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Abstract

In the past 50 years, the formalism of L-systems has been successfully used and developed
to model the growth of filamentous and branching biological forms. These simulations take
place in classical 2-D or 3-D Euclidean spaces. However, various biological forms actually grow
in curved, non-Euclidean, spaces. This is for example the case of vein networks growing within
curved leaf blades, of unicellular filaments, such as pollen tubes, growing on curved surfaces to
fertilize distant ovules, of teeth patterns growing on folded epithelia of animals, of diffusion of
chemical or mechanical signals at the surface of plant or animal tissues, etc. To model these
forms growing in curved spaces, we thus extended the formalism of L-systems to non-Euclidean
spaces. In a first step we show that this extension can be carried out by integrating concepts
of differential geometry in the notion of turtle geometry. We then illustrate how this extension
can be applied to model and program the development of both mathematical and biological
forms on curved surfaces embedded in our Euclidean space. We provide various examples
applied to plant development. We finally show that this approach can be extended to more
abstract spaces, called abstract Riemannian spaces, that are not embedded into any higher
dimensional space, while being intrinsically curved. We suggest that this abstract extension
can be used to provide a new approach for effective modeling of growth of branching systems
within non-uniform substrates and illustrate this idea on a few conceptual examples.

1 Introduction
Morphogenesis is the process by which biological and non-biological forms develop over time.
Systems whose state changes in time according to some evolution rules are called dynamical systems,
eg. see (Strogatz, 2000). These rules are usually formalized as a differential equation, called the
evolution equation, that expresses the rate of change of the system’s state as a function of the
current system’s state and time:

dx(t)

dt
= Fλ(x(t), z(t), t), (1)

where x(t) denotes the system’s state, usually in Rn, n being the number of degrees of freedom
of the system, and containing the positions and velocities of the system’s parts, z(t) denotes any
external variable that may affect the dynamics of the system, Fλ specifies the rate of variation of the
system’s state x(t) (λ refers to the model parameters). In practice, this equation is discretized in
small time increments dt to compute the system’s evolution, and to iteratively update the system’s
state in time from a known initial state x(0):

x(t+ dt) = x(t) + Fλ(x(t), z(t), t) dt. (2)

In morphodynamic systems, the system is a form that evolves over time. Its state x(t) represents
the spatial extent of the form as a mathematical structure such as a graph, a grid, a parametric
or an implicit surface, etc. This structure is usually augmented with additional information,
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called fields, on its parts (Giavitto and Spicher, 2008), representing locally for instance physical
or chemical properties of the growing form. Yet, as operators such as addition or multiplication
by a scalar are in general not defined on forms, the evolution of morphodynamic systems cannot
be directly modeled using equations in the form of Eq.1 and Eq.2. To alleviate this difficulty, the
evolution of forms can be formalized more generally by defining a global procedure specifying how
the state of the whole form changes for a small amount of time dt:

x(t+ dt) = Fλ(x(t), z(t), t, dt). (3)

Here Fλ specifies how the change that can be operated on the form x(t) during dt, without formaliz-
ing the notion of form increment. Despite promising efforts (Giavitto and Michel, 2005; Mjolsness,
2010, 2019), there is yet no general theory to define expressions of Fλ for general form growth.
However, restrictions to specific form structures or dimensions have lead to the development of
efficient formalisms to model form development, see (Prusinkiewicz and Runions, 2012; Goriely,
2017) for reviews. This is particularly well illustrated by the formalism of L-systems, (Linden-
mayer, 1968a,b, 1971; Prusinkiewicz and Lindenmayer, 1990), that was introduced to model the
development of sequences and branching structures, very common in biology.

L-systems have been used successfully over more than 50 years to model the construction of
fractal forms and the growth of plant branching structures, such as plant architectures, inflores-
cences, vein patterns, root systems, etc. L-systems make it possible to model the evolution of both
the structure and the geometry of forms. For this, the state of a growing form, i.e. a sequence or
branching structure augmented with field variables, is mapped to a 3-D shape using turtle geome-
try (Abelson and diSessa, 1986). Remarkably, the formalism leads to the definition of a computer
language that can be naturally used to program the development of forms in a declarative manner.
Various computational implementation of this formalism have been proposed, e.g. (Prusinkiewicz
and Lindenmayer, 1990; Prusinkiewicz et al., 2007; Hemmerling et al., 2008; Boudon et al., 2012),
as extensions of different programming languages, and putting emphasis on the development of
different aspects of the theory.

Common to all these implementations is the assumption that the geometric interpretation of the
forms is carried out in a Euclidean (flat) space as a vast majority of plant development models are
conceived in flat spaces. Most models of plant architecture development for instance simulate the
growth of a branching structure in 3-dimensional (3-D) Euclidean space, e.g. (Prusinkiewicz et al.,
2001; Godin et al., 2005; Palubicki et al., 2009; Boudon et al., 2020). Models of vein development
in leaves simulate the growth of a branching vascular structure within 2D shapes representing a
flat leaf blade, e.g. (Feugier et al., 2005; Merks et al., 2011; Runions et al., 2017). In plant tissues,
models of hormone signaling or water flows usually assume transport laws expressed in 2-D or 3-D
Euclidean representations of the tissue, e.g. (Jönsson et al., 2006; Grieneisen et al., 2007; Stoma
et al., 2008; Cheddadi et al., 2019). Likewise, the simulation of filamentous system growth, such
as pollen tubes or root hairs, is carried out essentially within flat embedding substrate spaces, e.g.
(Fayant et al., 2010; Dumais, 2021).

Yet, a number of these phenomena actually take place in non-flat and so-called curved spaces.
Climbing plants for instance may growth on tree trunks or grounds that are not flat surfaces. Vein
networks can develop in leaf blades that are markedly curved. Pollen tubes grow on the pin-like
structures of papillae that are not flat (Riglet et al., 2020). Microtubules polymerize/depolymerize
dynamically within the cell cortex that in general is not flat (Allard et al., 2010).

Examples are numerous and occur on a variety of scales. However, the modeling of plant
form growth in curved spaces has been up to now only scarcely investigated. At the level of macro-
molecules, simulations of microtubule dynamics have been carried out in 3D cell geometries to study
the emerging properties of such a network of microfilaments subjected to local synthesis, decay
and interaction rules, (Mirabet et al., 2018). In this work, cell geometry is represented by a 3-D
mesh, and microtubule trajectories are computed by assuming that microtubules are progressing
in straight line in the 3-D Euclidean space. The resulting displacement is then projected the
local tangent plane to account for potential curvature of the cell geometry. Likewise, at organ
scale a similar projection strategy is used in (Hädrich et al., 2017) to model climbing plants or in
(Ringham et al., 2021) to model branching venation patterns on the surface of petals. In both cases,
to approximate the formation of a pattern in a curved space, the pattern growth is first evaluated
in the 3-D Euclidean ambient space. The resulting form is then projected on the discrete curved
surface represented as a 3-D triangular mesh. A more direct use of the concepts of differential
geometry was described in a different application context to create artistic patterns on the surface
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of 3D objects by (Li et al., 2010). This approach exploits user-defined vector fields on surface
meshes to locally drive drawings of curves at the surface. This is different from the approach that
we use here which is based on the possibility to follow geodesics in curved spaces to construct forms.
However, similarly to what we do here, the authors construct a language that makes it possible
to program patterns based on vector fields. A different approach, aimed at modeling the growth
of plant lianas of their support and more generally the growth of parasite organisms on various
types of hosts, analyzes how to grow surfaces by accretion formalized in (Moulton and Goriely,
2014) with the constraint of keeping on a reference surface representing the host (Öncül et al.,
2020). In this approach, the trajectories of the parasite is defined analytically on the host surface
and the focus is on the construction of the surface representing the parasite envelope. By contrast,
our approach is primarily focused on the construction of the trajectories representing the patterns
growing in curved spaces. In a preliminary work, we explored the possibility of using L-systems to
model fractal structures on simple spheres (Pulwicki and Godin, 2017). Here, we largely extend
this initial exploration with a complete formalization of the notion of Riemannian L-systems, that
can be applied to both smooth curved surfaces and more abstract non-Euclidean smooth curved
spaces.

Our approach couples L-systems and differential geometry. Importantly, this extension remains
easy to use for modelers as it allows to program L-system models as if processes were locally
taking place in a Euclidean space. To draw geometric patterns, the user mainly thinks in terms of
elementary movements, ’go straight’, ’turn right’, etc. without paying attention most of the time to
the curvature of the underlying space. In this way, we show that turtle geometry makes it possible
to define a notion of intrinsic shape, that does not depend on the embedding space. Specific
primitives allow the user to use geometric properties of curved spaces (curvature, excess angle,
parallel transport, point-wise geodesic distance, etc.) to develop programs in which the geometry
of the embedding space feeds back on the developing form. Through the paper, we chose not to
assume that the reader is familiar with concepts in differential geometry. We therefore introduce
the necessary fundamental concepts and notations used in this domain to keep the text as self-
contained as possible. We also provide various applications of how Riemannian L-systems can be
used to illustrate key concepts of differential geometry and to explore of a variety of mathematical
or biological dynamical systems in curved spaces such as the growing fractal forms, random walks,
developing branching structures, tip growing filaments, vein pattern generation and so on.

2 L-systems overview
L-systems are basically rewriting systems on strings for which rewriting rules are applied in parallel
to all the elements of the current string to compute the new string. In this section, we briefly in-
troduce L-systems (Lindenmayer, 1971; Prusinkiewicz and Lindenmayer, 1990) and key associated
notions.

2.1 Basic formalism
Let V = {a1, a2, a3, ..., aN} be a finite set of elements (called symbols or modules). We call V ∗ the
set of all finite strings that can be constructed by concatenating any number of symbols from V (V ∗
is the free monoid constructed from V for the binary operation of string concatenation). V ∗ includes
the empty string, denoted λ, that is the neutral element for string concatenation. Sequences of V ∗
are called words. For example, if V = {A,B, a, b}, x1 = aaBAa, and x2 = abbAaAabbbb are words
of V ∗.

Definition 1 (String homomorphism). Let us consider a word x ∈ V ∗ and a decomposition of
this word into subwords: x = x1x2 · · ·xK , where xk are also words ∈ V ∗, for k = 1 . . .K. A
homomorphism H from V ∗ to V ∗ is a mapping such that:

H(x1x2 . . . xK) = H(x1)H(x2) . . . H(xK).

From this definition, it follows that a string homomorphism is completely defined by the defi-
nition of the images of the symbols in V . In addition, this definition implies that H(λ) = λ.

Let us call wn the word image by H of symbol an ∈ V , H(an) = wn. In the context of L-
systems, the pair Pn = (an, wn) is called a production rule. We denote P = {Pn}n=1···N the set of
all production rules associated with H.
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Definition 2 (D0L-system). A D0L-system L is a 3-uple (V, P,A), where V = {a1, a2, a3, ..., aN}
is a finite set of symbols, P is a set of production rules on V , and A ∈ V ∗ is called the axiom.

Definition 3 (Derivation). Let V = {a1, a2, a3, · · · , aN} be a finite set of symbols, P a set of
production rules on V , and H the homomorphism associated with P . Let x be a word in V ∗,
H(x) is called the derivation of x by P . If x = x1x2 · · ·xK and H(xk) = wk for k = 1 . . .K, the
derivation of x is denoted by:

x1x2 · · ·xK ⇒ w1w2 · · ·wK .

For a D0L-system L = (V, P,A0), successive derivations of the axiom A0 can be obtained in a
deterministic manner. Let us denote Ai the i-th derivation of A, i.e. Ai = Hi(A0), we have:

A0 ⇒ A1 ⇒ A2 ⇒ · · · ⇒ Ai.

A (D0)L-system may thus represent dynamical systems whose states can be abstracted as (dis-
crete) strings of components, called L-strings, that dynamically change as derivations are applied.
Derivations are often interpreted as the evolution of the system’s state with time. They can also
represent changes of the observer’s viewpoint (such as zooming in a structure, which shows more
elements, and thus result in a change of the system’s representation).

Example A simple example of a D0Lsystem is provided by the development of a multicellular
filamentous organism Anabenae (Prusinkiewicz and Lindenmayer, 1990) based on a model origi-
nally developed by Koster and Lindenmayer (Koster and Lindenmayer, 1987). This organism is
organized as a file of cells that have different types a, b, A,B corresponding to their differentiation
and polarization states. According to their types, cells have different developmental behaviors
described by specific rules that can be modeled by a L-system (Prusinkiewicz and Lindenmayer,
1990).

Let L = (V, P,A0), where V = {A,B, a, b}, P = {A → Ba,B → bA, a → A, b → B}, and
A0 = A. Starting from the axiom A0 = A, the sequence of derivations of this L-system goes as
follows:

A⇒ Ba⇒ bAA⇒ BBaBa⇒ bAbAAbAA⇒ · · ·

Each string (L-string) of this derivation sequence represents a state of the growing organism at
consecutive time steps.

2.2 D0L-system extensions
D0L-systems have been extended in various ways and have lead to develop powerful languages
constructs to simulate dynamical systems. Here we briefly recapitulate common key extensions
(Prusinkiewicz and Lindenmayer, 1990).

Branching systems. First, D0L-systems have been extended to model branching systems rewrit-
ing and not only strings. This extension relies on the fact that branching systems can be simply
encoded as bracketed strings. This makes it possible to define readily D0L-systems that rewrite
branching systems. For this, the definition of the vocabulary V is augmented by a pair of opening
’[’ and closing ’]’ square brackets. In addition, a restriction is imposed on the homomorphism
on V ∗: square brackets can only be mapped to themselves by H, and they can only appear on
the right-hand side of a production rule if they form a well-formed bracketed string (all opening
brackets must be properly balanced in the string and opening/closing brackets must be strictly
nested).

In a plant for instance the apex A of a stem can produce a new portion of stem (internode I),
a lateral apex A and a new apical apex. This can be represented by the production rule:

A→ I[A]A.

