
Probability in the Engineering and Informational Sciences, 31, 2017, 561–575.

doi:10.1017/S0269964817000274

FINDING EXPECTED REVENUES IN G-NETWORK
WITH SIGNALS AND CUSTOMERS BATCH REMOVAL

MIKHAIL MATALYTSKI and DMITRY KOPATS

Faculty of Mathematics and Computer Science,
Grodno State University,

Grodno, Belarus
E-mail: m.matalytski@gmail.com

The paper provides an analysis of G-network with positive customers and signals when
signals arriving to the system move customer to another system or destroy in it a group
of customers, reducing their number to a random value that is given by a probability
distribution. The signal arriving to the system, in which there are no positive customers,
does not exert any influence on the queueing network and immediately disappears from
it. Streams of positive customers and signals arriving to each of the network systems are
independent. Customer in the transition from one system to another brings the latest
some revenue, and the revenue of the first system is reduced by this amount. A method
of finding the expected revenues of the systems of such a network has been proposed.
The case when the revenues from transitions between network states are deterministic
functions depending on its states has been considered. A description of the network is
given, all possible transitions between network states, transition probabilities, and rev-
enues from state transitions are indicated. A system of difference-differential equations for
the expected revenues of network systems has been obtained. To solve it, we propose a
method of successive approximations, combined with the method of series. It is proved
that successive approximations converge to the stationary solution of such a system of
equations, and the sequence of approximations converges to a unique solution of the sys-
tem. Each approximation can be represented as a convergent power series with an infinite
radius of convergence, the coefficients of which are related by recurrence relations. There-
fore, it is convenient to use them for calculations on a PC. The obtained results can be
applied in forecasting losses in information and telecommunication systems and networks
from the penetration of computer viruses into it and conducting computer attacks.
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1. INTRODUCTION

A survey of the results obtained for the queueing systems (QSs) and networks in the station-
ary regime can be found in [1]. The queueing networks with revenues in the non-stationary
regime were considered in [2–5]. The customer passing from one QS to another brings to the
latter some revenue, and the revenue of the former QS is decreased by the same value. At
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that, the revenues from the transitions between the network states depended on their states
and time or were random variable with given moments of the first and second orders. The
review paper [2] present the results of studies, analysis, optimization, and selection of the
optimal strategies in the Markov networks with revenues, describe various their applica-
tions as the probabilistic models for forecasting the anticipated revenues in the information
telecommunication systems and networks, where, for example, customer servicing on a server
brings an revenue to the servicer, as well as in the insurance companies, logistic transport
systems, production systems, and other objects.

G-networks have been used to control packet networks in real time [6] and the transient
behavior of the G-network as a control element has an impact on the behavior of the packet
network itself and therefore is of practical value. Furthermore it is interesting to note that for
certain QSs [7] the stationary probabilities do not depend on the inter-arrival and service
time distributions [7], while we would not expect this to hold for transients in general.
Finally, certain generalizations of G-networks [8] do not have any impact on the stationary
probability distributions [8], while intuitively we would expect that the transients will be
affected.

2. NETWORK DESCRIPTION. THE PROBLEM

We will consider an open G-network [9] with n single-queue QSs. Simple flow of customers
arrives to the Si system from external environment (QS S0) with the rate λ+

0i, additional
simplest signal flow also arrives with the rate λ

(1)
0i , i = 1, n. Assume all customer flows

arriving to QS are independent. The service durations of positive customers in i-th QS
distributed exponentially with the rate μi, i = 1, n. The positive customer processed by
Si moves to QS Sj as a positive customer with probability p+

ij , moves as a negative cus-
tomer with probability p−ij , and moves out of the network to the external environment with
probability pi0 = 1 −∑n

j=1 (p+
ij + p−ij), i, j = 1, n.

Let at some time moment there are ki ≥ Bi positive customers in ith QS, where Bi –
random integer value. When signal arrives in the system, acting as a negative customer
in this system, the number of positive customers therein is reduced by Bi (Bi positive
customers are removed immediately). If ki < Bi then ith QS does not remain customers.
Random value Bi determines the maximum size of the customers removal batch at QS Si,
and has an arbitrary discrete distribution law: P {Bi = m} = πim, m ≥ 1, E {Bi} = bi.

The signal [10], coming in QS Si with no positive customers, does not have any impact
on the network and immediately disappears from it. Otherwise, if the system Si is not empty
and a signal arrives into it, there can occur following events: incoming signal instantly moves
the positive customer from the system Si into the system Sj with probability qij , in this
case, signal is referred to as a trigger; signal acts as a negative customer and destroys a
group of positive customers in QS Si with probability qi0 = 1 −∑n

j=1 qij [11].
The network state at time t is described by the vector (�k, t) = (k1, k2, . . . , kn, t), which

forms a homogeneous Markov process with a countable number of states, that means there
are ki positive customers in QS Si at time t, i = 1, n.

