM 5.1. The logarithmic residue density of a generalized Laplacian Q on E
is a finite sum of residues of classical symbols:

n h—p
resy (log(Q)) = Z Z (_1)|k|+P—1(|k| +p—1!
p=1 =0 (5.8)
e (LAY (022(0))- - (Lt A0 (022(Q)) 50
kiki + Dkt +ko+2) - (ki + -+ kp+ p)
where k! :=ky!---ky! and |k| = ki + - - - + k,. Here we have set

o2(Q)(x, ) ;=0 (Q)(x, §) — €
and, as before, Ly := —2i Y _| &40y, and Ay := =) _, 02 .

El

PROOF. By (5.7), combined with Example 4.3, we have

o.¢] o.¢]
o (log(Q)(x, &) ~ Y Y (=DM~ (k| + p — 1.
p=1 k|=0
(Ly + A0 (022(Q) - - - (L + A)*P (02(Q)) 5| 2P
k'(ky + D(ky + ko +2) - (ki +- -+ kp + p)
which is a formal power series of symbols o} of decreasing order —(|k| 4+ p). Since
the noncommutative residue vanishes on symbols of order smaller than —n, we have
|k] + p < n which implies that only terms with p <n and |k| <n — p survive after
applying the residue. O

’

6. The index as a logarithmic (super)residue

We recall results from [9, 12] (see also [10]). Let Q € C¢(M, E) be an admissible
(and hence invertible, see Appendix A) classical pseudodifferential operator of positive
order g.

For any differential operator A € C£(M, E), the noncommutative residue density

resy (A log Q) dx := — ([ tr(o_, (A log Q)(x, &)) dsé) dx (6.1)
1§1=1

2m)r

is a globally defined n-form on M (see [7] for the case A = I, [9] for the general case),
which integrates over M to the noncommutative residue

/ (/ tr(o—, (A log Q)(x, &)) dsé) dx. (6.2)
m\Jgl=1

res(A log Q) = — @y

Here tr corresponds to the fibrewise trace on End(E).
The residue, furthermore, relates to the Q-weighted trace Tr? (A) of A by (see [12]
when A = I and [9] for the general case)

Tre(A) :=fp,_( Tr(AQ %) = —é res(A log Q), (6.3)
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where fp,_ stands for the finite part at z =0 and Tr for the trace on trace-class
operators. Here, ds& is the volume form on the unit sphere induced by the canonical
measure on R", where o_, stands for the positively homogeneous component of
degree —n of a log-polyhomogeneous symbol o.

REMARK 6.1. One checks that
res(A log(Q + R)) =res(A log Q)
for any smoothing operator R.

EXAMPLE 6.2. Setting A = [ in formula (6.3) yields

1
$0(0) = 2 res(log Q), (6.4)
where ¢ (z) is the zeta function associated to Q. This corresponds to the logarithm,

res(log Q) = log detres (Q),
of Scott’s residue determinant [12].
Let E=E™ ® E~ be any Z, graded vector bundle over M and let
DY :Ce(M, Ey)— CUM, E_)
be an elliptic operator in C£(M, E ® E_). Its (formal) adjoint,
D™ :=(DH*:Ct(M,E")— Ct(M, E™),

is an elliptic operator in C¢£(M, (E™)* ® E,). The operator, A = AT @ A~, where
we define AT :=D™D*, A~ := DD, is a nonnegative (formally) self-adjoint
elliptic operator.

The following theorem, which combines formulas due to McKean and Singer [5]
and Seeley [13], expresses the index of DV,

ind(D") := dim(Ker(D™")) — dim(Ker(D 7)),

in terms of the superweighted trace of the identity. Let wa denote the orthogonal
projection onto the kernel of A, which is finite-dimensional as M is compact.

THEOREM 6.3. The superresidue

sres(log(A)) := —

( / $tr(0—n 0(l0g(A)) (x, £)) dss) dx
2m)" \Jjg|=1

is a globally defined n-form and we have

ind(D) = str® ™A (1) = — sres(log(A + ma)), (6.5)

1
2 ord(D)

where 1 is the orthogonal projection onto the kernel of A and ord(D) is the order
of D. Here str denotes the supertrace on the graded fibres of E.
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REMARK 6.4. In view of Remark 6.1, one can drop the explicit mention of 7 and
write sres(log A), since the projection m is smoothing and the residue is invariant
under translation by a smoothing operator.