Starting from the axiom A, the first derivations yield:

A⇒ I[A]A⇒ I[I[A]A]I[A]A⇒ · · ·

Note that it is usually assumed that every module for which a production rule is not specified
(here I for example) is rewritten unchanged in the new string (identity transformation).
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Parametric rules. A second powerful extension is the possibility to add parameters to the
modules. This makes it possible to write rules that propagate parameter values as the modules
are rewritten and to make computation on them. For instance, the elongation of a rectangular cell
represented by a module C can be modeled by introducing a real parameter y in a production rule
such that:

C(y)→ C(y + δy),

where δy is an increment of length. If the axiom consists of the string C(0), then applying the
above production rule to the axiom will yield the following i first derivations:

C(0)⇒ C(δy)⇒ C(2δy)⇒ · · · ⇒ C(iδy).

Context-sensitive rules. Another useful extension is the notion of context-sensitive rules. Here,
a production rule is applied to the left-hand side module only if the context of this module matches
some criterion in the current L-string. Traditionally, the left and right context of a module in a
string are specified by using ’<’ and ’>’ markers.

For instance, the rule:
B < A→ B,

means that a symbol A must be rewritten into B only if its left-context (i.e. the module immediately
to its left) in the original L-string is a B. Otherwise, the symbol is left unchanged. The action of
this rule can be observed on the axiom BAA[AA]AA that leads to the sequence of derivations:

BAA[AA]AAA⇒ BBA[AA]AAA⇒ BBB[AA]AAA

⇒ BBB[BA]BAA⇒ BBB[BB]BBA⇒ BBB[BB]BBB.

This makes it possible for instance to model the propagation of a signal in a branching structure.
Such a signal can propagate from the root of the branching structure to the leaves using left-
context rules, or from the leaves to the root using right-context rules. One can note that the rule
B < A⇒ B applies to L-string patterns such as ..BA.. or ..B[A].. and thus take into account the
branching organization of the L-string.

Declarative rules with procedural statements. Instead of specifying once for all the right-
hand side of production rules, it might be interesting to determined it procedurally at runtime.
For example, the procedural production rule:

A(x) → B if x > 0.3 else C

This rule yields different derivations for different axioms:

A(0.5) ⇒ B,

A(0.1) ⇒ C.

Such rules thus have a classical left hand-side, and a right-hand side that is a procedure ending
with rewriting statements (here → B and → C). Procedural rules make it possible for instance
to simulate non-deterministic L-systems. In this case the right-hand side rewriting statement is
computed based on some random choice.

All the above extensions can be combined to model complex dynamical behaviours. Note that
the resulting mathematical structures are no longer D0L-systems, but extensions of them that will
be called hereafter using the generic term of L-systems.

Based on the pioneering language called cpfg developed by P. Prusinkiewicz (Prusinkiewicz and
Lindenmayer, 1990) a number of language variants have been built over the years on the top of dif-
ferent programming languages, e.g. L+C (C++) (Prusinkiewicz et al., 2007), XL (Java)(Kniemeyer
and Kurth, 2007), L-Py (Python)(Boudon et al., 2012). In this paper, the examples and extensions
are developed in L-Py.

2.3 Turtle geometry: adding geometry in L-systems
L-strings are abstract representations of a system’s state with no particular graphic representation.
It is however often very useful to attach a geometric representation of the system’s state in the 3D-
space (to display the 3D architecture of a modeled growing plant for example). For this L-systems
make use of turtle geometry (Abelson and diSessa, 1986).
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Turtle geometry Turtle geometry is a way to define complex geometric objects in 3D as a
sequence of elementary geometric instructions. Basically, a (virtual) turtle is able to move and
draw in the 3D space as it moves. For this, the turtle is given a sequence of elementary geometric
instructions that it can read and interpret sequentially. Interestingly, as the definition of forms
using turtle geometry relies on purely geometric primitives, the construction process is in general
independent the selected coordinate system.

We assume that the turtle moves with respect to a global reference frame, denoted as R0 and
that it is itself represented as a moving local reference frame, hereafter called the turtle frame
R = {H,L,U} (respectively denoting unit vectors related to the turtle’s body: Head, Left, Up).
Each elementary instruction is interpreted by the turtle as an order to move or to draw (Abelson
and diSessa, 1986; Prusinkiewicz and Lindenmayer, 1990). The elementary instructions are coded
as strings of geometric modules having specific names. For example, the module F(l) instructs
the turtle to move forward by a distance l in the direction H of its head, and draw a line while
moving, the module +(a) means that the turtle should turn left (around its Up axis U) by a
angle a degrees, the module ;(c) means that color c should be used for drawing from now on,
etc.. A L-system language usually contains a number of predefined geometric modules that make
it possible to draw a large variety of simple and more complex geometrical shapes (see detailed list
of turtle instructions in L-Py for example).

To operate on an input string, the turtle is associated with a state S that records its current
information: position (x, y, z), orientation {H,L,U} expressed in the global reference frame R0,
its current color c , etc.,

S = (x, y, z,H,L, U, c, · · · ).

When reading a new instruction from an input sequence of turtle commands, the turtle executes
the elementary action corresponding to the read string module, updates its state accordingly and
proceeds to the next instruction in the sequence. Sequences of geometric modules, interpretable
by a turtle, are called T-strings.

Branching systems. As explained above, branching systems can be modeled by using square
brackets. During turtle interpretations, when reaching an opening square bracket in an L-string,
the turtle saves its current state on the top of a stack, called the interpretation stack, and then
proceeds with the string interpretation inside the bracket. When reaching a closing square bracket,
the turtle pops the current top state of the interpretation stack and restores its current state with
it before continuing to interpret the L-string. This push/pop turtle mechanism linked with the use
of square brackets makes it possible to easily create branching patterns in L-systems. To insert
a branch on another for example, a well balanced bracketed list of modules representing the new
branch must be inserted at the position corresponding to the bifurcation between a main branch
and the new lateral branch.

Interpretation rules: Coupling L-strings with turtle geometry L-systems strings can be
associated with a geometry using turtle geometry. This can be done by either directly integrating
symbols that can be interpreted by the turtle in the finite set of symbols V or by using interpre-
tation rules to translate L-strings (corresponding to the dynamic system’s state) into T-strings
(corresponding to its geometrical interpretation).

Remarkably, these geometric interpretation rules can also be represented as an homomorphism
G mapping L-strings to T-strings (Kurth, 1994). This homomorphism is usually defined on set of
L-system symbols V . Let us call zn the word image by G of symbol bn ∈ V , G(bn) = zn. The
pair In = (bn, zn) is called a interpretation rule. We denote I = {In}n=1···M the set of all the
interpretation rules associated with G.

The interpretation rules are thus used to make a translation between the L-string modules that
in general denote the components of the modeled system with their attributes and have no direct
geometric interpretation, and the T-string geometric modules that can be directly interpreted by
the turtle as geometrical instructions.

Interpretation rules can be recursive and are applied in a depth-first manner to the input L-
string (recursions are fully developed before processing to the next module of the string). Most
of the extensions that have been defined for L-system derivation rule above are also defined for
interpretation rules (parametric, procedural), except for context sensitivity.
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Sensing the environment. In L-systems, forms get developed in a 2D or 3D Euclidean em-
bedding space. As they grow, it may sometimes be useful to locally probe the environment in a
production rule to make a decision that will impact the growth. For example, one may want to
determine if a new tentative segment extension of the growing form collides with some object in
the environment or with previously constructed part of the same form to decide if the grow will
actually take place.

For this, it is essential to access the position and orientation of the turtle in production rules.
A specific mechanism has thus been designed in this aim (Prusinkiewicz et al., 1994). It relies
on the use of specific query modules such as ?P ?H or ?U, that allow the modeler to access the
turtle position and orientation at different locations of a L-string from within production rules. To
access such information at a given derivation step, these query modules have to be produced in the
L-string at the previous iteration step. They act as place-holders to record geometric information
computed during turtle’s interpretation at the previous step. Once filled, the parameters of these
modules can be used in production rules of the next iteration to make development decisions.

2.4 L-system examples in L-Py
Let us illustrate the above concepts, on a few examples showing how simple forms can be computed
in space or in both space and time with L-systems, Fig.1, together with their L-system code (here
using L-Py).

The first example illustrates the notion of recursive production rule, where a module A contain-
ing a variable n produces a segment of size n, turns of a fixed angle and produces a new module A
with variable n+ 1. When repeated (here 20 times) this produces a polygonal Archimedean spiral,
Fig.1a. On the same principle, the second example shows how stochasticity can be introduced in
the rules to generate a random walk for instance 1.b. The use of recursivity is at the core of the
language. If extended beyond spatial recursivity, it can be used to model a wide variety of shapes.
In Figure1.c, for example, recursivity is used over scales to produce a fractal form (Mandelbrot,
1982). Here, at each derivation, existing segments are recursively rewritten as several segments of
shorter size. In this procedure the turtle interpretation of the Lstring converges towards a fractal
form (Prusinkiewicz and Lindenmayer, 1990). Finally, the recursive principle can also be used in
space and time to simulate the development of a form. Figure1.d illustrates how the development
of a plant branching system can be described very concisely using this principle.

1 Axiom: A(1)
2 derivation length: 20
3 production:
4 A(n): nproduce F(n)+(60)A(n+1)

Listing 1: Archimedean spiral (see Fig.1a)

1 dl = 1.
2 Axiom: A(0)
3 derivation length: 1000
4 production:
5 A(n):
6 a = 360*random ()
7 nproduce +(a)F(dl)A(n+1)

Listing 2: Random walk in 2-D (see Fig.1b)

1 Axiom: F(1) -(120)F(1)-(120)F(1)
2 derivation length: 5
3 production:
4 F(x) : nproduce F(x/3.0)+(60)F(x/3.0) -(120)F(x/3.0)+(60)F(x/3.0)

Listing 3: Fractal curve (von Koch flake) (see Fig.1c)

1 N = 10
2 offset = 2
3 iangle = 60
4

5 Axiom: A(0)
6 derivation length: N
7 production:
8 A(n) :
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9 if n<N: # produces an internode , a lateral bud (in [...]) and an apical bud
10 nproduce I(n) [P(n)A(n+offset)] A(n+1)
11 else: # produces a flower bud
12 nproduce B
13

14 interpretation:
15 I(n) : nproduce ;(1)F(N-n)
16 P(n) : # Phyllotaxis angle
17 if n%2 == 0 : nproduce +( iangle)
18 else: nproduce -(iangle)
19 A(n): nproduce ;(2)@O(1.5)
20 B : nproduce F(1);(3)@O(1.5)

Listing 4: Plant branching structure development (see Fig.1d)

Figure 1: Examples of geometric forms that can be produced by Lsystems (here using
the computer language LPy). (a) a polygonal Archimedean spiral, (b) a random walk, (c) the
von Koch flake (fractal curve) (d) an idealized simple sequence of development of a plant branching
system.

Forms built using classical L-systems assume that the underlying 2D or 3D space is Euclidean,
i.e. that the turtle graphical commands are interpreted as if the turtle were moving in a Euclidean
space. Euclidean spaces are flat, i.e. the five Euclid postulates that found classical geometry hold.
In particular, the fifth one, called the parallel postulate, that states that, in a plane, through a
point exterior to a given straight line, at most one line passes that never intersects the initial line.
It can be shown that flat spaces are characterized by this fifth postulate (Needham, 2021). In the
sequel, we extend L-systems to operate in curved (non flat) spaces and provide a programming
language to describe form and form development in these more general non-Euclidean spaces.

3 Moving on parametric surfaces
In this aim, we start by studying the extension of L-systems to 2-D curved surfaces embedded
in a 3-D Euclidean space. For this, we explore how turtle geometry, which defines how forms
are constructed in space, can be extended to 2-D surfaces. The extension of turtle geometry to
non-parametric, mesh-like surfaces has been described in (Abelson and diSessa, 1986). Here we
investigate the extension of turtle geometry to parametric surfaces.

3.1 Parametric surfaces
A (smooth) parametric surface S is defined as a differentiable map from a 2-D parameter space
U ⊂ R2 to R3. Let us denote (u1, u2) the coordinates of points in U and (x1, x2, x3) the coordinates
of points in R3. With these notations, a 2-D surface can be defined by the equations:

x1 = φ1(u1, u2)
x2 = φ2(u1, u2)
x3 = φ3(u1, u2).

(4)
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These 3 functions are often summarized by writing more simply x(u), or in coordinates xi(uα) =
φi(uα), i = 1, 2, 3, α = 1, 2 reminding us that xi’s are functions of the uα’s. If u1 (resp. u2) has a
fixed value, the variation of the other parameter u2 (resp. u1) defines a so-called coordinate line
on the surface, Fig.2a. Any pair of parameters (u1, u2) thus defines a point P on the surface. The
spatial infinitesimal variations of this point P (u1, u2) on the surface with respect to the parameter
coordinates, defines two vectors:

eα =
∂P

∂uα
, (5)

that form the covariant basis at point P (also called the coordinate basis). These vectors are
tangent at point P to the coordinate lines, and form a basis of the plane TPS tangent to the
surface at point P . A vector X in TPS is thus a linear combination of the coordinate basis vectors
eα at P (Fig.2b), and we note, using Einstein’s implicit summation convention:

X =
∑
α

Xαeα = Xαeα. (6)

A vector field over the surface associates a vector in TPS with each point P of the surface.
Each vector can thus be decomposed in the local covariant basis following Equ. 6.

Figure 2: Manifold curvilinear coordinates illustrated on a manifold of dimension 2 embedded
in a Euclidean pace of dimension 3. (a) Coordinate lines together with the covariant basis at a
point P . (b) A vector X in the tangent plane TPS at point P can be decomposed in the covariant
basis: X = Xαeα = X1e1 +X2e2.

The embedding Euclidean space, R3, induces a metric on the surface by assigning a value to
the dot product of each pair of vectors in the tangent plane TPS at P :

< X,Y >=< Xαeα, Y
βeβ >= XαY β < eα, eβ >= XαY βgαβ , (7)

where, < ., . > denotes the scalar product in U2 and gαβ defines the surface metric tensor as the
dot product of R3 vectors:

gαβ =< eα, eβ >= eα.eβ . (8)

The inverse metric tensor gαβ is such that gαγgγβ = δβα, where δβα is the Kronecker symbol (=
1 if α = β and 0 otherwise) . At each point P of the surface we can also define a normal unit
vector n, perpendicular to all vectors in the tangent plane TP :

n =
e1 × e2

|e1 × e2|
. (9)

We assume in this paper that the surface is orientable, meaning that the normal vector at
each point can be defined in a unique and consistent manner throughout the surface (this discards
non-orientable surfaces such as the Moebius strip from our analysis.). The orientation is made so
that the three vectors (e1, e2,n) have a direct orientation, i.e. det(e1, e2,n) > 0).