Customers during the transition from one to another QS bring the latest some revenue,
and the revenue of the first QS is reduced by this amount. Revenue generally can take both
positive and negative values (losses). Revenues of the G-network with the group removal of
positive customers, but without signals were considered in [12].

It is required to find the average revenue that customers bring to ith QS during time
t, i = 1, n. It should be noted that the method of finding the expected revenues in various
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queueing networks of small dimension, when the revenues from the transitions between their
states depend on these states and time, and also the approximate method of finding them
in the case when the revenues from the transitions are random variables, are described in
the articles [2–5]. Here we shall use a modified method of successive approximations applied
to G-networks in [13,14].

3. ABOUT FINDING EXPECTED REVENUES OF THE NETWORK SYSTEMS

We introduce some notation. Let Ii – zero vector of dimension n, consisting of zeros, with the
exception of the component with number i, which is equal to 1; let vi(�k, t) be the expected
revenue obtained by the ith QS in time t, if at the initial time instant the network is in the

state �k; u(x) – unit Heaviside function, u(x) =

{
1, x > 0,

0, x ≤ 0,
. The following transitions of the

Markov random process to the state (�k, t) during the time Δt are possible:

(1) From the state (�k − Ij , t), j �= i, in this case in the jth QS in time Δt a positive
customer will arrive with a probability λ+

0j u(kj)Δt + o(Δt), i = 1, n, the revenue of
the system Si in this case will be ri(�k)Δt + vi(�k − Ij , t); if i = j then the revenue
of the system Si will be r0i(�k − Ii, t) + vi(�k − Ii, t), where r0i(�k − Ii, t) the revenue of
the ith system from the given transition.

(2) From the state (�k + Ij , t), j �= i, wherein the positive customer leaves the net-
work to the external environment or moves to the jth QS as a signal if there
were no customers in it; the probability of such an event is equal to (μipi0 +
μip

−
ij(1 − u(kj)))Δt + o(Δt), i, j = 1, n, the revenue of the system Si in this case

will be ri(�k)Δt + vi(�k + Ij , t); if i = j then the revenue of the system Si will be
−Ri0(�k + Ii, t) + vi(�k + Ii, t), where Ri0(�k + Ii, t) the revenue of the ith system from
the given transition.

(3) From the state (�k + Ij − Is, t), j, s �= i, in this case, after the end of the service of the
positive customer in the jth QS it is moved to the sth QS again as a positive customer
or arrived to the ith QS signal instantly moves the positive customer from the ith
QS to the jth QS; the probability of this event is equal to (μjp

+
js + λ

(c)
0j qjs)u(ks)

Δt + o(Δt), i, j = 1, n, the revenue of the system Si in this case will be ri(�k + Ij −
Is)Δt + vi(�k + Ij − Is, t); if j = i then −ris(�k + Ii − Is, t) + vi(�k + Ii − Is, t).

(4) From the state (�k + Ij + Is − Ic, t), c, s, j �= i, in this case, after the end of the
service of the customer in the jth QS, it is sent to the sth QS a signal, which instantly
moves the positive customer from the jth QS with a number c; the probability
of this event is equal to μjp

−
jsqscu(kc)Δt + o(Δt), i, j, s = 1, n, the revenue of

the system Si in this case will be ri(�k + Ij + Is − Ic, t)Δt + vi(�k + Ij + Is − Ic, t);
if j = i the revenue will be −rjsc(�k + Ij + Is − Ic, t) + vi(�k + Ij + Is − Ic, t), and if
s = i it will be equal to −rjic(�k + Ij + Ii − Ic, t) + vi(�k + Ij + Ii − Ic, t), otherwise
rjsi(�k + Ij + Is − Ii, t) + vi(�k + Ij + Is − Ii, t).

(5) From the state (�k + mIj , t), j �= i, in this case, the signal from the outside arrives
to the jth QS and destroys in it a group of positive customers value of m; the
probability of such an event is equal to λ

(c)
0j qj0

∑∞
m=1 πjmΔt + o(Δt), i = 1, n; in

this case the revenue of the Si will be ri(�k + mIj , t)Δt + vi(�k + mIj , t); otherwise
−Ri(�k + mIi, t) + vi(�k + mIi, t).
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(6) If the signal arrives from outside to the jth QS, j �= i, in which there are no customers,
it can wait for any group of customers and destroy it; the probability of such an event
is equal to λ

(c)
0j qj0(1 − u(kj))

∑∞
m=1 πjm

∑m−1
r=1 P (�k + rIj , t)Δt + o(Δt), i, j = 1, n,

in this case the revenue of the Si will be
∑m−1

r=1 ri(�k + rIj , t)Δt + vi(�k + rIj , t); if
i = j then −∑m−1

r=1 Ri(�k + rIi, t)Δt + vi(�k + rIi, t).

