ON A COMBINATORIAL PROBLEM OF ERDOS
H. L. Abbott and D. Hanson
(received May 15, 1969)
A family ¥ of sets is said to possess property B if there exists
aset B CUZ suchthat BV F # ¢ and B p F for every F ¢ J.
We consider the following question raised by P. Erdés [1]: let n and

N be positive integers, n > 2 and N > 2n - 1 and let S be a set of
N elements; what is the least integer mi\l(n), (provided such an

integer exists), for which there exists a family & of mi\I(n) subsets

of S satisfying

(a) ,FI = n for each Fe &;
(b) UF = S;
(c) F does not have property f;

(d) if 3 C3 and |UJF'| < N, then F' has property B?

Erdés pointed out that m‘2t+1(2) = 2t + 1 and that mi\I(Z) does
not exist if N is even. In this note we shall prove that mi\](n) exists

for all n > 3, N > 2n - 1, and obtain some upper bounds. However,
instead of studying mI{I(n) we shall consider m’l‘i](n) which is defined

in almost the same way as mi\l(n) except that (d) is replaced by

(e) if F' 1is a proper subfamily of ¥ then &' has
property R.

It is clear that the existence of mT\I(n) implies the existence of mi\l(n)

and in fact we have m'N(n) < m’I“\I(n) .
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THEOREM 1. I mﬂl‘\l(a) exists, then so does m;+a+2b_1(a + b)

for every positive integer b.

Proof. Let G be a family of m*N(a) sets satisfying (a), (b), (c)

and (e). Let T be a set with a + 2b - 1 elements. We assume that
T is disjoint from every member of G. Let ¥ be the family of b-subsets
of T and let J be the family of (a + b) - subsets of T. Let

F={F :F=HUG, Held, Ge¥ or F =1L, Led}

It is clear that each member of & has a + b elements and that
|UF| = N +a +2b-1. We need to show that JF satisfies (c) and (e).

Suppose F has property . Then there exists a set B C U3J such
that 0 < |B M Fl < a t+ b for every F ¢ & Since (G does not have
property f, either there exists a set G1€ G such that B M Gl = ¢ or

there -exists a set Gze G such that B D GZ. However BfWG1 = ¢ implies

B H# ¢ for each H < ¥. Hence [Bm Tl > a + b and hence
B D L for some L ¢ J. This is a contradiction and hence B M) G1 =0

is impossible. Also B () L # ¢ for all L = J implies [B/M T| > b
and hence B D H, for some Hl € . Thus B D GZ is also impossible

since it would imply B D H U Gz . Hence 3 does not have property 8.

Let F' be a proper subfamily of . We need to show that there
exists a set B such that 0 < IB M F[ < a+b forall F e F'. Let
A ¢ 3F - 3. Suppose first that A = G ) H, G eG H ¢¥. Since

G satisfies (e), there exists a set B, C UG such that 0 < IBl N G| < a
for all G ¢ G - {Gl}, Set B = H1 U B1 . Then clearly

0 < |BMF| <a+b forall F e 3F'. The only other possibility is
that A ¢ J. Then one cantake B = A. It follows that F' has
property B and the proof of Theorem 1 is complete.

COROLLARY 1. m';](n) exists for all n > 3 and N > 2n, N even.

Proof. As was pointed out by Erdés, m§t+1(2) exists for all
t > 1. Hence if we take a = 2, N = 2t + 1 in Theorem 1, we see
that m%* (b + 2) exists for all b > 1, t > 1. This clearly

2t+2b+2
implies the corollary.

In order to establish the existence of m’l":\](n) for n > 3, N odd,

we must first examine the case n = 3.
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THEOREM 2. (3) exists for all t > 2.

*
Mot+1

Proof. Let G be a family of m*  (2) 2-subsets of a set S of

2t-1
2t - 1 elements satisfying (a), (b), (c) and (e). We may assume
S={1,2,...,2t-1} and G = {(1,2). (2,3), (3,4), ..., (i, i+1), ...,
(2t-2, 2t -1), (1,2t - 1)}, thatis, the sets in G form the edges of
an odd circuit. Let F be the family consisting of the following sets:

GU {a}, cU{p}, {a,b, 1}, {a,b,2}, {a,b,3}, {1,2,3}, where
Ge G and a,b ¢ S. To prove the theorem we must show that ¥
satisfies (c) and (e).