Surfaces are in general curved. Let us briefly recall what does this mean. Consider a point P
on a surface S and the normal vector n to the surface at P , Fig.3ab. Let us consider a direction tθ
at P making an angle θ with a fixed arbitrary direction t0 in the tangent plane at P , and construct
the ’vertical’ plane passing by tθ and n at P (in grey on Fig.3ab). The intersection of this ’vertical’
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plane and the surface is a curve γθ. We assume that a point moves at constant speed on this curve
parameterized by s. The velocity of this point is colinear with tθ at P and its rate of variation,
defining the curve curvature at P , is thus a vector perpendicular to tθ:

dt

ds
= kθ. (10)

This curvature vector lies in the ’vertical’ plane which contains the curve γθ. When the direction
tθ is rotated around the vertical axis, the norm kθ of kθ varies continuously. It can be shown,
that it passes by a minimum and a maximum value, called principal curvatures and denoted kmin
and kmax, in specific directions, dmin and dmax called the principal curvature directions at P . As
the surface is oriented, the principal curvatures kmin and kmax may be either positive (curvature
vector oriented like n) or negative (curvature vector oriented in the other direction). Principal
curvature directions have the property to always be perpendicular (Gray, 1997).

From the principal curvatures at P , one can define the mean curvature κM and the Gaussian
curvature κG as follows:

κM =
1

2
(kmin + kmax),

κG =kmin kmax.
(11)

The curved geometry of surfaces is characterized by their Gaussian and mean curvature. The
Gaussian curvature characterizes the type of local shape of the surface. If κG > 0 the surface
locally bends in two identical ways along the principal directions at P and the geometry is that
of a dome, Fig.3a. If κG < 0, the surface bends in opposite ways along the principal directions.
The surface locally looks like a saddle, Fig.3b. If κG = 0 (one of its principal curvatures at least
is 0) the surface is locally looks like a piece of cylindrical surface. Remarkably, κG only depends
on the metric (and not on the embedding of the surface in the ambient Euclidean space): it is an
intrinsic property (do Carmo, 1980).

The mean curvature has also an important geometric interpretation. Contrary to the Gaussian
curvature it depends on the embedding of the surface in R3 (it is not an intrinsic concept). It
expresses how much a piece of surface would deform locally if stretched to deform along the field
of local normals, Fig.3c: a small area would be deformed by a factor 2κM in the first order (Struik,
1988, p. 183). The higher is the absolute value of the mean curvature locally, the higher is the
surface deformation at this position (a contraction or a stretching depending on the sign of κM and
the orientation of the surface normal), κM = 0 meaning no deformation. Surfaces with constant
minimal mean curvature for instance arise in various physical systems, such as soap bubbles or
liquid droplets.

Figure 3: Principal curvatures on a surface When the vertical planes (in grey) are rotated
around the normal axis n (red arrow) with varying angles θ, the plane intersects the surface at
curves γθ. The curvature vector kθ of these curves lies in the plane made by the normal and
the tangent vector, and is perpendicular to the tangent vector tθ. During rotation, the curvature
intensity of these intersection curves passes by a minimum and maximum value, which define the
principal curvatures. The corresponding directions are called the principal curvature directions
(indicated here by the black and dashed curves) and are always perpendicular. (a) Surface with
local positive Gaussian curvature: the principal curvatures have the same sign. (b) Surface with
local negative Gaussian curvature: the principal curvatures have opposite signs. (c) Effect of the
mean curvature on deforming a local surface element A along the local normal directions over a
distance ε: A(ε) = A(1 + 2εκM ) assuming κM = (kmin + kmax)/2 > 0 here.
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3.2 Turtle state on a curved surface
On parametric surfaces, positions and directions can be thus specified directly by defining positions
and directions in the 2-D parameter space. For instance, a position can be defined by providing
a pair of coordinates P = (u1, u2) in the parametric space U, while a direction at this point may
be defined by providing a vector X of coordinates Xα in the local covariant basis, i.e. X =
X1e1 +X2e2. In R3, the corresponding point coordinates are:

(x1(u1, u2), x2(u1, u2), x3(u1, u2)), (12)

where:
xi = J iαu

α, (13)

where J iα are the components of the Jacobian J:

J iα =
∂xi

∂uα
, (14)

that represent the best local linear approximation of φ in the neighborhood of point P . This is
called pushforward operator, and often denoted dφ. It is represented as a (3,2) matrix, made of
the components of vectors e1 and e2 arranged in two columns, and maps vectors in the parameter
space into corresponding vectors in the 3-D space.

Because φ defines a bijective differentiable correspondence between the points of U and those of
the surface S that preserves point neiborhoods, xi and uα are often considered as the coordinates
of the surface point P expressed in either R3 or U respectively. Similarly vectors such as X and
u are mapped by the pushforward operator dφ, and can be interpreted as the ’same vector’ with
coordinates expressed in two different spaces, e.g. (Carroll, 2014, p. 424).

Therefore the position and orientation of a turtle can be unambiguously defined on the surface
by specifying their coordinates in the parametric space:

P =(u1, u2)

t =t1e1 + t2e2.
(15)

Together with the normal vector, the covariant basis form a local direct basis of the 3D space
at point P , (e1, e2,n), with basis vectors in the tangent plane or normal to it. As a consequence,
one can compute a unique {H,L,U} in R3 on the curved surface. Assuming the turtle is at a
position uα on the surface, and points in the direction of vector tα in the local tangent plane, the
turtle’s head, H, is oriented in the direction of the tangent vector and is thus aligned along t. The
up direction is chosen to be oriented along the surface’s normal n and the turtle’s left arm points
in the direction perpendicular to both U and H, Fig.4:

H =
t

|t|
, U = n, L = U×H (16)

This make it possible to redefine the turtle state in a curved space. In Euclidean space, this
state was defined as:

S = (x, y, z,H,L, U, · · · , color, · · · ). (17)

In a curved surface, the turtle’s state now becomes:

S = (φ, u1, u2, t1, t2, · · · , color, · · · ), (18)

where φ is the mapping U→ R3, xi(uα), defining the surface, (u1, u2) and (t1, t2) are respectively
the position and orientation of the turtle in the parameter space.

SetSpace primitive

To construct a language based on the formalism of Riemannian L-systems we need to associate
language constructs with the main concepts introduced above. For instance, to define the space
within which the L-system will operate and the turtle will move, the possibility to define parametric
spaces must be available in the language. The language primitive SetSpace will allow us to select
a specific parametric shape in a library of parametric surfaces provided by the language and on
which the movements of the turtle will take place. This library contains standard geometric forms
such as spheres, torus or ellipsoids as well as more generic shapes such as surfaces of revolution,
sweeps, NURBS patches that make it possible to define more complex shapes.
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Figure 4: Definition of the {H,L,U} frame on a curved surface. (a) A direction t is defined
at point P . Together with the surface normal n at P , they define a local reference frame that
makes it possible to define (b) the turtle’s frame: H is locally defined in the tangent plane aligned
with the vector t while the turtle’s upward direction U is imposed by n and L is the direct vector
product of U and H.

1 R = 2.
2 Axiom: SetSpace(Sphere(R))

Once the parametric space is set, the turtle state takes the form indicated by Equ. 17. Then
the turtle states are manipulated exactly as in the case of classical Euclidean turtles, including the
stacking and unstacking of turtle states when reading L-strings, that push in and pop out states.

3.3 Moving straight in a curved space
Moving straight in a curved space means moving along geodesics. The definition of geodesics relies
on the notion of parallel transport, that specifies what it means for vectors of a vector field to keep
parallel as one moves along a curve in the curved space.

Covariant derivative

To analyze the spatial variation of the vectors of a vector field as one moves within a curved space,
it is convenient to define a corresponding notion of derivative. For this, the derivative of a vector
at a point P in a given direction must not only integrate the change in coordinates of the vector,
but also the change of the local covariant basis. This leads to define a so-called covariant derivative
on vector fields.

To find an expression of covariant derivatives, let us consider the variation of a vector in the
tangent plane at a point P along the coordinates lines in the 3-D space:

∂X

∂uα
=
∂(Xβeβ)

∂uα

=
∂Xβ

∂uα
eβ +Xβ ∂eβ

∂uα
.

(19)

This expression brings out the derivatives of the basis vectors, that can be computed in the
ambient space:

∂eβ
∂uα

= Γγαβeγ + Λαβn, (20)

where:
Γβαγ =

∂eα
∂uγ

.eβ , (21)

are the so-called Christoffel symbols (of second kind), eβ = gαβeα are the contravariant basis
vectors. The Christoffel symbols define the rate of change of the covariant basis vectors in each
direction of the local contravariant basis. Similarly,

Λαβ =
∂eα
∂uβ

.n, (22)
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are the coefficients characterizing the variation of the covariant basis vectors along the surface
normal. Therefore, altogether we have:

∂X

∂uα
=

(
∂Xγ

∂uα
+XβΓγαβ

)
eγ +XβΛαβn. (23)

Let us keep only the part of this expression lying in the tangent plane and define:

∇αX =
∂X

∂uα
−XβΛαβn

=

(
∂Xγ

∂uα
+XβΓγαβ

)
eγ .

(24)

This quantity is called the covariant derivative of X on the surface. It corresponds to the
orthogonal projection of the usual partial derivative of the vector X in the Euclidean space onto
the local tangent plane, (Rouvière, 2016, p. 40). It can be shown that ∇αX has the properties of a
derivative operator (linearity and product rule) and that it defines an intrinsic differential operator
on the surface, i.e. an operator that depends only on quantities that can be measured within the
surface. Its components are denoted ∇αXβ :

∇αX = (∇αXβ)eβ . (25)

More generally the covariant derivative of a vector X in the direction of an arbitrary vector
Y = Y αeα is defined as:

∇YX = Y α∇αX. (26)

This leads us to the definition of the notion of parallel transport. Let γ be a curve embedded
within the surface defined from an interval I ⊂ R to the surface:

I→ S
t→ γ(t),

(27)

and let X be a vector field on S. X is parallel transported along the curve γ if at each point γ(t)
of the curve:

∇γ̇(t)X = 0, (28)

where γ̇(t) = dγ(t)
dt is the tangent to the curve at point γ(t). This means that the vector field keeps

constant seen from within the tangent planes when one moves in the direction of the curve. More
generally, two vectors fields X and Y parallel transported along a curve γ(t) keep a constant scalar
product (i.e. a constant angle in the tangent planes along γ as t varies) (Carroll, 2014).

Geodesics

Consider a smooth curve γ embedded in a curved space S (Fig.5a). We assume the curve γ is
parameterized by the arc-length parameter s using a smooth mapping γ(s) = xi(uα(s)) from a real
interval I on the curved space S, such that, as s varies, the point γ(s) travels at a constant and
unit velocity:

t =
dP (s)

ds
with |t| = 1. (29)

The tangent vector being of constant norm, its rate of change along the curve,

k =
dt

ds
, (30)

reflects changes at every point P in direction only and defines the curvature vector k perpendicular
to t (note that k is not necessarily in a vertical plane passing through t and n at P as was the
case with the curvature vector kθ in Equ. 10). The norm of this vector,

κ = |k|, (31)

defines the curve’s curvature and indicates the intensity of the curve’s bending in the 3D space at
each point. Interestingly, on a curved surface S, the curvature vector k can be further decomposed
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Figure 5: Curvature and geodesic. (a) Normal and geodesic curvature of a curve lying on a
surface. (b) Let G be the unique geodesic curve starting at a point P in the direction X. Q is the
image on the surface of X by the exponential map at P : Q = expP (X). Reciprocally, X = LogPQ.

locally (Fig.5a). Let n and TPS denote respectively the normal and the tangent plane to S at
a point P (assuming a local orientation of the surface). Then the curvature vector k can be
decomposed locally into a normal and a tangent components, kn and kg,

k = kn + kg. (32)

kn is the normal curvature (rate of change of the tangent vector normal to the surface) and
kg is the geodesic curvature. Geodesic curvature intensity indicates how the curve tends to bend
locally in plane, i.e. to deviate from a straight move in the tangent plane. Curves for which
the geodesic curvature is null at every point are called geodesics. As for geodesics the change
of tangent direction (acceleration) is purely normal to the surface, a turtle living on the surface
will not notice any lateral movement when moving, and will have the impression to locally move
straight. Geodesics are the equivalent in curved spaces to straight lines in flat euclidean spaces.

An important consequence of the definition is that, in the direction of the tangent vector, the
covariant derivative of the tangent vector of a geodesic should have no components on the in-plane
local basis vectors (otherwise there would be a detectable geodesic curvature):

∇t(s)t(s) = kg = 0 (33)

This equation can be used to define geodesic curves on S. Using the definition of the tangent
to the curve t, Equ. 29, expressed in the covariant basis, i.e. t = duα(s)

ds eα and developing Equ.
33, one obtains a set of two second order, non-linear, coupled differential equations, one for each
value of α (e.g. (Carroll, 2014, p. 106)):

d2uα

ds2
+ Γαβγ

duβ

ds

duγ

ds
= 0, (34)

These equations can be used to compute geodesic trajectories on the surface from different
perspectives, depending on the choice of boundary conditions (see below).

Exponential maps. Smooth surfaces have a remarkable property: At any point of the surface
and in a given direction, there exists a unique geodesic that passes through this point and whose
tangent at this point points in the given direction (Struik, 1988, p. 133). This property makes
is possible to define a map between vectors from the tangent plane TPS at P and the points of
the surface, called the exponential map, e.g. (do Carmo, 1980, p. 287). For this, let P ∈ S and
X ∈ TPS and denote GP (t,X) the unique geodesic originating at P with an initial velocity X
(i.e. ĠP(0,X) = X). Note that on a geodesic parameterized by a parameter t, the norm of the
velocity must stay constant all along the curve, e.g. (Rouvière, 2016, p. 47). The exponential map
is defined by (do Carmo, 1980, p. 288):

expP X = GP (1,X), (35)
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i.e. the exponential function returns the point reached after traveling on the geodesic for a time
unit, at constant speed ‖X‖. Therefore,

Q = expP X, (36)

is the unique point at a on the geodesic GP (t,X) at a unit time reach from P when moving at
constant velocity ‖X‖, Fig.5b. At least in sufficiently small neighborhoods of P , this map is a
diffeomorphism (do Carmo, 1980, p. 288). It is thus possible to define a reciprocal map, called the
logarithmic map at P , such that:

X = logP Q, (37)

that returns, for any point Q of the surface (in the region where expP is bijective), the direction
X in the plane TPS which initiates a geodesic from P that passes through Q and the geodesic
distance between P and Q has the norm of X, e.g. (Sommer et al., 2020, p. 17-30).