(7) From the state (�k + Ij + mIs, t), j, s �= i, in this case, after the end of the cus-
tomer service in the jth QS, it is sent to the sth QS as a signal that destroys a
random group of positive customers; the probability of such an event is equal to
μjp

−
jsqs0

∑∞
m=1 πsmΔt + o(Δt), i, j, s = 1, n; the revenue of the system Si in this

case will be ri(�k + Ij + mIs, t)Δt + vi(�k + Ij + mIs, t); if i = j, it will be equal to
ris(�k + Ii + mIs, t) + vi(�k + Ii + mIs, t); and if s = i, then −Rji(�k + Ij + mIi, t) +
vi(�k + Ij + mIi, t).

(8) If after finishing the service of the customer in the jth QS, it is sent to
the sth QS as a signal that does not occur a customers in this QS, it
waits for any number of customers and destroys them; the probability of such
an event is equal to μjp

−
js(1 − u(ks))qs0

∑∞
m=1 πsm

∑m−1
r=1 P (�k + Ij + rIs, t)Δt +

o(Δt), i, j, s = 1, n; the revenue of the system Si in this case will be at
j = i

∑m−1
r=0 [ris(�k + Ii + rIs, t) + vi(�k + Ii + rIs, t)]; an if s = i then −∑m−1

r=0 [Rji(�k +
Ij + rIi, t) + vi(�k + Ij + rIi, t)].

(9) From the state (�k, t), at the same time, no positive customers or signals are received in
each, and no positive customer has been served in them for a time; the probability of
this event is 1 −∑n

j=1 [λ+
0j + (λ(c)

0j + μj)u(kj)]Δt + o(Δt); the revenue of the system
Si in this case will be ri(�k)Δt + vi(k, t).

(10) From the remaining states with probability o(Δt).

Using the total probability formula for the expectation, we obtain system of difference-
differential equations for revenue: vi(k, t):

dvi(�k, t)
dt

= ri(�k) −
n∑

j=1

[
λ+

0j + (λ(c)
0j + μj)u(kj)

]
vi(�k, t)

+
n∑

j,s=1
j,s �=i

{
(μjpj0 + μjp

−
js(1 − u(ks)))vi(�k + Ij , t)

+ λ+
0j u(kj)vi(�k − Ij , t) + λ

(c)
0j qj0

∞∑
m=1

πjmvi(�k + mIj , t)

+ μjp
−
jsqj0

∞∑
m=1

πsmvi(�k + Ij + mIs, t)

+
n∑

c=1

μjp
−
jsqscu(kc)vi(�k + Ij + Is − Ic, t)

+ μjp
−
js(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=1

vi(�k + Ij + rIs, t)
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+ λ
(1)
0j qj0(1 − u(kj))

∞∑
m=1

πjm

m−1∑
r=1

vi(�k + rIj , t)

+ (λ(c)
0j qjs + μip

+
jsu(ks))vi(�k + Ij − Is, t)

+ λ+
0i u(ki)vi(�k − Ii, t) + λ

(c)
0i qi0

∞∑
m=1

πimvi(�k + mIi, t)

+ μip
−
isqis

∞∑
m=1

πsmvi(�k + Ii + mIs, t)

+
n∑

c=1

μip
−
isqscu(kc)vi(�k + Ii + Is − Ic, t)

+ μip
−
is(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=0

vi(�k + Ii + rIs, t)}

+ λ
(c)
0i qi0(1 − u(ki))

∞∑
m=1

πim

m−1∑
r=1

vi(�k + rIi, t)

+
n∑

s=1

{
(μjpj0 + μjp

−
js(1 − u(ks))) vi(�k + Ii, t)

+ (λ(c)
0i qis + μip

+
isu(ks))vi(�k + Ii − Is, t)

+ λ+
0iu(ki)r0i(k − Ii, t) − (μipi0 + μip

−
ij(1 − u(kj)))Ri0(k + Ii, t)

−
n∑

s=1

(μip
+
is + λ

(c)
0i qis)u(ks)ris(�k + Ii − Is, t)

−
n∑

j,c=1
j,c�=i

μip
−
isqscu(kc) rjic(�k + Ij + Ii − Ic, t)

− Ri(�k + mIi, t)λ
(c)
0i qi0

∞∑
m=1

πim

− λ
(c)
0i qi0(1 − u(ki))

∞∑
m=1

πim

m−1∑
r=1

Ri(�k + rIi, t)−μip
−
isqis

∞∑
m=1

πsm

× Rji(�k + Ij + mIi, t) + μip
−
is(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=1