PROOF. We first observe a property of the spectrum of A:
Spec(A™) — {0} = Spec(A™) — {0}.
Indeed,
ATup =2 uy = A_(DTup)=2"DTuy VYupeC®M, E;)

so that an eigenvalue A™ of AT, with eigenvector u, is an eigenvalue of A~, with
eigenvector Dt u_, provided that the latter does not vanish. The converse is proved
similarly.

Let us denote by {A,} : n € N}, the set of discrete eigenvalues of A and, similarly,
by {A, :n € N}, the set of discrete eigenvalues of A™. For any complex number z,

SU(A + 7)) =D Ol +8,0)75 =D 0 +8,2)7°

neN neN

= Z ahH— - Z (A,)"% + dim Ker A" — dim Ker A~
At #0 A #0

=ind(D™).

Taking the finite part at z = 0, therefore, yields
ind(D1) = str® 72 (1) = —% sres(log(A)).
This concludes the proof. O

EXAMPLE 6.5. With the notation introduced at the beginning of the paper, for a Dirac
operator,
D}, :C®(M, STQW)—> C®(M, S” @ W),

on the Zj-graded spinor bundle S=S* @ S~ over an even-dimensional spin
manifold M,

ind(Dy,) = —% sres(log(D3))) = —% / sresy (log(D%,)) dx. (6.6)
M

The remainder of this paper deals with the computation of the logarithmic density of
the square, D2, of the Dirac operator D acting on spinors.

7. A formula for the index via the Lichnerowicz formula

We first recall the Lichnerowicz formula (see, for example, [1, Theorem 3.52]) or,
equivalently, the general Bochner identity (see [4, Theorem 8.2]), which relates the
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square D%V of the twisted Dirac operator Dy to the Laplace—Beltrami operator

n
_ _Z(VT MEGE),
e (7.1)

n
== (VeVi = Vge,)
i=1 i

associated with the superconnection VZ on E. Here, VI"M®E i the connection
induced on the tensor product bundle, 7*M ® E, by the Levi-Civita connection on M
and the connection V£ on E. In addition, {¢; :i =1, ..., n} is a local orthonormal
tangent frame.

PROPOSITION 7.1. We have

.
D%V=AE+RE:AE+RW+TM, (7.2)

where ryy stands for the scalar curvature on M and
RE =Y clencep)(VE); ... RV =) cleelep)(V?"y , . (7.3)
i<j i<j
In particular, for a flat auxiliary bundle,

,
D%V=AM+TM,

where Ay is the Laplace—Beltrami operator on the Riemannian manifold M.

PROOF. We choose a local orthonormal tangent frame {¢; : i =1, . . ., n} at the point
X € M such that (Vg)x =0foralli € {1, ..., n}. Since Dy = Z?:l c(ei)Vg at x,

n
D%, = Z c(ei)vgc(ej)vfi
ij=1 '
n
= D clee@)DlVER o, + V5, . ]
ij=1

==Y (VE2 .+ Y clencepl(VE2 ,, = (VE2 ]
i=1 i<j

= AP+ clence) (V) o,

i<j
= AE L RE.
The curvature term, (VE)% € Q2(M, End(E)), decomposes into

(VEY = (V5?2 @1+ 1@ (V"Y)?
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so that E S w
RF = " clencle))(Vo)y, ,, + R".
i<j
A careful computation (see, for example, the proof of [1, Theorem 3.52]) shows that

3 clenclep (Vo , =2t

— 4
i<j
This concludes the proof. o

Combining the Lichnerowicz formula with the Campbell-Hausdorff formula yields
a formula for the index.

THEOREM 7.2. In even dimensions, n = 2p,

1nd(D )= —% sres(log(D )

k (7.4)
sres([(AE) T RETY.

n—1
_ ! sres(log(AF)) + ) -
2 k=1

Inside the residue expansion we use the shorthand (AF )1 for (AE + A) "L, since
the residue is insensitive to the smoothing operator ma.

PROOF. By equation (7.2),
Dy +7py =AF +7ap + RE 47 —7pr
= (AL +7,0) (0 + (AF + 70,0) " URE + 7wp2 — 7AE)),
so that by (4.4), we obtain
sres(log(D3,)) = sres(log(AE)) + sres(log(l + (AEY"L(REY))

(_ )k-‘rl
= sres(log(AF)) + Z sres([(AE)"H(RE)F)

)k
= sres(log(AF)) + Z (=1 sres([(AE)TTRETF).