Exponential and logarithmic maps are essential tools in Riemannian L-systems as they provide
the natural concepts to simulate turtle movements locally, i.e. in the local referential transported
with the turtle during the movement.

Moving forward in a direction: an initial value problem

Consider a turtle positioned at a point P on a curved surface, and heading in direction H. To
advance the turtle by a distance l on the surface, one needs to compute the geodesic starting at
P = (u, v) in the direction H = (p, q) over a length l on the surface, Fig.6a. This computation
determines the new position of the turtle, corresponding to P ′ = expP (lH) and a new value of the
head vector H corresponding to the tangent of the geodesic at the destination point P ′.

Figure 6: Different ways to specify straight displacement in a curved space. (a) Forward
algorithm: an initial value problem. (b) LineTo algorithm: a boundary value problem

For this, we can integrate Equ. 34 over a determined length l to obtain the points of the unique
geodesic solving this initial value problem (IVP). A classical strategy to solve an IVP system of
second order differential equations similar to Equ. 34, consists of considering du

ds = p and dv
ds = q

as two new independent variables and rewrite Equ. 34 as a system of four coupled first order
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differential equations (see e.g. (Gray, 1997)):

du

ds
= p

dv

ds
= q

dp

ds
+ Γ1

11p
2 + 2Γ1

12pq + Γ1
22q

2 = 0

dq

ds
+ Γ2

11p
2 + 2Γ2

12pq + Γ2
22q

2 = 0,

(38)

with the initial conditions:
P =

[
uP
vP

]
, t0 =

[
pP
qP

]
. (39)

The variables of Equ. 34 have been explicitly rewritten with renaming u1 → u and u2 → v to
avoid over indexation in the final Equ. 38. This new system of first-order differential equations can
be integrated with classical ODE solvers. Note that for a given parametric surface, the Christoffel
symbols appearing in the equation are the only quantities that need be computed. They are
functions of p and q, which fully couples the equation system. They can be evaluated by using
Equ. 21.

In a curved space, a forward step is specified by the primitive F(l) (move forward at the sur-
face over a distance l) as in a Euclidean space, except that the primitive will now make a call
to a geodesic solver that takes as an input the surface parametric equation, the current posi-
tion of the turtle P = (u, v), the heading direction prescribed by the current value of the turtle
direction H, both provided by their coordinates in the parametric domain, as well as the num-
ber of elementary steps N requested to produce the line, Fig.6a. The solver returns a list of N
points Pn = (un, vn), with their corresponding tangents tn = (pn, qn) on the geodesic that the
turtle can use to move forward, and draw a geodesic line on the surface as points of coordinates
{Pn = x1(un, vn), x2(un, vn), , x3(un, vn)}n=0,...,N , where PN = P ′ = expP (lH).

Altogether, in the language, all this integration process is hidden from the user and results in
very intuitive moves. The user can think of programming a form as if moving in a Euclidean space.
After the declaration of the parametric surface to be used, moving forward by a distance l length
units takes exactly the same form as moving forward with the turtle in a flat space:

1 Axiom:
2 nproduce SetSpace(Sphere(1))
3 nproduce InitTurtle ((0,0,1,0)) # Initializes turtle position at u=0,v=0,p=1,q=0
4 nproduce F(0.5) # Draws a geodesic of length =0.5 from point (0,0) in direction

(1,0)

Moving forward to a given position on the curved space: a boundary value problem

To prescribe turtle movements, an alternative method consists of specifying a target point P ′ that
the turtle should reach, from the current position P , in the straightest possible way at its next step,
Fig.6b. Here, only a target point is prescribed instead of a direction and a length as in the previous
IVP case, and one seeks for the geodesics that corresponds to the straightest path between the P
and P ′. This can be viewed as a reciprocal problem, corresponding to evaluate the logarithmic
map for a given point P ′, i.e. find the direction t in TPS and the corresponding geodesic that
leads to P ′ from P , i.e. such that t = logP P

′.
Interestingly, the geodesic Equ. 38, can also be used to solve this problem. However, the

problem is now constrained by the end-points, Fig.6b: given an initial point P and a target
point P ′, find a geodesic that connects these two points. For a smooth surface, there exists at
least one geodesic between two points. Finding such a geodesic belongs to the class of boundary
value problems (BVP). There are two main ways to solve these BVP problems, using i) shooting
methods or ii) improving progressively an initial solution passing through the two endpoints, see
e.g. (Maekawa, 1996).
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Shooting method. The first method can be formalized as an optimization problem by choosing
a shooting direction t as well as a length l, and integrating Equ. 38 over the length l to find a
geodesic and a length that would lead exactly to the target point. Let γP,t be the unique geodesic
starting from P in direction t. For at least one specific direction t∗ (‖t∗‖ = 1) this geodesic passes
through the target point P ′. Then for a certain optimal shooting length l∗ we get:

expP (l∗t∗) = P ′. (40)

Then, by shooting in different directions and using different lengths, one can evaluate the quality
of each choice (t, l) by computing a distance D between the point reached and the target P . The
shooting problem can thus be cast into an optimization problem:

(t∗, l∗) = argmin
t∈TP (S),l>0

D(expP (lt), P ′). (41)

The distance D(., .) should in principle be the distance on the surface. But as computing this
distance would already require the problem to be solved, in practice, we use Euclidean distances
in either the parameter space or the embedding space that provide simple computations.

To solve this problem, classical numerical optimization techniques can be used. Here we imple-
mented this method using a nonlinear least-squares algorithm with bounds on the variables (Press
et al., 2001). The bounds on the variables make it possible to fix the endpoints to the required
values, P and P ′ respectively.

The RiemannLineToShoot primitive can be called by passing the target point (u, v) coordinates
as an argument:

1 Axiom:
2 nproduce SetSpace(Sphere(1))
3 nproduce InitTurtle ((0,0,0,1)) # Iniializes turtle position at u=0,v=0,p=0,q=1
4 nproduce RiemannLineToShoot ((1,0)) # Draw a geodesic between points (0,0) and

(1,0)

Geodesic residuals (GR) method. Maekawa (1996) proposed an alternative optimization
method to solve this problem on parametric surfaces. Let Γ(P, P ′) be the set of parametric curves
with extremities fixed at P and P ′ and γ be a curve in Γ(P, P ′). The idea is to define a quantitative
criterion C(γ) to assess how much γ departs from a geodesic, (C(γ) = 0 means the curve is a
geodesic) and then to minimize this criterion:

γ∗ = argmin
γ∈Γ(P,P ′)

C(γ), (42)

where γ∗ is the sought geodesic between end-point P and P ′. To define the criterion, let us remark
that Equ. 38 can be written in the form:

dQ

ds
= G(Q, s), (43)

where Q is the vector [u, v, p, q]T corresponding to the concatenation of the position and velocity
of a point on the geodesic. In addition, the geodesic curve must respect the boundary conditions:

Qinitial = [u = uP , v = vP ,−,−]T and Qfinal = [u = uP ′ , v = vP ′ ,−,−]T , (44)

where (uP , vP ) and (uP ′ , vP ′) are the coordinates of the two end-points and a dash − means that
these values are unconstrained at the boundary. This equation is a first order differential equation
that suggests that recurrence relations exist binding the variables along the curve as s varies. This
can be made explicit by discretizing the curve into m−1 segments bounded by points of curvilinear
abscissa [sk, sk+1], k = 0, . . . ,m − 1. Denoting Qk = Q(sk) and Gk = G(Qk, sk), and using the
trapezoidal rule to approximate the derivative, one obtains the following recurrence relations:

Qk −Qk−1

sk − sk−1
=

1

2
(Gk +Gk−1), ∀k = 1, . . . ,m− 1, (45)

with the boundary conditions defined in Equ. 44 becoming Q0 = Qinitial and Qm = Qfinal.
Note that the distance sk − sk−1 between curvilinear abscissa needs to be approximated by a
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Euclidean distance in R3. However, provided that the segments are sufficiently small compared to
the local curvature, this approximation is in general accurate. From this equations, let us define
the residuals:

Rk =
Qk −Qk−1

sk − sk−1
− 1

2
(Gk +Gk−1), ∀k = 1, . . . ,m− 1, (46)

and
R0 = [u0 − uP , v0 − vP ]T and Rm = [um − uP ′ , vm − vP ′ ]T . (47)

For points falling exactly on a geodesic, these residuals should be 0. The problem can thus be
turned into an optimization problem where we seek for the Qk and sk that cancel the residuals:

Rk =[0, 0, 0, 0]T k = 1, . . . ,m− 1,

R0 =Rm = [0, 0]T .
(48)

This defines a non-linear system of 4m = 4(m − 1) + 2 + 2 equations for 4m = 4(m − 1) + 2 + 2
variables. Here again, such a system can be solved using classical methods to find the roots of
a function. Following Maekawa (1996) who gives an explicit expression for the Jacobian of the
residuals, we used a Newton method that remains very efficient if a good initial guess of the
solution can be found. In our case, a natural initial guess corresponds to the linear interpolation
in the parameter space of the endpoint variables (uP , vP ) and (uP ′ , vP ′).

In Riemannian L-systems, the GR method can be called using a RiemannLineTo primitive and
passing the target point (u, v) coordinates as an argument. This computes the geodesic between
the current turtle position and the target point argument, and moves the turtle’s position at the
target point, with a heading direction H tangent to the geodesic extremity.

1 Axiom:
2 nproduce SetSpace(Sphere(1))
3 nproduce InitTurtle ((0,0,0,1)) # Iniializes turtle position at u=0,v=0,p=0,q=1
4 nproduce RiemannLineTo ((1,0)) # Draw a geodesic between points (0,0) and (1,0)

Geodesic distances on the surface

Distances can be defined between points of a curved space by using the length of the shortest
path between two points. In addition to being the straightest lines between points, geodesic also
have the property of being local minima of the length of trajectories between any two points. We
can thus define a notion of distance between points of the surface by integrating the length of
the different segments composing a geodesic. Let us call DS this geodesic-based distance on the
surface S and call {(uk, vk)}k=0,m the points in the parameter space defining a geodesic between
A and B, then:

DS(A,B) =
m∑
k=1

‖x(uk, vk)− x(uk−1, vk−1)‖, (49)

where ‖.‖ is the usual L2 norm in R3. Here, we assume that the distance in R3 approximates
sufficiently well the geodesic length of short segments on the surface. Note that in general the
geodesic between 2 points of the surface is not necessarily unique. In principle, if several geodesic
exist one should base the above distance on the one that minimizes their lengths.

The distance between two points can be computed by using the function geodesic_distance_to_point,
as soon as the turtle state is available (mainly in interpretation rules).

1 dist ,_,_ = geodesic_distance_to_point(turtle.space , (u,v),(ut ,vt))

3.4 Turning on curved surfaces and holonomy
Riemannian spaces and in particular parametric surfaces, are by definition smooth spaces that can
be locally approximated by Euclidean spaces. As turning (i.e. rotating) in a Riemannian space is
a purely local operation, i.e. an operation that takes place in the tangent plane associated with the
current position, it is thus no wonder that turning in such curved spaces is essentially equivalent
to turning in Euclidean spaces. However, one must be cautious as rotation transformations must
usually be operated in orthonormal bases. This is not the case in our Riemannian spaces as the
local basis, e.g. the covariant basis, is not in general orthonormal. Before applying a rotation, one

18

Acc
ep

ted
 M

an
us

cri
pt



Figure 7: Turning on a surface. (a) On a geodesic trajectory (black curve), the turtle is
instructed to turn by an angle θ at a point P . As the tangent t (black) before the turn is expressed
in the local covariant basis (red), a orthonormal basis (not shown) must be computed to perform
the rotation, leading to a new tangent vector t′ expressed in the orthonormal basis. Then, the new
tangent vector is expressed in the covariant basis and moves along geodesics can continue. (b) in
this way, the turtle can draw curved polylines on the surface, by alternating geodesic segments (in
black) and rotations (angles θ in blue).

must thus move temporarily to some local orthonormal basis and move back to the original basis
afterwards.

The basis vectors e′α of the new coordinate system can be related to the old basis vectors eβ
by a matrix G = {Gβα} such that, e′α = Gβαeβ and e′α.e

′
β = δαβ . Then to rotate in the local

tangent plane a vector t with components [t1, t2]T in the covariant basis by an angle θ, one must
first transport the components of t in a local orthonormal basis, then do the rotation yielding the
vector t′ with components expressed in the orthonormal basis, and finally get back to the original,
non-orthonormal, basis where t′ has components [t′1, t′2]T , Fig.7. If Rθ denotes the rotation matrix
by an angle θ in the orthonormal basis e′α, then:[

t′1

t′2

]
= GRθG

−1
[
t1

t2

]
. (50)

Hence for turning by an angle θ, one must first compute locally a matrix G (here we used a
classical Gram-Schmidt orthogonalization process (Franklin, 2003).) and then rotate turtle’s head
H and left arm L according to Equ. 50, while keeping the U vector unchanged in the direction
of the surface normal. All these operations are hidden in the language and the user only specifies
rotations by providing angles (expressed in degrees):

1 Axiom:
2 nproduce SetSpace(Sphere(1))
3 nproduce InitTurtle ((0,0,0,1))
4 nproduce F(1) +(30) F(1) +(45) F(2)

Parallel transport The possibility to turn while moving in a curved space is essential to reveal
the curved nature of the space in which the movement takes place, e.g. (Arnold, 1989, p. 301)
and (Abelson and diSessa, 1986). To see this, let us use the notion of parallel transport introduced
above and see how it can be illustrated using the turtle movements. A vector is parallel transported
along a geodesic, its orientation with respect to the geodesic tangent and its norm does not change
as one moves along the geodesic.