Rji(�k + Ij + rIi, t)}

−
n∑

j,s=1
j,s �=i

μip
−
isqscu(kc) rjsi(�k + Ij + Ii − Ic, t) − μjp

−
jsqs0

×
∞∑

m=1

πsmris(�k + Ii + mIs, t)

+ μjp
−
js(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=1

ris(�k + Ii + rIs, t). (1)
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Let �V T (�k, t) = (v1(�k, t), v2(�k, t), . . . , vn(�k, t)). Then (1) is representable in the form

d�V (�k, t)
dt

= −Δ(�k)V (�k, t) +
n∑

i=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V (�k + Ii + rIj , t)

+
n∑

i,j,s=0

Φijs(�k) �V (�k + Ii + Ij − Is, t) + �E(�k), (2)

where

�ET (�k) = (E1(�k), E2(�k), . . . , En(�k)),

Ei(�k) = ri(�k) + λ+
0i u(ki) r0i(k − Ii, t) − (μipi0 + μip

−
ij(1 − u(kj)))Ri0(k + Ii, t)

− (μip
+
is + λ

(c)
0i qis)u(ks)ris(�k + Ii − Is, t)

− μip
−
isqscu(kc)rjic(�k + Ij + Ii − Ic, t) − λ

(c)
0i qi0

∞∑
m=1

πimRi(�k + mIi, t)

− λ
(c)
0i qi0(1 − u(ki))

∞∑
m=1

πim

m−1∑
r=1

Ri(�k + rIi, t)

− μip
−
isqs0

∞∑
m=1

πsmRji(�k + Ij + mIi, t)

+ μip
−
is(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=1

Rji(�k + Ij + rIi, t)

+ μjp
−
js(1 − u(ks))qs0

∞∑
m=1

πsm

m−1∑
r=1

ris(�k + Ii + rIs, t)

−
n∑

j,s=1
j,s �=i

μip
−
isqscu(kc) rjsi(�k + Ij + Ii − Ic, t)

− μjp
−
jsqs0

∞∑
m=1

πsmris(�k + Ii + mIs, t), Φijs(�k) = μip
−
ijqjsu(ks),

Θijrm(�k) = δr−1δm1

{
λ+

0i + (λ+
0j + μjp

+
jiu(ki) − μip

+
iju(ki))(1 − δij) + μjpj0u(kj)

+
n∑

s=1

(1 − δsi)(μipi0 + μip
−
is(1 − u(ks)))

}

+ δrm

⎧⎨
⎩

n∑
j=1

(1 − δij) λ
(c)
0j qj0πjm +

n∑
s=1

(1 − δjs)μjp
−
jsqs0πsm

}

+ (1 − δrm)(u(m + 1))μip
−
is(1 − u(ks))qs0πsm + u(m)μjp

−
js(1 − u(ks))qs0πsm.

δij− the Kronecker symbol.
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Let us investigate the series
∑n

i=1

∑∞
m=1

∑m
r=−1 Θijrm for convergence. We get

n∑
i=1

∞∑
m=1

m−1∑
r=1

Θijrm

=
n∑

i=1

∞∑
m=1

m−1∑
r=−1

δr−1δm1

{
λ+

0i + (λ+
0j + μjp

+
jiu(ki) − μip

+
iju(ki))(1 − δij)

+ μjpj0u(kj) +
n∑

s=1

(1 − δsi)(μipi0 + μip
−
is(1 − u(ks)))

}

+ δrm

⎧⎨
⎩

n∑
j=1

(1 − δij) λ
(c)
0j qj0πjm +

n∑
s=1

(1 − δjs)μjp
−
jsqs0πsm

}

+ (1 − δrm)(u(r + 1))μip
−
is(1 − u(ks))qs0πsm + u(r)μjp

−
js(1 − u(ks))qs0πsm)

=
n∑

i,j=1

λ+
0i + (λ+

0j + μjp
+
jiu(ki) − μip

+
iju(ki))(1 − δij) + μjpj0u(kj)

+
n∑

s=1

(1 − δsi)(μipi0 + μip
−
is(1 − u(ks)))

+
n∑

i=1

n∑
j=1

(1 − δij)λ
(c)
0j qj0

∞∑
m=1

πjm+
n∑

s=1

(1 − δjs)μjp
−
jsqs0

∞∑
m=1

πsm

+
n∑

i=1

μip
−
is(1 − u(ks))

∞∑
m=0

πsm

m−1∑
r=1

1

+
n∑

i=1

μjp
−
js(1 − u(ks))qs0

∞∑
m=1

πsm

m∑
r=0

1.

