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EXPLICIT BOUNDS FOR HERMITE POLYNOMIALS IN THE
OSCILLATORY REGION

WILLIAM H. FOSTER and ILIA KRASIKOV

Abstract

We apply a method of positive quadratic forms based on polynomial
inequalities to establish sharp explicit bounds on the envelope of
Hermite polynomials in the oscillatory region|x| < (2k − 3/2)1/2.

1. Introduction

In this paper we use a standard normalization of the Hermite polynomials; that is, they are
defined byH1 = 0, H0 = 1 and the recurrenceHk+1 = 2xHk + 2kHk−1.

It has been known for a long time (see [11, Section 8.22]; also [1]) that the asymptotics
for Hermite polynomialsHk(x) imply that in the oscillatory region

e−x2
√

1 − x2/(2k + 1) (Hk(x))2

behaves much like a cosine of an appropriate real function. Thus its envelope is almost
independent ofx. This result was generalized to a large family of continuous weights,
and an excellent overview of recent results can be found in [2, 3, 4, 8, 9, 10]. It has been
observed in [6, 7] that instead of asymptotics or potential theory one may, whenever we
have a second-order differential equation or its difference analogue, use simple polynomial
inequalities; for example,

(p′(x))2 − p(x)p′′(x) > 0, (1)

which is valid for all real root polynomials. This approach easily yields explicit bounds
rather than asymptotics for extreme roots, and an envelope of orthogonal polynomials in
the oscillatory region. For instance, this method works for the Bessel function and the
Krawtchouck polynomials [6], in addition to the classical polynomials. Since in the case of
Krawtchouck polynomials the weight is discontinuous, this is certainly not covered by the
general theory. Moreover, it turns out that by slightly perturbing the basic inequality, one
can obtain very sharp bounds for extreme roots [5]. The aim of this paper is to illustrate the
method for the case of the Hermite polynomials by finding a tight bound for its envelope
in the oscillatory region. Our principal result is as follows.

Theorem 1. For x2 < 2k − 3/2,

(Hk(x))2e−x2 6 C(k)
2y2 − 4y + 3√

y(4y4 − 12y3 + 9y2 + 10ky − 12k)
exp

(
15x2

2y(2y − 3)2

)

wherey = 2k − x2,

C(k) = 2k
√

4k − 2 k!2√
8k2 − 8k + 3 (k/2)!2 for k even,
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Explicit bounds for Hermite polynomials in the oscillatory region

and

C(k) =
√

16k2 − 16k+ 6 k!(k − 1)!√
2k − 1 ((k − 1)/2)!2 for k odd.

The theorem is ‘sharp’ in the sense that if

exp

(
15x2

2y(2y − 3)2

)
is replaced by exp

(
− 15x2

2y(2y − 3)2

)

the inequality reverses at all roots of the equation

xy(2y − 3)Hk(x) = (2y2 − 4y + 3)Hk−1(x).

Thus, forx not too close to(2k)1/2 the theorem gives an envelope of|Hk(x)| with accuracy
O(1/k2). Figure1 shows the graphs of(H24(x))2e−x2

and the envelope given by the above
theorem fork = 24.
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Figure 1: Envelope of(H24(x))2e−x2
.

2. Proofs

We start with a generalization of inequality (1).

Lemma 1. Letp = p(x) be a real polynomial having only real roots. Then,for any integral
m > 0,

U2m(p) = 1

2

2m∑
j=0

(−1)m+j

(
2m

j

)
p(j)p(2m−j) > 0, (2)

wherep(i) = dip/dxi .

Proof. Note that form = 1 this is just inequality (1). We present two proofs form 6= 1.
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Explicit bounds for Hermite polynomials in the oscillatory region

First proof. The result follows by double induction onm and the degree of the polynomial
from the easily checked identity

U2m((x − x0)p) = (x − x0)
2U2m(p) + 2m(2m − 1)U2m−2(p).

Second proof. Letst (x1, . . . , xn) = ∑
{i1,...,it }⊂{1,...,n} xi1 . . . xit be the symmetric function

of homogeneous degreet . We observe that ifp(x) = (x − a1) . . . (x − an) then

p(t) = t !sn−t (x − a1, . . . , x − an).

On using the identity

2m∑
j=0

(−1)m+j sj (x−a1, . . . , x−an)s2m−j (x−a1, . . . , x−an) = sm((x−a1)
2, . . . , (x−an)

2),

we obtain

U2m(p) = (2m)!sm((x − a1)
2, . . . , (x − an)

2)

2
> 0.