Consider the classical example of a walker moving on a sphere and transporting a vector. The
walker starts at the equator in the direction of the North pole and holds her vector pointing ahead
(e.g. (Abelson and diSessa, 1986), Fig.8a-b red arrow pointing upward at green point). While
walking straight, the walker keeps the vector always positioned identically with respect to her. She
is parallel-transporting the vector with her. The vector is thus aligned with the tangent of the
curve and keeps aligned all the way through. At the pole, the vector is thus horizontal and points
to the back. The walker then turns to the left without turning the vector. She then continues
her path while still parallel transporting the vector, Fig.8a. As the orientation of the vector with
respect to the geodesic tangent does not change along the way, the vector arrives at the equator
pointing to the back. The walker then turns again by 90 degrees counter clockwise, still without
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Figure 8: Holonomy and parallel transport using Riemannian Lsystems. (a-b) parallel
transport of a vector along a polygon made of geodesics. The vector is initially tangent to the first
geodesic, then is perpendicular to the tangent on the second geodesic, then points backward on
the third geodesic segment. (d-c) parallel transport of a vector not tangent to the first geodesic.
The vector keeps a constant angle with the tangent vector, but this angle changes each time the
turtle turns. (e-f) parallel transport along a curve that is not a geodesic: the angle between the
transporting curve and the transported vector varies continuously.

moving the transported vector orientation, and continues her trip along the equator back to its
starting point. When arriving, the transported vector now points west in the initial tangent plane.
Still without changing the orientation of her transported vector, the walker makes a final turn by
90 degrees to get back to its exact starting orientation and completely close the loop. One can
observe that, although during the trip, orientation of the transported vector never got modified,
its final orientation (to the west) does not match its original orientation (to the north).

This property of implicitly rotating parallel transported vectors along closed trajectories is
characteristic of curved spaces. It is called holonomy. The difference of angle between the vectors
before and after the parallel transport along a loop is called the angle defect. In flat spaces, the
angle defect is 0 for any loop and any parallel-transported vector. In curved spaces, the angle
defect is tightly linked with the curvature of the space, e.g. (Abelson and diSessa, 1986).

Holonomy and angle defect can be visualized with Riemannian L-system. For this the turtle
keeps track of the accumulated rotation angle, α, since an origin point on a turtle path. The origin
point is defined using the module ParallelTransportReset that reinitializes the cumulated turtle
rotation at any moment (α = 0), and thus defines a new origin for parallel transport at the current
turtle’s position, say (u0 = 0, v0 = 0). For a unit vector v positioned in the tangent plane at the
origin point and making an angle β with the turtle’s head at the origin, we can thus compute and
draw its corresponding transported vector at any subsequent position of the turtle. This is done by
using the module ParallelTransportedArrow(vect_angle,vect_size), with vect_angle = β,
and vect_size being a scaling factor for visualization. At the new position, the parallel transported
vector v makes an angle β′ with the current turtle’s head in the current tangent plane corresponding
to the original angle corrected by the cumulated angle (i.e. α) by which the turtle turned on the
path to the current point:

β′ = β − α (51)

The module ParallelTransportedArrow(vect_angle,vect_size) thus draws the transported
vector v as a vector making an angle β′ with the turtle’s head at the current turtle’s position.

To illustrate how to program this with Riemannian L-systems, let us start with a program
tracing a triangle at the surface of a sphere as in Fig.8c:

1 Axiom:
2 nproduce SetSpace(Sphere(1))
3 nproduce InitTurtle ((0,0,0,1))
4 nproduce F(R*pi/2) +(90) F(R*pi/2) +(90) F(R*pi/2) +(90)
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This program can be modified to show the different stages of a transported vector along
the triangular path. For this, after setting the origin point of parallel transport at 0 using
ParallelTransportReset, we insert the module ParallelTransportedArrow() at each vertex
positions (Fig.8c-d):

1 alpha = -30 # in degrees
2 R = 1
3 Axiom:
4 nproduce SetSpace(Sphere(R))
5 nproduce InitTurtle ((0,0,0,1))
6 nproduce ParallelTransportReset
7 nproduce ParallelTransportedArrow(alpha ,0.5)
8 nproduce F(R*pi/2)
9 nproduce ParallelTransportedArrow(alpha ,0.5)

10 nproduce +(90) F(R*pi/2)
11 nproduce ParallelTransportedArrow(alpha ,0.5)
12 nproduce +(90) F(R*pi/2)
13 nproduce ParallelTransportedArrow(alpha ,0.5)

Listing 5: Parrallel transport (see Fig.8.c-d)

Fig.8e-f, illustrating the transport of a vector along a non-geodesic curve can be obtained in a
similar manner by making short segments of size dl� R, each followed by small rotations dα� π
and drawing the transported vector at each incremental step.

Interpretation of turtle movements in terms of differential operators. According to
the definition of parallel transport, we see that the head vector of the turtle H is always parallel
transported by a F statement as it remains parallel to the tangent vector of the geodesic trajectory
produced by F. Hence, parallel transport of a vector X in the current tangent plane TPS of the
turtle, through a F statement, is the vector X′ such that, if α denotes the angle between X and
H in TPS, P ′ and H′ are respectively the new position and head of the turtle after the execution
of the F statement, then X′ is the vector in TP ′S that makes an angle α with H′ and such that
‖X′‖ = ‖X‖.

Combined together, the Riemanian definition of a forward (F) and rotate (+) statement, imple-
ment the exponential map at the current turtle’s position P . Let us take the turtle’s orientation
H as a reference orientation in current turtle’s tangent plane. Then any vector X in this plane can
be defined by a rotation α with respect to H, and a scaling factor ‖X‖ = l. Then the instruction,

1 nproduce +(alpha) F(l)

moves the turtle to the point P ′ = expP (X) with a new direction H′ at P ′ that is the parallel
transport of vector X at P along the geodesic from P to P ′.

Reciprocally, given the current turtle’s position P and a different point P ′ on the surface, the
definition of the statement RiemannLineTo implements the logarithmic map at the turtle’s position.
The instruction:

1 nproduce RiemannLineTo(P_prime)

computes a geodesic as a ordered list of points on the geodesics {(un, vn, pn, qn)}n=0,...,N , where
PN = P ′ = expP (lH). The vector X0 = (p0, q0) belongs to the tangent plane at P and represents
the initial direction of the velocity in the parameter space, and thus X0 = logP (P ′).

Closed polygons on a surface As illustrated by holonomy, various usual geometric properties
valid in Euclidean spaces are no longer valid in curved spaces. In particular, the sum of the inner
angles of a triangle is not 180 degrees nor even a constant number in general. This makes it
difficult to draw closed polygonal curves just based of local operations such as moving forward by
a length l or turning by a certain angle α, Fig.9a. In general, is not possible to map flat space
onto a curved space map while preserving both the angles and lengths. This means that we have
to accept to drop some properties of polygons when mapping them in a curved space. However,
it can be practically important in some cases to draw close figures on the surface and even to fill
them with a particular color or texture.

This issue related to holonomy can be circumvented in different ways in Riemaniann L-systems.
A first option is to draw a polygonal line using the F module (thus making geodesic segments)
Fig.9a, and to close the polygon by creating a final geodesic segment using a RiemannLineTo
module from the current position of the turtle to its initial position. However, this solution may
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induce undesired biases on the length and orientation of the final segment if the total curvature
enclosed by the polygonal line is significant.

A second option consists of tracing the polygonal figure in the parametric space rather than on
the surface directly, and then project all the points of this polygonal line on the surface Fig.9b. This
can be considered as an indirect interpretation of the turtle instructions, which are momentarily
executed in the parameter space rather than on the surface. This can be carried out by using the
modules StartIndirectInterpretation and StopIndirectInterpretation.

The backside of this indirect interpretation is that the segments are in general not geodesics. It
is possible to define a spherical square as a polygon made of geodesic edges with equal lengths and
equal inner angles between consecutive edges (although different from 90 degrees). In Riemannian
L-systems one would position the turtle at the center of the square, then send geodesic rays of
equal length d from this point with an angle of 90 degrees between each other (Fig.9c thin blue
lines). This defines four points at the same distance of the square center, which can then be joined
by a geodesic using a RiemannianLineto primitive. This procedure can be used on more chaotic
surfaces (Fig.9d), but with an additional loss of geometric symmetries of the square.

Figure 9: Drawing closed polygons on curved surfaces. (a) failure to close a square by forcing
consecutive sides to be at 90 degrees from one another on a curved surface. (b) Square drawn in
the parameter space, and then pushed on the surface (c) Alternative geometric construction of
the square preserving the right angle at the intersection of the diagonals and their length. (d) the
construction in c can be used on more chaotic surfaces.

Drawing smooth curves on a curved surface In the Euclidean space, important families of
parametric curves can be constructed by the use of straight lines. This is the case for instance
of basis spline curves, or B-Splines, whose points are a weighted linear combinations of so called
control points, (Piegl and Tiller, 1997). This linear combination is based on piece-wise polynomial
basis functions whose degree controls the smoothness of the curve. An approximation of such curve
can be achieved through algorithms that recursively subdivide the control polygon (polygon formed
by the control points), such as the de Casteljau (Piegl and Tiller, 1997) or the Lane-Riesenfeld
(Lane and Riesenfeld, 1980) algorithms. Here, we show how such algorithms can easily be extended
with Riemannian L-systems to control smooth curves in curved spaces (Fig. 10.a-h).

Starting from the initial control polygon made up of geodesics segments, the number of controls
points is first doubled by inserting new control points in the middle of each segment (duplication
operation) (Fig. 10.b). The centroid of the geodesic is estimated as the point of the geodesic at
equal geodesic distance between the two control points. Then, each initial control point is moved
toward the midpoint of the adjacent segment (move operation)(Fig. 10.c-d). Each subdivision step
is thus composed of duplication and move operations. Subdivision steps are reiterated until the
desired level of approximation of the B-Spline curve is reached (Fig. 10.f-h).

Let us illustrate how this principle can be used to generate an oak leaf-like shape using Rie-
mannian L-systems (List. 6). First, a set of control points is specified as the terminal nodes of
a simple tree structure using the BSplinePoint module, encapsulated within StartBSpline and
EndBSpline modules. These control points must be provided in an order that respects the curve
parameterization. For this, the left branches are first generated (line 17), followed by the primary
branch (line 18) and subsequently the right ones (line 19). The subdivision algorithm encoded
in the BSpline primitive of the system (line 6,8) then generates the outline of an oak-like leaf.
Depending on the embedding space, the shape is drawn on a flat surface 10i, an ellipsoid Fig.10j
or a bumpy ellipsoid respectively in Fig.10k. The representation of the leaf contour dynamically
adjusts to the local irregularity of the underlying space. In particular, on the bumpy ellipsoid, the
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main axis of the skeleton is deflected toward the right, due to the specific curvature of the space.
Various types of shapes can be drawn on curved spaces using the same principle as illustrated by

Fig.10l-n. Here, the control polygon represents a salamander sketched in Escher style.The original
control polygon (Fig. 10l) is recursively subdivided to achieve approximation of B-Spline curves
of degree 2 and 8 respectively (Fig. 10m-n). The higher the degree, the smoother the curve and
more rough the details.

While the resulting curve appears visually smooth and approximates its control points in a
manner consistent with the B-spline definition, it is not strictly a B-spline. This is because the
smoothness of an embedded curve is fundamentally constrained by the differentiability class of
the surface it resides on. Consequently, the curve’s degree of differentiability may not meet the
requirements of a true B-spline. The geometric properties of such embedded curves remain an
open question for future investigation.

Figure 10: B-splines on a curved surface. (a) Initial quadrilateral control polygon on a sphere.
(b) Duplication operation with new control points (in purple) inserted in the midpoint of each
segment. (c-d) All original control points (in red) are moved toward the midpoint of their adjacent
segments (in purple). For a B-Spline of degree 3, 2 move operations are applied. (e) Resulting
control polygon after a complete subdivision step. (f-g-h) Successive control polygons (in green)
after 1, 2 and 3 subdivision steps respectively. (i-k) The B-Spline curve is defined by control
points positioned using the Riemannian L-system 6 that generates a simple branching structure.
Resulting curve on (i) a flat surface, (j) an ellipsoid and (k) a bumpy ellipsoid. (l) The control
polygon of a salamander shape. (m-n) The interpretation of the control polygon as B-Splines of
degree 2 and 8 respectively. The degree of the curve controls the number of control points that
influence each point of the curve.

1 maxlength = 12
2 dl = 1.5
3

4 Axiom:
5 nproduce SetSpace(EllipsoidOfRevolution(5,8)) InitTurtle ([0,-1,0,1])
6 nproduce StartBSpline(2) # The degree of the B-Spline is given as parameter
7 nproduce BSplinePoint () [ A(0) ] BSplinePoint ()
8 nproduce EndBSpline ()
9
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10 derivation length: 8
11 production:
12

13 A(clength) :
14 if clength < maxlength:
15 clength += dl
16 lateral_length = maxlength*lateralratios(clength/maxlength)
17 nproduce F(dl)
18 nproduce [+(60) F(0.1+lateral_length) BSplinePoint ()]
19 nproduce [ F(0.1) A(clength)]
20 nproduce [-(60) F(0.1+lateral_length) BSplinePoint ()]
21

22 interpretation:
23 A(l) --> BSplinePoint ()

Listing 6: B-Spline curve built by positionning B-Spline control points at the end of a simple
tree structure (see Fig.10j). The lengths of the lateral branches depend on a graphically defined
function called lateralratios.

4 Freely growing forms on curved surfaces
Using the turtle primitives introduced above to move on curved surfaces, we now explore how to
program the development of filamentous or branching forms on curved surfaces using Riemannian
L-systems.

4.1 Geodesic trajectories
In the absence of any reason for deviating from a straight movement, a mobile moving in a curved
space would naturally follow geodesics. On the sphere for example, starting at a point P and
heading in a direction v will produce a geodesic that corresponds to the great circle passing
through P in the direction v. In more complex spaces, geodesics may show remarkable properties
that can lead to non-intuitive patterns.