Here, we have used the fact that the noncommutative residue vanishes on smoothing

operators. Also, for an operator B € C{(M, E) with negative order,
o] (_1)k+1
sres(log(1 + B)) = -
g ) ]; -

which is actually a finite sum since the residue vanishes for operators of order smaller

than minus the dimension of the underlying manifold. Since B = (Af + )~ 'RE

has order —2, the sum stops at p = n/2. O

sres(Bk),

8. The Atiyah-Singer index theorem for a twisted Dirac operator on a flat space

We derive the Atiyah—Singer index formula for a twisted Dirac operator on a flat
space from (7.4). We use the notation introduced at the beginning of the paper.
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We denote the components of the connection V£ in a given local trivialization of
E by 0; + A;. We take local coordinates x; on M such that the metric Christoffel
symbols vanish. By the Lichnerowicz formula,
Dy?=AF+RE ="+ AD*+ ) viviFi.
i i<j
where we have set
Fij=0;Aj — 0jA;i +[Ai, Aj]
to be the 2-form components of the curvature, (VE)2,

THEOREM 8.1. If the Riemann metric on M is flat, then
ind(D}) = / tr(e!F/2m)y,
M

PROOF. As before, n = 2p denotes the dimension of M. By Theorem 7.2,

n—1 (_l)k—H

sres log(DWZ) = sres(log AE) + Z — sres([(AE)_lRE]k).

k=1
The first term on the right-hand side vanishes. Indeed, at a given point x € M and, for
fixed & € T M, the —nth homogeneous component of the symbol, o (log AE)(x, &),
of log AE is an endomorphism of the fibre W, of the auxiliary vector bundle W.
By (2.1), the fibrewise supertrace therefore vanishes on the —nth homogeneous
component of the symbol and, hence, so does the residue density sres, (log AF) dx. It
follows that sres(log AE)y=0.

We now investigate the second term on the right-hand side. On the one hand, all the

expressions
sres log([(AF) 1 RETH)

inside the sum vanish for k > p. Whenever the operators [(AE)~"TRETK are of order
smaller than —n, their residues vanish.

On the other hand, the expressions inside the sum also vanish for k < p. Indeed,
at a point x € M and, for fixed £ € T M, the symbols in the variables (x, &) inside
the residues are of the form My, y;, - - - v, for some matrix M € End(W,) and
proper subsets {if, ..., ix} of {1, ..., n}. Their supertraces, which arise inside the
superresidue, therefore vanish by (2.1).

The remaining term in the sum at k = p corresponds to the residue of an operator of
order —n. It only involves the leading symbol o7 (AF) = |&|> of AE. Thus, we obtain

—1P

sres log(DWZ) = —( sres([(AF + JTAE)_lRE]p)

(_;)psfesus|‘”(tr(RE>>P>

__=DP sres <|SI"(Z ' 'F..>p> dx by (13)
= p Ju vivitij y i

i<j
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(—1)P2r(sm) (Z >p
= t i"Fi‘ d by (2.2 d (1.1
(27‘[)”[7 Msr ij Ut * Y( )an ( )

(47r)Pp' Z =D /M Feye@ - Fr-nrm) dx

by (2.3) and (8.1)

D
- / tr(F"P) dx
2m)Pp! Iy
= —2/ tr(e! F/2m).
M
In the above calculation, we have used the identity
2m"/? 2m?
vol(sn-ly= 8.1)
Cn/2) (p—D!
This concludes the proof. U

9. The curvature tensor in normal coordinates

We recall a few properties of the curvature in a normal local coordinate system,
that is, a coordinate system defined by the exponential map at a point, so that rays
emanating from the origin in the tangent space at this point are mapped to geodesics
on the manifold emanating from this point. Let us recall that, in Riemannian normal
coordinates (see, for example, [1, Proposition 1.28]),

1 (X
81y = 0 = 3R + Y dugi . 0.1)
3
lee|>3
LEMMA 9.1. We have
(Rigjk + Rirja)okj = %Riajkakj»
where o;j was defined in (2.2).
PROOF. Using the first Bianchi identity,
Ryijky =0,

we write R;jxq = —Rkija — Rjkia Which, combined with the antisymmetry of o;; in i

and j, and the (anti)symmetry properties of the curvature tensor
Rijki = —Rjirt = — Rijik = Ryiij,
yields
(Riajk + Rikja)okj = Riajkokj + Rijka0jk
= (Rigjk + Rkija + Rjkia)okj
= (2Rigjk — Rikja)ok;j-
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Consequently,
(Rigjk + Rikja)okj = %[(Riajk + Rikja)okj + 2Riajk — Rikja)0okj]
= 3 Riajko%)-

This concludes the proof. O
PROPOSITION 9.2. At the centre of a normal coordinate system,

BaFf{jij = 1R jkia0;, 9.2)

k

so that 8;Fl-jakj =0.