In the sequel we deal with the case wherem = 2, so we set

U(p) = U4(p) = 3(p′′)2 − 4p′p′′′ + pp(4) > 0. (3)

To simplify the notation we puty = 2k − x2, u = Hk(x) andv = H ′
k(x). We assume

that|x| < (2k)1/2, and consider the following form:

V (x) = U(u) + 6v2

2k − x2
> 0.

Lemma 2. For k even,

V (0) = 8k(2k − 1)k!2
(k/2)!2 .

For k odd,

V (0) = 4(8k2 − 8k + 3)k!(k − 1)!
((k − 1)/2)!2 .

Proof. This follows by a direct calculation fromHk(0) = (−1)m(2m)!/m! for k = 2m

even,Hk(0) = 0 for k odd, andH ′
k(x) = 2kHk−1(x).

The following lemma is the core of our method.

Lemma 3. For x2 > 2k − 3/2,∣∣∣∣ln V (x)

V (0)
− x2 − 1

2
ln

4y4 − 12y3 + 9y2 + 10ky − 12k

2y(2k − 1)(8k2 − 8k + 3)

∣∣∣∣ 6 15x2

2y(2y − 3)2
.

Proof. Using the differential equationH ′′
k = 2xv−2ku, we may express higher derivatives

of Hk(x) in v andu, as follows:

H ′′′
k (x) = (2 − 2k + 4x2)v − 4ku,

H
(4)
k = 4x(3 − 2k + 2x)v + 2k(2k − 4 − 4x2)u.
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ThenV (x) andV ′(x) = dV/dx become quadratic forms inv andu:

V (x) = 8k(y − 1)u2 − 4x(2y − 3)vu+ 2(2y2 − 4y + 3)

y
v2, (4)

V ′(x) = 8xk(2y − 5)u2 − 4x2(4y2 − 12y + 3)

y
vu + 4x(2y3 − 7y2 + 6y + 3)

y2
v2.

Now consider the following expressionW = V ′ − zV , and choosez = z(x) in such a
way that the discriminant ofW as a quadratic form inv andu vanishes. This yields

z1,2 = 2x − 3x(4k + 3y2 − 8y3 + 4y4) ± 3x
√

2k1(y)

yg(y)

where

1(y) = 8k − 60ky + 18y2 + 50ky2 − 16y3 ,

g(y) = 4y4 − 12y3 + 9y2 + 10ky − 12k .

We claim thatW 6 0 for z = z1 andW > 0 for z = z2. By V (x) > 0 this is equivalent to

z2 <
V ′

V
< z1, (5)

provided thatx2 6 2k − 3/2. Indeed, forz to be real we need1(y) > 0.

Calculations give1((3 ± √
5)/5) > 0, 1(3/5) < 0, 1(2k) > 0, and1(25k/8) < 0.

Hence1(y) is positive for(3 + √
5)/5 6 y 6 2k. Since(3 + √

5)/5 < 3/2, this means
thatz is real forx2 6 2k − 3/2. Furthermore, with the above choice ofz the sign ofW is
determined by the sign of the coefficient atu2, which is

24xk(2y3 − 3y2 − 10ky2 + 16ky − 4k ± √
2k(1 − y)

√
1(y) )

yg(y)
.

Notice that fory > 3/2, the denominator of this expression is positive, whereas the numer-
ator is negative forz = z1 and positive forz = z2. This is because

2k(1 − y)21(y) − (2y3 − 3y2 − 10ky2 + 16ky − 4k)2 = yx2g(y),

andg(y + 3/2) is a polynomial with positive coefficients.
Now, by integrating inequality (5) we get∣∣∣∣ln V (x)

V (0)
− x2 − 1

2
ln

g(y)

2y(2k − 1)(8k2 − 8k + 3)

∣∣∣∣ 6 3
√

2k

∫ x

0

x
√

1(y)

yg(y)
dx .

Denote the last integral byR. To estimateR, observe thatg(y) > y2(2y − 3)2, and
1 6 50ky2, for y > 3/2. Hence

R 6 30k
∫ x

0

xdx

y2(2y − 3)2
= 5x2(16ky − 6y − 12k − 9)

6y(4k − 3)(2y − 3)
− 20k

9
ln

(
1 + 3x2

2k(2y − 3)

)
.

Using ln(1 + ε) > ε − ε2/2 we get:

R 6 15x2(4k2 − 2ky + y2 − 3k)

2ky(4k − 3)(2y − 3)2
6 15x2

2y(2y − 3)2
.
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Proof of Theorem1. Rewriting equation (4) in the form

V (x) = 2(xy(2y − 3)u− (2y2 − 4y + 3)v)2

2y(2y2 − 4y + 3)
+ 2g(y)

2y2 − 4y + 3
u2,

we obtain

u2 6 2y2 − 4y + 3

2g(y)
V (x),

and the result readily follows from Lemmas2 and3.