Let us consider for example geodesic trajectories on an ellipsoid of revolution, starting at
equatorial points in directions given by different initial angles above the equator α, Fig.11a. In
Riemannian L-systems these geodesics can be simulated with the simple program below:

1 alpha = -45 # in degrees
2 ra = 1. # dimensions of the ellipsoid
3 rb = 0.5
4 lg = 10 * (2*pi*ra) # length of the geodesic
5 Axiom:
6 nproduce SetSpace(EllipsoidOfRevolution(ra,rb))
7 nproduce InitTurtle ((0,0,1,0)) # head points in the horizontal direction [1,0]
8 nproduce +(alpha) # initial inclination with respect to horizontal
9 nproduce F(lg) # draws a geodesic

Listing 7: Geodesic on an ellipsoid of revolution

Here, only an axiom is defined, with no production rules, and directly produces modules that
can be interpreted by a Riemannian turtle (no need of interpretation rules either). The axiom first
triggers the use of Riemannian L-systems by defining a curved space in which the turtle should
operate (line 6), then its initial position and reference orientation (pointing right in the horizontal
direction) in this space (line 7), and finally after a local rotation with respect to the reference
orientation (line 8) a geodesic line of length lg is drawn from the initial position heading at angle
alpha below the horizontal direction (line 9). By varying alpha, we can observe the behavior of
geodesics on an ellipsoid, Fig.11a. They tend to stay in an equatorial band whose width depends on
the inclination of the initial direction with respect to the equator: the smaller the initial inclination
α, the narrower the band. Interestingly, depending on the initial inclination angle, the geodesic
will more of less densely cover this equatorial band.

The curvature of the space can in general be characterized by looking at how neighboring
geodesics behave, e.g. (Carroll, 2014, p.144). Geodesics initially parallel will tend to converge in
spaces with positive Gaussian curvature and diverge in space with negative Gaussian curvature,
Fig.11b. It can be shown that this property, called geodesic deviation, characterizes locally space
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Figure 11: Geodesics on surfaces of revolution. (a) Geodesic on an ellipsoid of revolution,
with a length 10 x equator circumference (equator indicated in blue), and with different initial
orientation (green arrow): from top-left to bottom-right: 60, 45, 44, 43.3, 43.2, 43, 30, 10 degrees
inclination with respect to equator. (b) Comparison of the behavior of close geodesic trajectories
in spaces with positive (left: sphere) and negative (right: pseudo-sphere) curvatures. In both
examples, geodesics start with parallel orientation (red arrow). (c) Geodesics in a space with
negative Gaussian curvature starting with varied initial orientations. Geodesics are all the more
deflected by the space curvature that they pass closer to the center of the shape.

curvature: the rate at which parallel neighboring geodesics get closer or farther away from each
other is proportional to the local curvature (Carroll, 2014).

Fig.11c shows an example of geodesics on a surface with negative curvature. Several geodesics
displayed with different colors are emitted in slightly different directions toward the center of the
surface (central hole). The closer they pass to the axis of the central hole, the more the geodesics
are deflected. Geodesics passing too close to the hole are even reflected back (orange curve).

These examples are actually the consequences of a these behaviors are the consequences of a
mathematical theorem about geodesics on surfaces of revolution, known as the Clairaut’s theorem
(do Carmo, 1980, p. 259) for Clairaut parameterizations of general surfaces (O’Neill, 1966, p.
353)):

Theorem (Clairaut). Consider a geodesic on a surface of revolution and denote α the inclination
angle of the a geodesic at a point P with respect to the latitude passing by P and r the radius of
revolution at P . Then, along the geodesic we have:

r cosα = c0, (52)

where c0 is a real constant.

Therefore, choosing an initial point and direction for a geodesic determines a value c0 that will
remain subsequently constant along the geodesic trajectory. As one moves along the geodesic, r
varies, and α must vary accordingly to respect Equ. 52. If r decreases, cosα must increase. At
some point, if r continues to decrease, cosα reaches the value 1 (i.e. the curve is tangent to the
local latitude at P ), and the trajectory will be reflected back to increasing values of r to avoid r
decreases more and to keep up with Equ. 52. This means that the geodesics with this c0 will be
trapped in a part of the surface of revolution. For the ellipsoid (Fig.11a) for example, the geodesics
keep in an equatorial band whose width is determined by the value of c0 at the initial point and for
the chosen initial direction. For the surface with negative curvature (Fig.11c), trajectories passing
close to the central hole have a radius which markedly decreases and thus induce a reversal of the
angle α variation at some critical radius, thus bouncing back the geodesic curve.
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These examples illustrate how Riemannian L-systems can help explore mathematical properties
in differential geometry with the efficiency and simplicity provided by a high-level programming
language (see List.7).

4.2 Turning and branching
Fractals. Being particular cases of manifolds, smooth parametric surfaces are locally flat and
look like a Euclidean plane. However, at larger scales, the surface curvature is not negligible and
can be revealed by trajectory holonomy. Fractals living on curved surfaces exhibit various levels of
detail all along their entire structure. We may expect that the fine details of the structure, typically
much smaller than the local surface principal radii of curvature, are not affected by the surface
curvature. However, at coarser scales (of the order of magnitude of the radii of curvature), the
fractal form must be affected in proportion of the local curvature. This is illustrated by the series
of prefractal forms in Fig.12. The reference prefractal forms converge toward the well known von
Koch flake in a flat space Fig.12a. When traced on a sphere, we see that the curve does not close
any more due to holonomy at large scale that tend to fold the curve faster than in the flat reference
case, 12.b. However, one can notice that the curve pattern is almost not affected at fine scales
where one easily locally recognizes the pattern of the von Koch curve. Interestingly, if the radius of
the sphere is reduced (the curvature is increased), the overall topology of the flake is dramatically
affected, and contains only four main arms Fig.12c, instead of six in the reference case. Similarly,
Fig.12d, shows a von Koch curve growing on a torus. when the curve size is small compared to the
two main radii of curvature of the torus (left), the curve form is not affected significantly. However,
as the curve grows, the overall curve topology is markedly deformed (right).

These figures have been obtained with the program listed below (List.8). One can observe that
the modification of the code with respect to the reference flat case (List.3) is minimal: only the
specification of the turtle space has been added in the axiom. The rest of the code is unchanged.
For the torus, one just need to change line 3 by nproduce SetSpace(Torus(1,0.3)).

Figure 12: Using the turtle to draw fractals on curved spaces. (a) prefractal sequence of
the von Koch Curve in a flat space (b) Prefractal sequence obtained by the same procedure as in a
on a sphere of radius 1, and (c) on sphere of radius 1/2. (d) von Koch curves with increasing step
length on a torus.

1 Axiom:
2 nproduce SetSpace(Sphere(radius=1))
3 nproduce F(1)-(120)F(1) -(120)F(1)
4 derivation length: 5
5 production:
6 F(x) : nproduce F(x/3.0)+(60)F(x/3.0)-(120)F(x/3.0)+(60)F(x/3.0)

Listing 8: Fractal curve (von Koch flake) on curved surfaces (see Fig.12b-d)

26

Acc
ep

ted
 M

an
us

cri
pt



Branching patterns. Like in classical L-systems, branching patterns can be created easily with
Riemannian L-systems using well-formed strings of modules. The turtle’s interpretation mechanism
is entirely conserved but runs on Riemannian states (Equ. 18) instead of the classical turtle’s states
used in Euclidean geometry (Equ. 17). The turtle thus draws branching patterns whose segments
are geodesics, and branching angles are defined either explicitly by the programmer in the local
tangent plane at the bifurcation point using a + statement before an F, Fig.13a-c or implicitly
inferred through a RiemannianLineTo primitive. The generic program to produce these trees is as
follows (List.9):

1 N = 7 # Depth of the tree recursion
2 iangle = 45 # Insertion angle
3 ilen = 0.2 # Length of a segment between two branches
4

5 Axiom:
6 nproduce SetSpace(Sphere(radius=1))
7 nproduce InitTurtle ([0.,0.,0.,1.]) # turtle ’s head pointing upwards
8 nproduce A(0)
9

10 derivation length: N
11 production:
12 A(n) :
13 a = iangle if n % 2 else -iangle
14 if n<N:
15 nproduce F(ilen) [+(a)A(n+1)] A(n+1)

Listing 9: Tree patterns on surfaces (see Fig.13a-c)

As before, to change the space (Sphere, Pseudo-sphere, ...) and the initial position of the turtle
in the space, only lines 6 and 8 have to be updated. The rest of the code remains unchanged.

Branching patterns, that are made of geodesic segments, are affected differently by the surface
depending on both its extrinsic and intrinsic geometric properties, Fig.13a-c. Branches tend to get
more dense on the sphere (constant positive Gaussian curvature) Fig.13a, less dense on the pseudo-
sphere (constant negative Gaussian curvature) Fig.13b, and show a mixed effect on the torus that
has an external and inner regions of respectively positive and negative Gaussian curvature, Fig.13c.
On spheres, branching patterns are more bent towards each other as the sphere radius decreases
(and the curvature augments). On the pseudo-sphere, the same tree, represented at three different
altitudes, shows very contrasted shapes. As the pseudo-sphere is of constant curvature, these
variations are not due to a change in the local intrinsic geometry (that keeps constant everywhere),
but due to the change in the extrinsic geometric component only (indeed, while their product is
constant, the principal radii of curvature are not constant throughout the pseudo-sphere surface).

Branching patterns can also be produced by joining the current position of the turtle to target
points during the construction of a central stem, Fig.13d. For this the turtle must be placed at
an initial position on the surface, pointing in an initial direction (corresponding roughly to the
direction of the future main stem). Assume that a set of N target points is defined by their
(un, vn) coordinates on the surface. We aim at creating a main stem composed of N segments that
follow a geodesic of the surface and such that, at the end of each segment n, a lateral segment is
drawn to the target point (un, vn), (List.10):

1 N = 10 # Number of target points
2 target_pts = [[0.,0.3],[0.4,0.] ,...] # Array of (u,v) coords of target points
3 ilen = 0.1 # Length of a segment between two branches
4

5 Axiom:
6 nproduce SetSpace(Patch(leafblade)) # Nurbs patch in the form of a leaf blade
7 nproduce InitTurtle ([0.,0.,1.,0.]) # initial (u,v,p,q) coords of the turtle
8 nproduce A(0)
9

10 derivation length: N+1 # Number of segments on the main stem
11 production:
12 A(n) :
13 if n<N:
14 nproduce F(ilen)
15 nproduce [RiemannLineTo(target_pts[n],20)] # segment made of 20 subsegments
16 nproduce A(n+1)

Listing 10: Tree patterns based on BVP problem (see Fig.13d)

27

Acc
ep

ted
 M

an
us

cri
pt



Figure 13: Growing tree structures on curved surfaces. (a-c) trees created with a shooting
algorithm to solve an IVP (F primitive). (a) Tree on spheres (constant Gaussian positive curvature)
with decreasing radii (1, 0.7, 0.5). (b) Tree on a pseudo-sphere surface (constant Gaussian negative
curvature) at different altitudes showing the effect of a local change of the extrinsic geometry on
tree structures. (c) Tree growth on a torus. Left: reference tree grown in a flat space. Middle:
the tree trunk is aligned along the external great circle (region of positive Gaussian curvature).
Remark in the central region at the tip that the small branches form a very densely organized
fan. Compare with Right: the tree trunk is aligned along the inner great circle (region of negative
Gaussian curvature). In the central region at the tip that the small branches form a less dense
fan. (d) Tree representing the veins of a leaf, created by joining pre-specified (red) points on the
rim (left) to a main branching system using a RiemannianLineTo primitive (BVP). Next to right:
resulting branching system in the same view as left, followed on the right by a view slightly tilted,
and to the right-end, the back of the leaf.

Segments on the main stem are iteratively computed as a series of IVP using a F statement
(line 14). The length of the each segment is determined by the user. At each step n, a lateral
segment is computed as a BVP to the n-th target point using the RiemannianLineTo primitive
(line 15). This determines automatically all the points of the lateral segment, and in particular a
specific insertion angle on the main stem (log map, see above), Fig.13d.

4.3 Applications
Let us now illustrate on some examples how Riemannian L-systems can be applied to the modeling
of some biological organisms and patterns.

Filamentous growth. Pollen grains are transported from flowers to flowers by wind or animals.
They can germinate if they land on specific elongated cells, called papillae located at the tip of
the stigma, the female organ of the flower. When they germinate, a pollen tube starts to grow
out downward the papilla, and keeping at the papilla surface (Riglet et al., 2020). Papillae have
roughly a pin-like structure, but may vary in shape within or between species and present either
convex or non-convex forms. Biologists try to understand the possible physical or chemical clues
that guide the growth of the pollen-tube downwards. One of the hypothesis is that the precise
geometry of the papillae may play an important role in the guidance of the tube and that the tube
could follow geodesics of the papillae surface (Riglet et al., 2024).

Riemannian L-systems can be used to analyze this growth process and for example to explore
how the shape of the papillae impacts the possible geodesic trajectories that a tube might follow.
Let us consider for example a pin-like structure and decrease progressively its neck (i.e. its diameter
at mid-height) to pass from a convex to a marked non-convex shape, Fig.14. Starting from a point
P at the tip of the structure representing the position of the pollen grain and a given orientation
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of the initial germination of the tube from the grain, we observe that the trajectory of geodesics
is highly affected by the change in the surface shape: as the neck narrows down, the geodesic
increasingly spirals when approaching the neck and continuously goes downward. Surprisingly,
below a certain neck diameter, the geodesic is reflected and coils back without crossing the neck
any longer, Fig.14 last two right examples. This is again a consequence of the Clairaut theorem,
Equ. 52. Altogether, this suggests that geometry is potentially a key, genetically regulated, actor
in the driving of the pollen tube. This hypothesis was explored in a recent work using these tools,
see (Riglet et al., 2024)

Figure 14: Geodesics on a pin-shaped surface. A geodesic of constant length l in yellow is
initiated at a constant angle (28 degrees downward) with respect to the latitude at the level of the
pollen grain position (green point). From left to right: the mid-height neck of the pin surface is
progressively reduced from left to right (the value of D decreases). As a result the geodesic coils
increasingly around the neck, up to a point where it cannot pass the neck anymore and coils in the
top region.