PROOF. By (9.1), the Christoffel symbols Fl’.‘j = %gkl(ajgil + 0;gj1 — 91gij) vanish at

the centre of the normal coordinate system, where we have
3aF,kj = %(Riajk + Rjaik)-
Indeed, differentiating (9.1) twice yields
0, Tf; = 38" (34081 + 0a0igjt — 0adigij)
= —¢(Riakj + Rijka + Rjaki + Rjita — Riajk — Rikja)
= %(Riajk + Rjaik)-
It follows from Lemma 9.1 that 9, Fl{‘jok = %Rm jkokj» and hence, in particular, that
airfja,- = 1 Rigjkox; =0
at the centre of the normal coordinate system. O

The following result is useful when computing the index.

PROPOSITION 9.3. In four dimensions,

stesy (1|70, T} 0, Ty, OkjOum) dx = 53 WRAR) (9.3)
and £ .
b k
sresy <|§78xa r jaxbr?m> dx = —— 5 W(RAR). (9.4)

PROOF. The result in four dimensions is a consequence of the following formula
in n = 2p = 4q dimensions. At the centre of a normal coordinate system, we show
that

sresx(|g|—2paxalr?" 3, I

iy j1 Yay T iymy

kq ng
X O, Ui Oxaq Vigmy Ok 1 Onimy ==+ Ok jo Ongm, ) dx (9.5)

1
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The proof follows by combining (9.2) with (6.1) and the formula for the volume of the
unit sphere $” ! in n dimensions given by (8.1):

—2p k1 ni kq ng ' .
sresy (I£] 8x”‘l 1—‘iljl ax‘ll Filml Y 8xﬂq 1—‘iqjq axaq 1—*iqmqakljlOinlml T quJqUnqmq)

= ! Sresx(lgl_szilaljlklRilalmlnl s Rl‘ ag jok Ri A

2% 99 Jq%q lqaqMgng

X Ok j1Onymy ** * OkgjyOngmg)

(—i)? ,
- 4p Z (_l)lrl TeSx (|§| PRijayz(yr -+ Ri,a,t(n-3)t(n-2)

TeEYN,

X Riqaqr(n—l)t(n))
1

= ()2 Tar Z (=D Ri a2 1yr@) * + + Rigagrin—3ye(1-2) Ragigrin—1ye(n)

TeX,

by (9.2), (2.1) and (2.3). On the other hand,

(tr(R A R))4
1

= 2_p Z (_l)lrlRilalT(I)T(Z)Ralilf(3)f(4) cee Riqaqr(n—3)r(n—2)

T€X,

X Raiyr(n—1yr(n) dX,

which yields
stes; (161720, TF 9. T ooig T a0 T™ o4 i Gnims -+ - Ok 1. Onom,) dX
X Xay iy j1 o Xay T ipmy Xag = ig jg Yaq " igmg k1j19nym kg jqOngmg
=————— (tr(RAR))Y.
F ozt (TR AR

This proves the first part of the statement.
We prove the second part similarly. We first observe that, using the symmetries of

the sphere,
&§i&j f £2
dE =8;_; i gg
,/|g|:1 |&|n+2 T )= 162

1 S, &2
. Li=1 50 dg (9.6)
n' T Jig=1 1E]F2
. 5i—j 27Tn/2
n ')
Thus, in four dimensions, we obtain
§aéb k 1
Sresy (W BxaFijabe;’m dx = m tr(R A R).
This concludes the proof. O
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10. The Atiyah—Singer index formula in four dimensions
The square of a Dirac operator D acting on pure spinors is the prototype of a
generalized Laplacian. In local coordinates, its symbol reads

0 (D?) = [E]> + T};01i& + 0T} 00) + U0k i0mm + s = |E° + 02(D?),

ijtim

where
02(D?) :=T},01& + 0T} 00) + T}, T}, 0j0wm + s, (10.1)
and s denotes the scalar curvature.

We use (6.6) to compute the index of DT,
: + 1 2
ind(D") =—= sresy (log D7) dx,
2 /m

in terms of the logarithmic (super)residue density, which we explicitly derive in four
dimensions.