3. Final remarks

Remark 1. Using the original formU instead ofV leads to an error term of orderO(1/k)

for Hk(x). To find the correction 6v2/(2k − x2) we added toU a general nonnegative
quadratic form inv andu with coefficients depending onx. It turns out that the leading
coefficient ofW weakly depends on the choice of the unknown coefficients. Therefore, to
make the difference|z1−z2| as small as possible, we minimized the order of the discriminant
of W in k. Surprisingly, this gives instead of the expected differential equation, an algebraic
one.

Remark 2. One can useU for obtaining inequalities onHk(x) outside the oscillatory
region; observe that whenever the discriminant1 = 2k − y(2y − 3)2, of U as a quadratic
in v andu is positive,v/u must lie within certain bounds. It also yields a good upper bound
on the largest zerox1 of Hk(x), as inside the oscillatory regionv/u is unbounded; therefore
we should have there1 6 0. The solutionx0 of this equation indeed gives an upper bound

x1 < x0 = (s − 1)
√

s + 1√
2s1/3

<
√

2k − 2−11/6k−1/6,

wheres = (
√

k + √
k − 1)4/3. Yet some simple calculations are needed to justify this

because the coefficients ofU depend onx; see [5,6]. In this way we get

H ′
k(x)

Hk(x)
<

4k(y − 1)

x(2y − 3)+ √
1

, x > x0

H ′
k(x)

Hk(x)
>

x(2y − 3)+ √
1

2y − 4
, x >

√
2k − 2.

The first inequality is tight only on a small interval aroundx = (2k)1/2, whereas (as one
can check) the second is sharp forx > (2k)1/2; see Figure2 for k = 24.

Remark 3. There is no analogue of Lemma2 (except the ultraspherical case) for other
families of orthogonal polynomials. However, notice that for the classical polynomials one
can avoid using orthogonality relations. For example, in our caseyV (x) can be expressed
by the three-term recurrence relation andv = 2kHk−1(x), as

∑k+3
j=k−3 aijHi(x)Hj (x), with

aij depending only onk. Then one can estimate an initial value by

∫ ∞

−∞
yV (x)e−x2

dx =
3∑

i=−3

aii ||Hi(x)||2,

together with bounds onV (x)/V (0). We omit the details.
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Figure 2: Bounds onh(x).

h(x) = H ′
k(x)

Hk(x)
, t (x) = 4k(y − 1)

x(2y − 3)+ √
1

, s(x) = x(2y − 3)+ √
1

2y − 4

Remark 4. Although we did not use it in this paper, it worth noticing that an upper bound
onU(p) readily yields an upper bound onp2, as follows.

Corollary 1. Letp = a
∏k

j=1(x − xj ) be a real polynomial with only real roots;then

U(p) > 6k(k − 1)a4/kp2−4/k.

Proof. Let µi = ∑k
j=1(x − xj )

−i ; then usingp′ = pµ1 we get

U(p) = 6p2(µ2
2 − µ4) = 12p2

k∑
j=1

j−1∑
l=1

((x − xj )(x − xl))
−2.

By the arithmetic-geometric mean this does not exceed

6k(k − 1)


 k∏

j=1

(x − xj )
−2k+2




1/(k
2)

= 6k(k − 1)a4/kp2−4/k.

Notice also that for a polynomial of a given degreek the inequality (1) can be slightly
strengthened as

(k − 1)p′2 − kpp′′ = (kµ2 − µ2
1)p

2 > 0.
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In this connection we should like to make the following two conjectures, the first of which
generalizes this inequality and sharpens inequality (2) as follows.

Conjecture 1. Letp = p(x) be a real polynomial of degreek having only real roots. Then
for any integralm, where1 6 m 6 k,

1

2

(
k − m

m

)
(p(m))2 +

m−1∑
j=0

(−1)m+j

(
k−j

2m−j

)
(
k−m
m−j

)
(

m

j

)
p(j)p(2m−j) > 0.

We call a formT (p) = ∑m
j=0 ajp

(j)p(m−j), whereaj may depend only onm and
k = deg(p),aplus formif it is nonnegative for all polynomialsp with only real roots.

The plus formT (p) is minimal if for any nonzero plus formS(p) not proportional to
T (p), the formT (p) − S(p) is not a plus form.

Conjecture 2. For fixedm there are only a finite number of minimal forms.
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