Branching system growth. Leaves’ vascular networks are essential to gas, water and sugar
exchanges in plants. They are an integral part of the development of the leaf and result from
developmental mechanisms that are not yet well understood. In the last decade however, a few
studies have made progress on the understanding of the genetic regulation of leaf development and
its connection with the construction of the vascular network (Runions et al., 2017; Katifori, 2018).
In these works, leaves are considered as flat medium represented by a triangulated mesh in which
the vascular network is embedded. From a geometrical point of view, "the modeling of leaves that
are curved as well as lobed or serrated remains an open problem. [...]. Challenges are posed by [...]
the need to replace straight segments with their more complicated counterparts defined on curved
surfaces: the geodesic curves" (Runions et al., 2017). Riemannian L-system provide a first generic
tool to address this problem with high-level programming constructs. We illustrate this on the
vein network of the curved leaf of white cabbage, Fig.15a.

For this, a geometric model of the curved leaf blade is first constructed using NURBS parametric
surfaces (also called NURBS patches, (Piegl and Tiller, 1997)) embedded in the software platform
L-Py (Boudon et al., 2012), Fig.15b. Then, the turtle is positioned at the bottom of the leaf, with
its head vector H pointing roughly in the direction of the ridge of the surface (lines 4-7 in the code
below).

1 N = 10 # Number of branches on main stem
2 dl = 0.2 # segment length between 2 branches
3 Axiom:
4 nproduce SetSpace(leaf_patch) # space that forms the leaf blade
5 nproduce PlotSpace () # Plots the NURBS patch
6 nproduce InitTurtle ([0.001,0.27,1,0.45])
7 nproduce -(6.5) A(N) # correct slightly turtle ’s head
8

9 # Main apex
10 A(n) # n=seg cpt -down on this axis
11 if n > 0:
12 r = BASERADIUS*n/N
13 nproduce F(dl,r)
14 d = 8 + 0.1*n**2 # deflection angle from geodesic @next order
15 a = 5*n/N # insertion angle adjustment
16 nproduce [+(30+a)B(5,r,d) ]
17 nproduce [-(30) B(5,r,-d)]
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18 nproduce A(n-1)
19

20 # Branch apices
21 B(n,r,d): # n=seg cpt -down ,r=radius , d=deflexion angle
22 if n > 0:
23 nproduce +(d) F(dl,r*n/N)
24 if n == 4 : # the second segment forks
25 a = -8 if d < 0 else 8 # new deflection angle
26 nproduce [+(5)B(n-1,r,a)]
27 nproduce [-(7)B(n-1,r,a)]
28 else:
29 nproduce B(n-1,r,d)

Listing 11: Cabbage leaf as an IVP (see Fig.15c-d)

A main apex produces segments of equal size following a geodesics (i.e. using a F primitive)
and then producing two opposite lateral branches with insertion angle close to 30 degrees (lines
13-18). Each lateral branch is composed of 5 segments, the second of which forks into two branches
(lines 23-29).

The different parameters of this model have been adjusted by hand to visually reproduce main
geometric traits of the image in Fig.15a. However, it can be noticed that the number of parameters
remains limited and they only necessitate fine grain tuning (at the level of branch insertion angles
in particular). The core branching system makes use of geodesic lines and is straightforward to
program. Only deflections with respect to this geodesic pattern need to be adjusted. In particular,
the main stem was not adjusted at all (line 13) and the corresponding geodesic follows the ridge
of the curved leaf blade, despite the fact that it is slightly twisted near the tip of the leaf as can
be observed in the top of Fig.15d.

Figure 15: Cabbage leaf model. (a) photos of a white cabbage leaf (up: top view, below: side
view). (b) Approximated NURBS model of the cabbage leaf (c-d) different views of the vascular
network constructed with Riemannian L-systems, with veins corresponding to geodesics computed
as IVPs.

Plant branching system. Some plants, such as lianas or ivy, cannot support their own weight
as they grow. They then often grow on a supporting structure, which could be another plant, a
rock or a building for instance. The supporting structure, in turn, may possess intricate geometric
characteristics. If we assume that, in the absence of any extra external force the axes of the
plants grow straight, then we can model the growth of the axes by following the geodesics of
the supporting structure. Conventional approaches rely on collision detection techniques using
a voxel representation of the 3D space (Greene, 1989) or bounding volume hierarchies (Wong
and Chen, 2016) to determine the path on the structure that should be followed. In the case of
complex geometry of the supporting structure, substantial refinements of the voxel representation
are required to capture the detailed changes in curvature leading to computationally intensive
generation. Riemannian L-systems present an efficient means to simplify such modeling process
by embedding the generated plant shape directly onto the supporting structure, thus mitigating
the complexities associated with intricate geometry of the supporting structure.
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In the example depicted in Fig.16, the climbing of an ivy plant is directly simulated on the
external surface of a tree trunk. This process involves representing the trunk as a generalized
cylinder characterized by an S-shaped central axis, and with a linearly decreasing radius along the
axis. The cylinder cross-section incorporates concavities indicative of the differential radial growth
of the trunk and its fusion with aerial components of the roots. The initiation of the ivy growth
occurs at the base of the trunk, with an upward orientation. A sketch of the code used to simulate
the ivy growth is given in List. 12. Ramifications are regularly generated at a constant insertion
angle along the axes, resulting in the coverage of the trunk surface by the ivy structure (line 9).

1 Axiom: SetSpace(trunkshape) InitTurtle ([0.05,0.001,1,0]) A(0)
2

3 production:
4 A(n):
5 if n < NMAX:
6 dl = l/
7 nbleaf
8 for i in range(nbleaf):
9 nproduce F(dl) [ Leaf ]

10 nproduce [ +(60 * pow(-1,n)) A(n+1) ]
11 nproduce A(n+1)
12

13 interpretation:
14 Leaf:
15 hang = uniform(-45,45)
16 vang = uniform(60,90))
17 u,v, _, _ = turtle.uvpq
18 nml = trunkshape.getNormalAt(u,v)
19 tgt = trunkshape.getVTangentAt(u,v)
20 produce EndSpace SetHead(nml ,tgt) RollToVert () +(hang) F(0.1) &(vang) LeafSymbol

Listing 12: Sketch of the L-systems generating an Ivy structure over a generalized cylinder
representing the trunk of a tree (see Fig.16)

Interestingly, while ivy stems remain confined to the surface of a supporting structure due to the
adhesion of their adventitious rootlets, ivy leaves are not subject to this constraint. Their petioles
allow them to extend outward into free space, optimizing light capture while the stem remains
anchored to the substrate. To model such dual behaviour, the embedding of the generated shape
onto the surface can be stopped using the EndSpace command (see line 19). When incorporated
into the L-string, the geometric interpretation of the subsequent modules of the string will recover
the conventional behavior of L-systems within the euclidean 3D space embedding. For the ivy
example, the normal vector to the surface at the leaf insertion point is estimated, and the turtle
is reoriented accordingly. Subsequently, a roll rotation is then executed to establish a horizontal
orientation for the leaves. The petioles and the leaf blades are then generated. While geodesic are
intrinsic objects (only depending on the surface’s metric), this example illustrates the possibility
in Riemannian L-systems to use as well primitives related to the embedding of the surface in the
3D Euclidean space, and thus to take into account the full geometric information of the trunk
surface. It also illustrates how multiple embeddings can be combined simply within the same
Riemannian L-system. This could be generalized further by considering the generation of a plant
onto multiple support structures. For this, the different embedding spaces can be set by inserting
several SetSpace or EndSpace commands into the L-string.

5 Feedbacks between surface and embedded forms
Be they of mathematical, physical or biological nature, forms are built according to construction
rules that operate within some substrate space, e.g. a plane or a curved surface. These rules may
be completely independent of the space in which the construction process operates. This was the
case in all the previous examples. However, in many situations, morphogenesis relies on external
cues that are used during development by the construction rules to make decisions and orient form
development (by changing growth orientation or speed, by creating branches, etc.). In particular,
in such cases, geodesics can be seen as default trajectories and construction rules indicate how to
deviate from these reference trajectories to construct the target form based on local information.

Spatial informational cues may be considered as fields living in the substrate space, and that
may be constant or change in time. In general, these fields have scalar, vectorial or more generally

31

Acc
ep

ted
 M

an
us

cri
pt



Figure 16: Climbing ivy. A tree trunk is modeled as a generalized cylinder on which the growth
of an ivy is simulated. On the left, the wireframe representation of the trunk and the branching
system of the ivy. On the right, semi-transparent polygonal representation of the trunk with the
full leafy ivy structure.

tensorial types, and may represent either geometric (e.g. curvature, principal directions), physi-
cal (e.g, obstacles, molecular concentrations, stresses, material properties) or more abstract (e.g.
energy density, directional anisotropy, signals) local quantities.

Forms thus, in general, result from the interaction between three key factors: A substrate space
on or in which the form develops, information fields defined on this space that may or not be (par-
tially) produced by the form itself, and the growing form (here a filament or a branching network).
Hereafter we explore how sensing external fields may contribute to shaping forms in Riemannian
L-systems, first in a fixed embedding space, then in a dynamically deforming embedding space.

5.1 Information feedback
In Riemannian L-systems, to make use of external fields living in the substrate space (here a surface)
during development, we must allow the form being constructed to probe its space environment at
anytime. This will be carried out by allowing the modeler to access turtle geometric information
from within the production rules.

For this we extended the L-system mechanism of sensitivity to the environment (see section 2.3).
By using a new special query module ?T inserted in the L-string constructed at a given derivation
step, the modeler can retrieve the actual embedding space and the turtle’s current position and
orientation on it during the interpretation phase, similarly to the ?P, ?H, ?L and ?U modules used
in context sensitive systems for retrieving position and orientation of the turtle in the euclidean
space - see section 2.3. At the next derivation step, the modeler can then access the turtle’s state
recorded in the variable of module ?T and take decisions based on the information contained in
this state.

In this way, the space can be queried to retrieve all types of information attached to the
surface: geometric primitives (covariant basis, surface normal, principal directions, Gaussian and
mean curvature, principal curvature and directions ...) using dedicated primitives, as well as any
type of field value stored by external processes on the surface.

Scalar fields Scalar fields can express either local geometric properties of a surface or spatial
distributions of physical or biological quantities defined on the surface. Let us consider for example
how the random movement of a set of turtles can be canalized by their ability to read out locally
the geometric characteristics of the embedding surface and to use it to make move decisions, Fig.
17a-b. We assume that the turtles locally sense the surface curvature and avoid to go in flat (0
Gaussian curvature) or saddle-like regions (negative Gaussian curvature). These random walks
are thus restricted to regions of (strictly) positive curvature (indicated in red in 17c). To model
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Figure 17: Making use of information available in the embedding space. (a-c) Random
walks in regions of positive Gaussian curvature. (a) Curved space with seven random walkers
initially positioned at the indicated frames. (b) Canalyzed random walks after 200 steps for each
walker. (c) Map of Gaussian curvatures K: red regions with K > ε, and white to blue for K ≤ ε,
ε = 0.002. (d-f) Self-avoiding branching structures (d) on a sphere, (e) filling the sphere, (f) on an
egg-box like landscape. Colored points represent growing apices

this situation in Riemannian L-systems, one would basically modify the random walk algorithm
described in List.2 as follows:

1 epsilon = 0.002
2 production:
3 ?T(state) A(n) :
4 uvpq = state.uvpq # Current turtle ’s position (u,v) & orientation (p,q)
5 surface = state.space
6 found = False
7 while not found
8 a = 360*random ()
9 uvpq_rot = riemannian_turtle_turn(uvpq , surface , a)

10 uvpq_seq = riemannian_turtle_move_forward(state.uvpq , surface , step)
11 uvpq_new = uvpq_seq[-1] # Last point of the tentative move sequence
12 K,H,kmin ,kmax = state.space.localCurvatures(uvpq_new[0],uvpq_new[1])
13 if K > epsilon: found = True # Test if Gaussian curvature is positive
14 nproduce +(a) P(uvpq_seq) ?T A(n+1)

Listing 13: random walk keeping on regions of positive Gaussian curvature (see Fig.17a-c)

The query module ?T is inserted just before each moving apex in the L-string at each derivation
(line 14). At the next derivation, the turtle’s state (line 3) automatically updated at the last
interpretation step can be used to get the current position and orientation of the turtle (line 4) as
well as the current embedding surface (line 5). Then the model tries to make moves in different
random position until one of this moves happens to be in a region of positive curvature (line 7-
13). Different primitives make it possible to simulate the turtle’s rotation by an angle a (line 9),
to generate the sequence of coordinates corresponding to a potential step in this new direction
(line 10), to compute the Gaussian curvature K at the destination point (lines 11-12) and to test
whether its value is positive (line 13). A sequence of coordinates associated with a positive K is
thus selected and used to draw the turtle’s trajectory using the P primitive (line 14). As a result,
one can observe that the random walks get canalized in the regions of positive Gaussian curvature,
without being able to cross areas of flat or negative curvature Fig.17b-c.

A scalar information can also result from a read out of the physical environment. A geometric
form for example can be physically constrained in its development by its already existing parts. As
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an example, consider the construction of self-avoiding branching patterns, Fig.17d-f. A specialized
data-structure and associated primitives have been developed to record segments produced as the
form grows and to test the presence/absence of already existing segments on the surface at specific
locations, List.14. An empty data-structure is first created (line 10). Then the apices of branching
structure grow (line 16). Like before, a query module is used to recover the current state of the
turtle before each apex. Instead of creating a segment, an apex first computes the path on the
surface that would correspond to this new segment (line 17). It then test whether an intersection
is detected with previously created segments (line 18). If yes the apex does not grow (line 19). If
no, the new segment is added to the list of already existing segments (line 21), and the segment is
drawn (line 22), together with a new lateral bud (line 24) and a renewed main apex (line 25).