From a practical point of view, we can assume that
∑∞

m=1 πim = 1, because a signal
acting as a negative customer always destroys some non-zero number of positive customers.
Therefore, the last expression is equal to

n∑
i,j=1

λ+
0i + (λ+

0j + μjp
+
jiu(ki) − μip

+
iju(ki))(1 − δij) + μjpj0u(kj)

+
n∑

s=1

(1 − δsi)(μipi0 + μip
−
is(1 − u(ks)))

+
n∑

i=1

n∑
j=1

(1 − δij)λ
(c)
0j qj0+

n∑
s=1

(1 − δjs)μjp
−
jsqs0

+
n∑

i=1

μip
−
is(1 − u(ks))

∞∑
m=0

(m − 1)πsm

+
n∑

i=1

μjp
−
js(1 − u(ks))qs0

∞∑
m=1

(m + 1)πsm
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=
n∑

i,j=1

λ+
0i + (λ+

0j + μjp
+
jiu(ki) − μip

+
iju(ki))(1 − δij) + μjpj0u(kj)

+
n∑

s=1

(1 − δsi)(μipi0 + μip
−
is(1 − u(ks)))

+
n∑

i=1

n∑
j=1

(1 − δij)λ
(c)
0j qj0+

n∑
s=1

(1 − δjs)μjp
−
jsqs0

+
n∑

i=1

μip
−
is(1 − u(ks)) (bi − 1) +

n∑
i=1

μjp
−
js(1 − u(ks))qs0(bi + 1).

This implies the convergence of the series.
It follows from (2) that

�V (�k, t) = e−Δ(�k)t(�V (�k, 0))

+
∫ t

0

eΔ(�k)x

⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V (�k + Ii + rIj , t)

+
n∑

i,j,s=0

Φijs(�k)�V (�k + Ii + Ij − Is, t)

⎫⎬
⎭ dx (3)

+
1

Δ(�k)
�E(�k)[1 − e−Δ(�k)t].

Let �Vq(�k, t) be approximation of �V (�k, t) at qth iteration, �Vq+1(�k, t) – solution of (2)
obtained by successive approximations. Then it follows from (3)

�Vq+1(�k, t) = e−Δ(�k)t(�Vq(�k, 0)) +
∫ t

0

eΔ(�k)x

⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �Vq(�k + Ii + rIj , t)

+
n∑

i,j,s=0

Φijs(�k) �Vq(�k + Ii + Ij − Is, t)

⎫⎬
⎭ dx +

1

Δ(�k)
�E(�k)[1 − e−Δ(�k)t]. (4)

As an initial approximation, we take the stationary distribution �V0(�k, t) = V (�k) =
lim

t→∞
�V (�k, t), which satisfies the relation

Δ(�k)�V (�k) =
n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijrm(k)�V (k + Ii + rIj)

+
n∑

i,j,s=1

Φijs(k)�V (k + Ii + Ij − Is) + �E(�k) (5)

The following theorems are valid for successive approximations.

Theorem 1: Sequential approximations �Vq(�k, t), q = 0, 1, 2, . . . , converge for t → ∞ to
a stationary solution of the system of equations (2).
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Proof: Proof, as before, we shall carry out the method of mathematical induction. For the
first approximation we have:

�V1(�k, t) = e−Δ(�k)t(�V0(�k, 0)) +
∫ t

0

eΔ(�k)x

⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V0(�k + Ii + rIj , t)

+
n∑

i,j,s=0

Φijs(�k) �V0(�k + Ii + Ij − Is, t)

⎫⎬
⎭ dx +

1

Δ(�k)
�E(�k)[1 − e−Δ(�k)t]

= e−Δ(�k)t(�V (�k, 0)) +
∫ t

0

eΔ(�k)x

⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V (�k + Ii + rIj)

+
n∑

i,j,s=0

Φijs(�k)�V (�k + Ii + Ij − Is)

⎫⎬
⎭ dx +

1

Δ(�k)
�E(�k)[1 − e−Δ(�k) t]

= e−Δ(�k)t �V (�k, 0) +
1

Δ(�k)
(1 − e−Δ(�k)t)

×
⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V (�k + Ii + rIj)+
n∑

i,j,s=0

Φijs(�k) �V (�k + Ii + Ij − Is)

⎫⎬
⎭

+
1

Δ(�k)
�E(�k)[1 − e−Δ(�k)t] −→

t→∞
1

Δ(�k)

×
⎧⎨
⎩

n∑
i,j=0

∞∑
m=1

m∑
r=−1

Θijrm(�k) �V (�k + Ii + rIj)+
n∑

i,j,s=0

Φijs(�k) �V (�k + Ii + Ij − Is)

⎫⎬
⎭

+
1

Δ(�k)
�E(�k).