Let B C UJ have non-empty intersection with each member of &.
If aec¢B and b ¢ B then, since BM {1,2,3} # &, B must contain
one of {a,b,1}, {a,b,2}, {a,b,3}. ¥ aec B and b ¢ B, then
BN G # ¢ for each G ¢ G. Since G does not have property 8, B D G1

for some G, ¢ G. Hence B D GIU {a} . Finally, if a¢ B and b ¢ B
then B D{1,2,3}. Thus & does not have property B,
Let JF' be a proper subfamily of & and let A ¢ - F'. We need

to show that there exists a set B such that 0 < IB M F, < 3 for all
FedF . If A-= GIU {a}, G e G, then since § satisfies (e), there

exists a set B C UG such that IBI M G| =1 for each G ¢ G - {Gl}
and B1 M G1 = ¢. Since at least one, but not all, of 1,2,3 belong to
B wemaytake B = B (U {b}. Then 0 < |[BM F| < 3 for all

F € F'. The case A = GIU {b} can be disposed of in the same way.

If A is oneof {a,b,1}, {a,b,2}, {a,b,3} we maychoose B = A,
Finally, if A = {1,2,3} we may take B = {a,b}. Itfollows that
F' has property 8.

COROLLARY 2. m’;](n) exists for n > 3 and N > 2n - 1, N odd.

Proof. The case n = 3 has been taken care of in Theorem 2. For
n >3 take a = 3, N =2t + 1 in Theorem 1. This shows that

% .
m2t+2b+3(b + 3) exists for b > 1, t > 2, and hence Corollary 2 holds.

From the above results we get the following upper bounds for
* .
mN(n).
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(N - 2n + 3) <2n—3> + <Zn-3>, if N is even, n
n-2 n

(2N—4n+8)<2n_4>+(2n_4>, if N isodd, n > 4.
n-3 n -

We have been able to prove a number of additional recurrence
inequalities for m;(n) . These are given in the following theorem.

m?](n) <

THEOREM 3. The following inequalities hold:

* % * ko _ 4.
(1) m¥ () < mEk) {m¥ @0}, if K>2k-1, L>20-1;

(2) on(m) < n m¥(n - 2) +2 oot if n is odd;

N+
(3) (n) < n m’"(n -2) + 2" -1 + 2n—2’ if n is even;
N+2 - —_—
(4) mX (n) < (2n - 1) {m*(n -2) + 1} .
N+2n-1 - N
Since the arguments are somewhat long, we shall prove only (2).
Proof of (2): Let G be a family of m*lil(n - 2) sets satisfying (a),
(b), (c) and (e). Let Fi = {2i-1,2i} andlet ¥ = {Fi:i =1,2,...,n}.
Let J be the family consisting of all sets of the form {ai, az, ...2 }
n
where a.i € Fi and a.i = 2i -1 for an even number of values of 1i.

Finally, let

F={F:F=GUH, GeG, HeHd or F =1L, LeJ}.

It is clear that the number of sets in & is n m;(n -2) + Zn_1 and that

]UJ] = N + 2n. It remains to be shown that & satisfies conditions (c)
and (e).

Let B be any set such that B\ F £ ¢ for each F ¢ F. To show
that ¥ does not have property 8 we must show that B contains a member
of &.

Case 1. For somei and j, B DF, and B F. = ¢.
and ; anc i
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BN F, = ¢ implies that B () G # ¢ for each G ¢ G. Since G
does not have property B, B D Gl for some Gl ¢ G. Hence

B D GlU Fi’ that is, B contains a member of J.

Case 2. For some i, B DO F,, IBijf > 1 for all j.