Since the residue does not depend on the choice of local coordinates, we choose
to derive the residue density in a normal coordinate system. We therefore need to
compute

sres, (log D?) = sres (log, (I€]* + 0-2(D?))),

where log, is the logarithm on symbols. There are at least two methods to compute the
logarithm of |£]? 4+ o-»(D?). These are the Campbell-Hausdorff formula (4.9) and a
Taylor-type formula as in (5.8).

In the following, we let o denote the part of the symbol o of order smaller than k.
Using the first method, we obtain the following expansion in four dimensions:

Sresy (log(Dz))
= sresy (log, (|€] 72 » 0 (D?)))

i1 i Kl sresy ((log [€]% % (|€] 7% x 0-2(D?)
2= G+ D!

x (x, ENTY i)
1 L (=1 (10.2)

12 4 (i + D!

- sresy ((log |£]* x (log |&]* * (|&] 7% x 0-2(D?)
x (x, ENUTDY_ i)

1 -2 2 2 )
T sresy ({[§] 77 x 0<2(D7), (log |§]” % (|6 " x 02
x (D*)(x, £)<—1}s).
As this requires the computation of various terms in the above sums, it is lengthier
than the second method, which we shall adopt.
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Replacing the residue by a superresidue in (5.8) yields the following description of
the logarithmic superresidue density of D?, in which the sum over p reduces to one
term.

PROPOSITION 10.1. The logarithmic superresidue density of the squared Dirac
operator is a finite sum of superresidues of classical symbols:

sresx(log(Dz))
RS (=M1 (k] 4+ g — 1)
ten et K+ D + ke +2) - G+ -4k + p)

x stesy (Ly + A0) 1 (0<2(D?) - - - (Lx + A 1 (02(D))]g] 721+
where, as before, we have set ¢ = n /4. It is of the form

sres, (log(D?) = Y ay stes, (L202(D?))* (Aroo (D)) [g]72C5H20),
s+i=q

with Axa<2(D2) and L)ZCU<2(D2) contributing, respectively, by

AX(szj L) 0 jkOmn = _%Rjkia RumiaOkjOnm (10.3)
and
LTS T} jk0mn = =R jkia Rmnib® jkOmnEak- (10.4)
PROOF. Applying (5.8) to Q = D? yields an expression which involves terms of the
form

(Lx + A0 (0<2(D?)),
each of which differentiates o, (D?) at least k; times. We have k; < 2. Indeed, since
sres, (log, (D?)) is proportional to a Pontryagin form, it only involves curvature terms,
and so only first-order derivatives of the Christoffel symbols can arise. The product
term, szj I'? ., can only involve partial differential operators of order at most two. Since
the superresidue density sres, (log D?) dx is proportional to a Pontryagin form, there
is no contribution from the scalar curvature, so that terms o<2(D2) corresponding to
zero powers k; make no contribution.

We now analyse the contribution of terms involving powers k; =1, that is,
expressions of the type (L, + Ay)o2(D?). By (10.1), the terms A o-2(D?) can
only contribute by

A (T2 )0k Oum = 204104 T, 0k Oum

ijtim i

| (10.5)
= _jRjkia aniaakjanm.

Let us now see how the terms Lo -2 (D?) contribute. We have
Lyo2(D?) = =2i (0, }j01Eia + a0 ;018
+ @aT T, + U061}, 0k OumEa + Daska),
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which, at the centre of a normal coordinate system, reads
Ly02(D?) = =2i (8T };0kj&ia + 8a0iT[j0kjba + dasEa).-
The only possible contribution can come from
Ly (Tf01j€) = —2i0,T};0%j€i8a = —i R jria0kj&ias (10.6)

which vanishes by antisymmetry of R. There is therefore no contribution from terms
of the type an<2(D2).
When k; = 2 we obtain terms of the form

(Lx + A)’02(D?) = Lio2(D?) 4+ 2L, Avo2(D?) + Ajoa(D?),
and only L)zc o-2(D?) contributes. This introduces terms of the type

L (T T, 0k 0um) = —49aT}; 05Ty, 0% jOnmEaks 107
= _Rjkia Rmm’bajkamnSaSb'

In summary, we only have contributions from Axa<2(D2) and L)2C0<2(D2) via
products

(L262(D*)* (Ayo2(D?)' with p=s 41 and k| =25 + 1.