From this it follows that for q = 1 the theorem is satisfied. Suppose that the statement
of the theorem is valid up to the qth iteration. Then, using (4), and the L’Hospital rule, we
have:

lim
t→∞

�Vq+1(�k, t) = lim
t→∞

∫ t

0
eΔ(�k)x

∑n
i=1

∑∞
m=1

∑m
r=−1 Θijrm(k)�Vq(�k + rIi + mIj , x)

eΔ(�k)t

+ lim
t→∞

∫ t

0
eΔ(�k)x

∑n
i,j,s=1 Φijs(k)�Vq(�k + Ii + Ij − Is, x)

eΔ(�k)t
+

�E(�k)

Δ(�k)

= lim
t→∞

eΔ(�k)t
∑n

i=1

∑∞
m=1

∑m
r=−1 Θijrm(k)�Vq(�k + rIi + mIj , t)

Δ(�k)eΔ(�k)t

+ lim
t→∞

eΔ(�k)t
∑n

i,j,s=1 Φijs(�k)�Vq(�k + Ii + Ij − Is, t)

Δ(�k)eΔ(�k)t
+

�E(�k)

Δ(�k)
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=
n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijrm(
⇀

k) �V (�k + Ii + rIj)

+
n∑

i,j,s=1

Φijs(�k) �V (�k + Ii + Ij − Is) + �E(�k) = Δ(�k)�V (�k).

Therefore, the theorem is also true for q + 1. Then, using the method of mathematical
induction, we obtain the assertion of the theorem. �

Theorem 2: The sequence constructed according to scheme (4), for any zeroth approxi-
mation bounded in �V0(�k, t), converges for q → ∞ to a unique solution of the system of
equations (9).

Proof: Because �V0(�k, t) is limited function of t, then by (4) �V1(�k, t) is also limited, so

∣∣∣�V1(�k, t) − �V0(�k, t)
∣∣∣ ≤ C(�k). (6)

Let us show that the inequality

∣∣∣�Vq(�k, t) − �Vq−1(�k, t)
∣∣∣ ≤ C∗(η∗

1 + ϕ∗
2)

q−1 tq−1

(q − 1)!
, (7)

where

max
�k

η1(�k) = η∗
1 , max

�k
ϕ2(�k) = ϕ∗

2, max
�k

c(�k) = c∗, (8)

As was proved earlier, the series η1(�k) converges. It follows from (6) that for q = 1, this
inequality holds. Suppose that it holds for q = N , and we show, using (4), its validity for
q = N + 1. We have:

∣∣∣�VN+1(�k, t) − �VN (�k, t)
∣∣∣

=
∣∣∣∣e−Δ(�k)t

∫ t

0

eΔ(�k)x

⎛
⎝ n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijmr(�k)�VN (�k + Ii + rIj , x)

+
n∑

i,j,s=1

Φijs(�k) �VN (�k + Ii + Ij − Is, x)

⎞
⎠ dx +

1

Δ(�k)
�E(�k)[1 − e−Δ(�k)t]

− e−Δ(�k)t

∫ t

0

eΔ(�k)x

⎛
⎝ n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijmr(�k)�VN−1(�k + Ii + rIj , x)

+
n∑

i,j,s=1

Φijs(�k)�VN (�k + Ii + Ij − Is, x)

⎞
⎠ dx − 1

Δ(�k)
�E(�k)

[
1 − e−Δ(�k)t

]∣∣∣∣∣∣
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≤
∣∣∣∣e−Δ(�k)t

∫ t

0

eΔ(�k)x

⎛
⎝ n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijmr(�k)(�VN (�k + Ii + rIj , x)− �VN−1(�k + Ii + rIj , x))

+
n∑

i,j,s=1

Φijs(�k)(�VN (�k + Ii + Ij − Is, x) − �VN−1(�k + Ii + Ij − Is, x))

⎞
⎠ dx

∣∣∣∣∣∣
≤ e−Δ(�k)t

∫ t

0

eΔ(�k)x

⎡
⎣ n∑

i,j=1

∞∑
m=1

m∑
r=−1

Θijmr(�k)
∣∣∣�VN (�k + Ii + rIj , x) − �VN−1(�k + Ii + rIj , x)

∣∣∣

+
n∑

i,j,s=1

Φijs(�k)
∣∣∣�VN (�k + Ii + Ij − Is, x) − �VN−1(�k + Ii + Ij − Is, x)

∣∣∣
⎤
⎦ dx

≤ C∗e−Δ(�k)t

∫ t

0

eΔ(�k)x
[
η∗
1(η∗

1 + φ∗
2)

N−1 + φ∗
2(η

∗
1 + φ∗

2)
N−1

] xN−1

(N − 1)!
dx

= C∗(η∗
1 + ϕ∗

2)
Ne−Δ(�k)t

∫ t

0

eΔ(�k)x xN−1

(N − 1)!
dx. (9)

From the inequality e−Λ(�k)teΛ(�k)x ≤ 1, x ∈ [0, t], it follows that

e−Δ(�k)t

∫ t

0

eΔ(�k)x xN−1

(N − 1)!
dx ≤

∫ t

0

xN−1

(N − 1)!
dx =

tN

N !