-
1’ t

and ,BmFJI =1 for j=t+1,..., n. Infact we may assume
BﬂFj={2j-1} for j=t+1,...,t+r and BﬁFj:{zJ‘} if

We may assume without loss of generality that B D F

j=t+r+1,...,n. If r is even then B contains {2, 4, ..., 2t,

2t +1,...2t +2r-1, 2t +2r + 2, ... 2n} and if r is odd, B
contains {1,4,6, ...2t, 2t +1, ..., 2t +2r -1, 2t +2r +2,...,2n}
so that in any case B contains a member of J.

Case 3. leFil < 1 for all i, Bij = ¢ for some j.

In this case B satisfies the conditions of Case 2. Hence B
contains a member of F and thus B is disjoint from a member of JF.

Case 4. |B M Fil = 1 for all i.

We may assume BmFi={Zi-1} for i = 1,2, ...t, and
Bf-\}?‘i = {2i} for i =t +1,...,n. I t is even then B contains

{1,3,..., 2t-1, 2t +2,...,2n}, i.e. B contains a member of &.
If t is odd, then, since n is odd, B is disjoint from {2,4, ..., 2t,
2t +1, ..., 2n- 1}, i.e., B misses a member of F and this is
impossible.

Since there are no other possibilities, F does not have property

Let- F' be a proper subfamily of ¥. We must show that there
exists a set B suchthat 0 < |[B() F| < n forall F ¢ . Let
A ¢ ¥ - &' . Suppose first that A = Gl U Fi’ Gl ¢ G. Since G satisfies

(e), there exists a set B1 C UG such that 0 < [Bl M G[ < n- 2 for all
GeG- {Gl} . Moreover, we may assume B1 D G1 (for if B1 ) G1
then we must have B1 M Gl = ¢ and hence instead of choosing B1 we
choose _El). Let B = Bl U Fi . Then it is easy to see that

0< |BMF| <n forall F ¢ F . The only other possibility is that

A ¢ 3. Inthis case we take B = A. Then clearly |B () F| < n for
all F ¢ '. Moreover B\ F # ¢ for all F ¢ 3' since B/ F = ¢
implies F = A, the complement of A with respectto {1, 2, ..., 2n} .
But A contains an even number of odd elements and since n is odd,
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A must contain an odd number of odd elements and hence A ¢ . Thus
0 < |B M Fl < n for all F ¢ 3'. Hence F' has property 8. This
completes the proof of (2).

The inequalities given in Theorem 3 are not very strong for large
values of n and N. However, for certain small values of the arguments
our results appear to be considerably better than previously known results.
Denote by m(n) the least integer for which there exists a family of m(n).
sets, each set with n elements, and which does not possess property 8.
Thus m(n) = rrl\jjn m’lil(n). By (3) and the fact that m’g(Z) = 3 we get

mfi(‘}) < 24 and hence m(4) < 24. The best previous result is
m(4) < 26. If we use (2) and mﬂ;(3) = 7 we get mi“7(5) < 51 and hence

m(5) < 51. The best previous result is m(5) < 88. Similarly, we get
m(7) < 421, an upper bound which is considerably smaller than that
given by m(7) < 708, the best previous result.

Since we have not proved (3) and since our claim that m(4) < 24
is based on (3) we indicate briefly the construction which leads to (3).
Let G be a family of m’f\l(n - 2) sets satisfying (a), (b), (c) and (e). For

i=1,2,...,n let F, ={2i-1,2i} andlet ¥ = (F :i=1,2,...,n}.

Let J be the family of all sets of the form {1,a_,a_, ..., an} where

273
aieFi for i = 2,3, ..., n. Let G be the family of all sets of the

form {2, a .,an} where aieFi for i = 2,3, ..., n and a.i

P
is even for an odd number of values of i. Let

F={F:F=GUH, GeG HeH of F=L, Le7

or F

n

K, Ke@}.

-1 -
Then ,3[ = n Mt(n -2) + 2" + 2" 2 and one can show by arguments

only slightly complicated than those used to prove (2) that JF satisfies
(c) and (e).
In conclusion we mention a problem which we have not been able
*
m (n)

N

to settle: for fixed n > 3, does lim
N- o0
from our results that there exist constants an and blrl such that for

exist? It follows

mY (n)

11 suffici .
all sufficiently large N, a < N < bn
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