Since the residue picks the —nth power in |£|, we have 2s — 2(]k| 4+ g) = —n which
implies that 2s 4+ 2¢ = n/2 and, hence, ¢ =n/4. This is confirmed by counting the
Clifford coefficients, since (2.1) implies that

2g =25+ 2t = =
=215 = —.
1 2
Our result now follows from the above computations, together with (10.5)

and (10.7). O

EXAMPLE 10.2. When n =4, in which case ¢ = 1, we have s + ¢ = 1 so that we need
to consider two types of terms: Ao _,(D?) and L)ZC (02(D?)).
Proposition 10.1, combined with Proposition 9.3, yields

Sresy (log(Dz))
- ‘% stesy (Ag(02(D))IE[™H  (whens =0, 1 =1,k =1)

sresy (L2 (02(D?))|£]79)
+
2x3
= sresx(|§‘|_43al—‘l{<-3ar? Uijnm) by (10.5)

J m

(whens=1,r=0,k =2)

4 _
— 3 stese (€170 T 0517, 01j0umakip) by (10.7)

m
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_ _l —4 k n .
= (1 -5 ) sresc(§17* T}y, 08 0mn) by 0-4)

= 152 MRAR) by (93).

Once integrated over the manifold M, this yields the well-known formula

ind(D) = / A=
M (10.8)

. 1
sres(log(D?)) = —2 / A= tr(R A R),
M 4872
since 1
A=1 tr(RAR)+--- .

- 24(27)2

Appendix A. Complex powers and logarithms

An operator A € C€¢(M, E) has principal angle 6 if, for every (x, §) € T*M — {0},
the leading symbol, (o4 (x, £))L, has no eigenvalue on the ray Ly = {re'? : r > 0}; in
that case A is elliptic.

DEFINITION A.1. We call an operator A € C4(M, E) admissible with spectral cut 6
if A has principal angle 6, and the spectrum of A does not meet Ly = {re'® : r > 0}.
In particular, such an operator is invertible and elliptic. Since the spectrum of A does
not meet Lg, 0 is called an Agmon angle of A.

Let A € C4(M, E) be admissible with spectral cut 6 and positive order a. For
Re(z) < 0, the complex power Aj of A, first introduced by Seeley [13], is defined by

the Cauchy integral .
i

A = o . A(A—n"ldn, (A.1)
where Ag = |A|Ze"1(arg M with 0 < arg A <@ 4+ 2m. In particular, for z =0, we have
A)=1.

Here,
Tro=T,,UT;,UT},, (A.2)
where

Ty =1{pe'’ 00> p=r},
[Fe={pe!" 100> p=r),
Ilp={re":0—2m<t<6)

is a contour along the ray Ly around the nonzero spectrum of A. Here, r is any small
positive real number such that ', 9 N Sp(A) = .

The definition of complex powers can be extended to the whole complex plane
by setting A% := A* Ag_k for k € N and Re(z) < k. This definition is independent of
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the choice of k in N and preserves the usual properties, that is, A5 A7 = A" and
Al = Ak, fork e Z.

The complex powers of an admissible operator, A € C£(M, E) with zero order
and spectral cut 6, give rise to a holomorphic map z — A on the complex plane
with values in B(H*(M, E)) for any real number s, where H*(M, E) denotes the
H?-closure of the space C*°(M, E) of smooth sections of E (see, for example, [2]).
The logarithm of A is the bounded operator on H*(M, E), defined in terms of the
derivative at z = 0 of this complex power,

logy A := (3;A5)._,

- (az / M(A — MDY dA)
27T Fr,H I

i
= — 1 AMA —AD)"FdA,
27-[ /I;r.(? Oge ( )

z=0

with the notation of (A.1).

The notion of logarithm extends to an admissible operator A with positive order a
and spectral cut 6 in the following way. For any positive €, the map z — A;~° of order
a(z — €) defines a holomorphic function on the half plane Re(z) < € with values in
B(H*(M, E)) for any real number s. Thus we can set

logg A = AG(3: (A — €)1

i _ _ (A.3)
=AS( 0. — ATE(A — A ldk)) .
0( (27[ ‘/l;rﬁ o ( ) |z:0

For any positive €, the operator
loggAA™¢ = A" logy A

lies in B(H*(M, E)) for any real number s. It follows that logy A, which is clearly
independent of the choice of € > 0, defines a bounded linear operator from H*(M, E)
to H*~¢(M, E) for any positive €. We have

o(loggA) = alog |§] 4 op(logy A)

where o((logy A) is a classical symbol whose asymptotic expansion
o

oo(loggA) ~ ) " 0a—jo(logyA)

Jj=0

has homogeneous components of the form

o_jo(logyA)(x, &) = €|/, (O’ (Apa()-j (x, é—|)> : (A.4)

|z=0
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