therefore from (9) we obtain that inequality (7) takes place.
Because the

lim
q→∞

�Vq(�k, t) = lim
q→∞

(
�V0(�k, t) +

m−1∑
n=0

(�Vq+1(�k, t) − �Vq(�k, t))

)

= �V0(�k, t) +
∞∑

q=0

(�Vq+1(�k, t) − �Vq(�k, t))

≤ �V0(k, t) + C∗
∞∑

q=0

(η∗
1t + φ∗

2t)
q

q!
= �V0(k, t) + C∗e(η∗

1+φ∗
2) t,

that is, limit of sequence
{

�Vq(�k, t)
}

, q = 0, 1, 2, . . . , exists, we denote it by �V∞(�k, t).

Substituting �V∞(�k, t) into (3) instead of �V (�k, t), we see that �V∞(�k, t) is a solution of the
system of equations (2) satisfying the initial conditions �V∞(�k, 0) = �V (�k, 0) according to the
previous theorem.

Suppose that there is another solution of the system of equations (2) �V ∗(�k, t). Then for
it the relation (3) is valid if it is replaced in it �V (�k, t), �V (�k + rIi, t), �V (�k + Ii + Ij − Is, t)
respectively on �V ∗(�k, t), �V ∗(�k + rIi, t), �V ∗(�k + Ii + Ij − Is, t). Therefore, using (7), we have:
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∣∣∣�Vq(�k, t) − �V ∗(�k, t)
∣∣∣ ≤ e−Δ(�k)t

∣∣∣�Vq(�k, t) − �V ∗(�k, t)
∣∣∣+ e−Δ(�k)t

∫ t

0

e−Δ(�k)x

×
[(

n∑
i=1

∞∑
m=1

m∑
r=−1

Θijmr(�k)
∣∣∣�VN (�k + Ii + rIj , x) − �V ∗(�k + Ii + rIj , x)

∣∣∣

+
n∑

i,j,s=1

Φijs(�k)
∣∣∣�VN (�k + Ii + Ij − Is, x) − �VN−1(�k + Ii + Ij − Is, x)

∣∣∣
⎞
⎠
⎤
⎦ dx.

Similarly, as in the proof of inequality (7), it can be shown that inequality∣∣∣�Vq(�k, t) − �V ∗(�k, t)
∣∣∣ ≤ M(η∗

1 + ϕ∗
2)

q(tq/q!), where M is some constant. The right-hand
side of this inequality tends to zero as the general term of the convergent series∑∞

q=0 M(η∗
1 + ϕ∗

2)
q(tq/q!) = Me(η∗

1+φ∗
2)t, therefore lim

q→∞
�Vq(�k, t) = �V ∗(�k, t). But we have

already received earlier that lim
q→∞

�Vq(�k, t) = �V (�k, t), so �V ∗(�k, t) = �V (�k, t), which proves the

uniqueness of the solution of the system of equations (2). �

Theorem 3: Each successive approximation �Vq(�k, t), q ≥ 1, is representable in the form of
a convergent power series

�Vq(�k, t) =
∞∑

l=0

gql(�k)tl, (10)

whose coefficients satisfy the recurrence relations:

gq+1l(�k) =
−Δ(�k)l

l!

{
�V (�k, 0) −

�E(�k)

Δ(�k)
+

l−1∑
u=0

(−1)u+1u!

Δ(�k)u+1
Gql(�k)

}
, l ≥ 0,

gq0(�k) = �V (�k, 0), g0l(�k) = �V (�k, 0)δl0,

Gql(�k) =
n∑

i,j=1

[ ∞∑
m=1

m∑
r=−1

Θijmr(�k)gql(�k + Ii + rIj)+
n∑

s=1

Φijs(�k)gql(�k + Ii + Ij − Is)

]
.

(11)

Proof: We show that the coefficients of the power series (10) satisfy the recurrence relations
(11). We substitute the successive approximations (10) in relation (4). Then, given that

e−Δ(�k)t

∫ t

0

eΔ(�k)xxldx =

[
1

Δ(�k)

]l+1

l!
∞∑

j=l+1

[−Δ(�k)]l

j!
, l = 0, 1, 2, . . . ,

we obtain
∞∑

l=0

gql(�k)tl = e−Δ(�k)t�V (�k, 0) +
�E(�k)

Δ(�k)
[1 − e−Δ(�k)t]

+
∞∑

l=0

n∑
i,j=1

[ ∞∑
m=1

m∑
r=−1

Θijrm(�k) gql(�k + Ii + rIj) +
n∑

s=1

Φijs(�k)gql(�k + Ii + Ij − Is)

]

×
[

1

Δ(�k)

]l+1

l! +
∞∑

u=l+1

[−Δ(k)]u

u!
.
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Using (11), this series can be written in the form

∞∑
l=0

gql(k)tl = e−Δ(�k)t�V (�k, 0) −
�E(�k)

Δ(�k)
[1 − e−Δ(�k)t]

+
∞∑

l=0

Gql(�k)

[
1

Δ(�k)

]l+1

l!
∞∑

u=l+1

[−Δ(�k)]u

u!
tu.

After interchanging summation indices and expanding e−Δ(�k)t in a series in powers of t,
we have

∞∑
l=0

gql(k)tl =
�E(�k)

Δ(�k)
+

∞∑
l=0

[−Δ(k)]l

l!

⎧⎪⎨
⎪⎩�V (�k, 0) −

�E(�k)

Δ(�k)
+

l−1∑
u=0

(−1)u+1u![
Δ(�k)

]u+1 Gqu(�k)

⎫⎪⎬
⎪⎭ tl. (12)

If we equate the coefficients of tl in expression (12), we obtain the relations (11) for the
coefficients of the series (10).

To find the radius of convergence of the power series (10), we can use the Cauchy–
Hadamard formula 1

R1(k) = lim
l→∞

l
√|gql(k)|. Similarly, as in [12, 14], it can be shown that the

radius of convergence of the series (10) is equal to +∞. �

4. MODEL EXAMPLE

Let us n = 7 be seven systems be five QS. Let the probabilities of arrive of customers
in the ith system be equal, respectively p+

0i = 0, 15, i = 1, 6, p+
07 = 0, 1; p−0i = 0, 14, p−06 =

p−07 = 0, 15, and
∑7

i=1 p+
0i = 1,

∑7
i=1 p−0i = 1. Let also the intensities of incoming streams of

positive and negative customers are equal, respectively λ+ = 100 and λ(c) = 90.
Then the intensities of the input flow of positive customers and signals to each of the

QS λ+
0i and λ

(c)
0i , respectively will be equal to:

λ+
0i = 15, i = 1, 6, λ+

07 = 10, λ
(c)
0i = 12, 6, i = 1, 5 , λ

(c)
06 = λ

(c)
07 = 12, 6.

Let us the customer service intensities in the network systems are equal: μi = 50, i = 1, 5.
Suppose also that the probabilities of the transitions of positive and negative customers

between the QS networks are equal

p+
11 = 0, 1, p−11 = 0, 1, p+

12 = 0, 1, p−12 = 0, 1,

p+
1i = 0, 05, p−1i = 0, 05, i = 3, 7, p10 = 1 −

5∑
j=1

(p+
1j + p−1j) = 0, 1;

p+
21 = 0, 1, p−21 = 0, 1, p+

22 = 0, 1, p−22 = 0, 1,
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Figure 1. Revenues of the second QS in a period of time [0; 7].

p−2i = 0, 05, p+
2i = 0, 05, i = 3, 7 , p−ji = 0, 05, p+

ji = 0, 05, i = 1, 3,

p20 = 1 −
5∑

j=1

(p+
2j + p−2j) = 0, 1, p−ji = 0, 05, p+

ji = 0, 05, i = 4, 7, j = 3, 5,

pi0 = 1 −
5∑

j=1

(p+
ij + p−ij) = 0, 3, i = 3, 5. qij = 0, 15, i �= j, i, j > 0, qii = 0, qi0 = 0, 1.

Let us the random variable Bi has a Poisson distribution with parameter λ > 0
and m = 15, then πim = (λm/m!)e−λ, m = 0, 5, i = 1, 5. Let us also λ = 5, ris(�k) =
2000 sin(π/10)i; rijs(�k) = 2000ei+j+s;Ri(�k) = 100;Rij(�k) = 500. i, j, s = 1, 5.

Find the expected revenue of the first QS v2(�k, t) at �k = (1, 2, 1, 2, 1, 2, 1) under the
initial condition v1(�k, 0) = 0. Solving the problem using the programming language C # on
the interval [0,7] with ε = 10−6, we obtain the dependence presented in Figure 1.

The number of terms in the series was found using
∣∣∣gql(�k∗)

∣∣∣ ≤ ε, where k∗ : gql(�k∗) =

max
�k

∣∣∣gql(�k)
∣∣∣ , and the number of iterations q, using inequality

∣∣∣�Vq+1(1, 2, 1, 2, 1, 2, 1t)−
�Vq(1, 2, 1, 2, 1, 2, 1, t)

∣∣∣ ≤ ε. We obtained that the number of iterations q∗ = 50, while the
terms of the series l∗ = 82.

5. CONCLUSIONS

The paper investigates the Markov G-network with signals and revenues in the case when the
signal can destroy a group of positive customers. For such a network, the expected revenues
in the network systems were found using the method of successive approximations, combined
with the method of series.

Further research in this direction may be associated with finding of variances of revenues
of network systems.
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