1 R = 1. # Radius od the Sphere
2 N = 7 # Depth of the tree recursion
3 iangle = 45 # Insertion angle
4 ilen = 0.2 # Length of a segment between two branches
5 trajectories = None # Will contain the set of already existing tree branches
6

7 Axiom:
8 space = Sphere(R)
9 nproduce SetSpace(space)

10 trajectories = LineSet(space) # Initializes the set of existing branches (lines)
11 nproduce InitTurtle ([0.,0.,0.,1.])
12 nproduce A(0)
13

14 derivation length: N
15 production:
16 ?T(state) A(n) :
17 uvpq_s = forward(state ,ilen) # Pre -computes a new segment (sequence of points)
18 if trajectories.test_intersection(uvpq_s): # Does the new segment intersect

previous ones?
19 nproduce ?T A(n+1)
20 else:
21 line_id = trajectories.add_line_from_point(state.uvpq ,uvpq_s) # updates set of

trajectories
22 nproduce P(uvpq_s) # Draw the precomputed new segment sequence of points
23 a = iangle if n % 2 else -iangle
24 nproduce [+(a) ?T A(n+1)]
25 nproduce ?T A(n+1)

Listing 14: Non self-intersecting tree (see Fig.17d-f)

This procedure is generic, and does not depend on the underlying space. Fig.17f for example
illustrates the same self-avoiding branching algorithm applied to an egg-box surface with a more
complex geometry with both positive and negative Gaussian curvatures.

Vector fields Scalar fields provide information that can indirectly be used to affect turtle’s
trajectory. A more explicit directional information may be provided by a vector field. At any
point of the surface the turtle can compute the angle α between its current heading direction H
and the local vector value of the field V, and orient its trajectory locally in the direction indicated
by the vector field. This deflection of the otherwise geodesic trajectory in the direction of a vector
field is in general called a tropism. Formally, let us denote α the current angle between the turtle
heading direction H and the local value of the vector field V at the turtle’s position, α = Ĥ,V, and
∆s the small step length that the turtle must make at the next derivation step. We assume that the
tropism will deflect the turtle’s initial direction from a geodesic by imposing a geodesic curvature
proportional to the angle α and that ∆s is sufficiently small so that the geodesic curvature is
considered constant over the step length ∆s. Then, we have:

∆α

∆s
= σα, (53)

where σ is a sensitivity to the "tropism force". This provides a direct expression of the deflection
angle ∆α by which the turtle’s movement must be affected at the next iteration step to progress
over a distance ∆s due to tropism.

To illustrate this, consider a geodesic starting at the equator of an ellipsoid of revolution and
heading east and slightly north, Fig.18a. In the absence of a field (or of a feedback between a field
and the turtle’s displacement), the turtle follows a geodesic trajectory Fig.18a. In the presence
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of a field (Fig.18b), the turtle may react to the field and use this information to locally modify
its natural trajectory. Here, we consider a vector field resulting from the gradient of a scalar field
corresponding for example to the diffusion of a substance from the north pole (red, resp. yellow)
is high (resp. low) concentration of the substance). By reading this gradient the turtle can deflect
its trajectory in the corresponding direction. As a result the trajectory is attracted at the north
pole and trapped in a circular attractor (Fig.18b). Interestingly, this attractor results from an
equilibrium between the effect of the surface geometry that, in the absence of tropism ’force’,
would keep the turtle on a geodesic and thus make it possible to escape the north region after
having visited it (Fig.18a), and the tropism force that constantly deflects the trajectory towards
the north pole.

Figure 18: Deflection of geodesic trajectories using surface vector fields. (a-b) Tropism on
an ellipsoid of revolution (a) No field: the trajectory (green) is a geodesic starting at the equator
and heading east, bending 30 degrees north. (b) presence of a scalar field (red = high, yellow
= low values). The trajectory, with identical initial conditions converges to a circle in the north
region. (c-d) Simulated tip-growing filament trajectories on pin-shaped structure with a scalar field
at the surface (color gradient from red (high) to dark blue (low values)). (c) left-most: Geodesic
trajectory (not interfering with the scalar field). To the right: effect of tropism resulting of an
interaction with the scalar field. Geodesics are deflected in the direction of the gradient of the
scalar field, with an increasing intensity σ from 0 to 5. (d) The wireframe structures in the bottom
row show whole trajectories.

Programming such a feedback function follows the design pattern illustrated in List.15. A query
module ?T before the growing apex makes it possible to retrieve at each step the current state of
the turtle at the apex (lines 15 and 26). At the position (u, v) of the apex, the value of the tropism
vector field is evaluated (here as the gradient of a scalar field, lines 17-19). The angle α between
the tropism vector and the heading direction of the turtle is then computed (lines 21-22) as well
as the deflection angle due to tropism over a step length slen according to the tropism attraction
described in Equ. 53 (line 23). The sign of this angle depends on the relative orientations of the
heading and tropism vectors (line 24). Finally, the turtle turns according to the deflection angle
and draws a portion of geodesic over length slen (line 26), thus deflecting its trajectory towards
the tropism vector.

1 a, b = 1., 0.5
2 N = 200
3 sigma = 1. # sensitivity to gradient
4 slen = 0.1 # Length of a step at each derivation
5 def field(u,v): # function returns a scalar value as function of u,v
6 ... # --> not detailed
7

8 Axiom:
9 nproduce SetSpace(Ellipsoid(a,b))

10 nproduce InitTurtle ([0.,0.,1.,0.])
11 nproduce ?T A(field)
12
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13 derivation length: N
14 production:
15 ?T(state) A(sf) :
16 u,v,p,q = state.uvpq # retreives current pos , dir of turtle
17 gradf_uv = gradient(state , field , u,v) # gradient of the scalar field at u,v
18 pushfwd = state.pushforward(u,v) # local pushforward operator
19 gradf = state.pushforward(gradf_uv) # gradient vector on the surface in 3

D
20

21 heading = state.heading # turtle ’s head in 3D
22 alpha = angle_between(gradf , heading) # deviation of turtle ’s head from gradient
23 defl_angle = sigma * alpha * slen # deflection angle to correct turtle ’s dir
24 sgn = 1 if state.space.positive_orientation(heading ,gradf)) else -1
25

26 nproduce +(sgn*to_deg(defl_angle) F(slen) ?T A(sf)

Listing 15: Tropism on ellipsoid of revolution (see Fig.18a-b)

This design pattern can be applied to model similar situations in biological applications. For
example, (Fig.18c-d) illustrates the possible effect of a surface tropism on a tip-growing filament
at the surface of a pin-like surface. This could for instance represent the growth of a pollen tube
that would be attracted by a chemical gradient. In the absence of tropism, the filament follows
the geodesics of the pin-like surface Fig.18c,d-left. In the presence of a tropism due to the surface
gradient (indicated by a variation of colors from red to blue), the filament is deflected from geodesic
curves and heads more rapidly towards the bottom of the surface. This phenomenon is amplified
by an increase of the coupling between the filament growth and the directional cue (increase of σ
from left to right in Fig.18c,d).

5.2 Growing forms on dynamic surfaces
Forms can be constructed on surfaces that change in time. This change may affect the embedded
form in different ways that we explore in this section. Here we restrict our analysis to form
construction processes that are significantly more rapid than the change of the surface geometry
so that, during the form construction, the surface geometry can be considered steady. In this
way, after one growth step of the surface, several steps of growth for the form can be simulated
repeatedly until convergence.

Convected versus floating forms Once a form has been constructed on a surface, two extreme
subsequent types of evolution of this form can be considered.

Let us first assume that the points on the surface can be tracked in time. They can be considered
as material points whose movement define the surface evolution in the 3D space. At the initial time,
the form passes through a set of material points to which the form is considered to be "attached".
While the surface changes in time, the relative positions of the material points change, which
induces a corresponding deformation of the form geometry on the surface. As the form depends on
the definition of material points and their movements, we say that such form definition is extrinsic.
An extrinsic form is being convected by the material flow on the deforming surface.

This situation is illustrated on Fig.19a-b using a fractal form. A Sierpinski carpet, e.g. (Peitgen
et al., 1992, p 81), whose construction process is depicted in Fig.19a, is embedded in an initially
planar surface that will progressively take the form of an egg-box. This can be modeled by al-
lowing the parameters of a parametric surface, here a NURBS patch xi(u, v, λ(t)), where λ(t)
represents the surface parameters at time t, to change smoothly in time, and to consider that the
uv-coordinates correspond to coordinates of material points. We can observe that the deforma-
tion of the Sierpinski carpet does not change its topological structure, and only its geometry is
smoothly affected, reflecting the smooth deformation of the embedding surface Fig.19b. In Rie-
mannian L-systems, this form convection can be achieved using indirect interpretation of L-strings
(see section 3.4). In this mode, the form is not directly drawn as a sequence of geodesics on the sur-
face. Rather, it is drawn in the uv-parameter space and then projected on the surface, reminiscent
of texture mapping in computer graphics, e.g. (Foley et al., 1996). In this way, the form drawn
in the uv-coordinates is that of Fig.19a. The line segments projected on the surface are in general
not geodesics, but the projection preserves material points neighborhood. As a result, the form
on the surface appears simply to be convected by the smooth surface material deformation that
preserves its integrity and topology. To keep track of the uv-coordinates of a previous drawing,
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we introduced a primitive StaticF that behaves like a classical forward instruction F(x), i.e. it
computes a geodesic of length x from the current position and heading of the turtle. However,
the first time it is called, it memorizes the uv-positions of the computed geodesic. Then, at next
derivation steps, on further calls, it will not recompute a geodesic on the modified surface. Instead
it will use the previously cached geodesic information. List. 16 illustrates how to switch between
floating and convected shapes using StaticF into Riemannian L-systems.

1 Axiom:
2 nproduce SetSpace(shape(t=0)) InitTurtle ([0.3,0.4,1,0])
3 nproduce _(0.05);(2)+(180)f(5)-(180)Seg(0.5,0)
4

5 derivation length: 5
6 production:
7 # Evolving embedding shape
8 SetSpace(cshape) --> SetSpace(shape(t))
9

10 Seg(x, depth):
11 # The fractal shape is decomposed until a maximum depth
12 if depth < MAX_DEPTH ::
13 produce Seg(x/3.0, depth+1)+(90)Seg(x/3.0, depth+1)-(90)Seg(x/3.0, depth+1)

-(90)Seg(x/3.0, depth+1)-(90)Seg(x/3.0, depth+1)+(90)Seg(x/3.0, depth+1)+(90)
Seg(x/3.0, depth+1)+(90)Seg(x/3.0, depth+1)-(90)Seg(x/3.0, depth+1)

14 elif CONVECTED :
15 # if convected it is replaced by a StaticF to be attached to the surface
16 produce StaticF(x)
17 else:
18 # else it will produce new path on the deformed surface at each step
19 produce F(x)

Listing 16: Convected versus floating (see Fig.19)

On the other hand, forms lying on a surface may be completely independent of the movement
of material points at the surface, or may even be defined in the absence of material points. For
this, the construction procedure must be purely geometric and must not depend on the actual
surface parameterization, if any. In this case, the form is said to have an intrinsic geometry on
the surface (it does not depend on the embedding of the surface in a space of higher dimension,
nor on the coordinate system used on the surface). Due to holonomy, during the surface evolution
the geometry of an intrinsic form is affected by changes in surface curvature. As a consequence,
the form appears to be floating on the surface (Fig.19c-d), with varying degrees of geometric and
topological distortions through time. By providing general geometric primitives to draw in curved
spaces, Riemannian L-systems naturally produce intrinsic geometric forms. As fractals contain
geometric details at different scales, they provide a natural way to probe the impact of changes
in surface curvature in time within a range of scales. On Fig.19c-d, one can observe that only
the scales that are commensurate with the local radius of curvature of the surface are significantly
impacted. At smaller scales, the surface can be assimilated to a plane and the corresponding small
details are hardly affected. Supplementary Movie#1 shows how the progressive change of the
embedding surface curvature dynamically affects the different regions of the floating fractal form.

Feedback of the embedding surface growth on the form In the previous example, the
deformation of the surface alters the constructed shape, while the construction process itself re-
mains unchanged. However, the deformation of the surface could in principle also feedback on the
construction process itself. Such a feedback may be caused for example by changes in physical
fields living on the surface due to the surface growth (e.g. dilution of molecule concentrations,
relaxation of mechanical stresses, etc.). They can also be induced by the very change of surface
geometry. In biology for instance, patterns at the surface of an organ are commonly refined in
response to growth. In plants, cells grow at the surface of an organ and divide as soon as their size
reaches a certain threshold (Jones et al., 2019). Likewise, in leaves, new veinlets appear as the leaf
blade expands (Sawchuk et al., 2013). A first approach of this type was proposed in the context of
simple planar (affine) deformation of a material 2-D flat space (Prusinkiewicz et al., 2014). Here
we consider 3-D substrate deformations, where the curvature of object may also change in time.
Let us explore how such feedback mechanisms can be modeled using Riemannian L-systems.

We first consider the case of forms made of segments convected deformed by growth Fig.20.
The convection deforms the segments and we assume that as soon as a segment reaches a maximum
length, it gets replaced by a series of smaller segments using some refinement rule (i.e. von Koch,
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Figure 19: Feedback of surface dynamics on forms constructed at the surface. (a) Steps
of the construction of a Sierpinski carpet in the Euclidean plane corresponding constructed with a
L-system. At each step, the pre-fractal form is obtained by the trajectory of a turtle moving from A
to B along convoluted paths. At scale 0 (left), the form is approximated by a simple segment. The
turtle draws this segment by going straight from point A to point B. Then, at scale 1, this segment
is refined into 8 smaller segments of length 1/3 of the original segment length each, as illustrated
on the next diagram. The turtle draws this pattern by following the trajectory indicated by the
grey arrows. The refinement process then continues at higher scales by decomposing further the
segments into smaller segments using the same refinement rule. The form obtained by increasing
the scale is called a pre-fractal and contains an increasing number of details at finer and finer
resolutions. At every scale, the form is obtained by a single trajectory of the turtle moving from
A and to B with increasingly convoluted paths. (b) Convected Sierpinski carpet at a reference
scale (indirect interpretation). (c) Floating Sierpinski carpet (direct interpretation, all curves are
geodesics): due to holonomy, its topology is not preserved.

Sierpinski carpet and Peano rules respectively for Fig.20a-b, c and d). Segment decomposition
is made indirectly in the parameter space before curve segments are projected onto the surface.
This ensures to keep curves continuous. However the segments drawn in the parameter space
are not geodesics. Note that by contrast, a form freely floating on a surface (i.e. not convected)
would not be affected so drastically in its size, as segments are not "attached" to the surface and
can freely accommodate surface deformations, while keeping their angles and lengths unchanged.
These forms would therefore only be able to sense local changes of curvature of the embedding
surface, but not its growth per se.

Dynamic surfaces with boundary growth The previous fractal forms capture in essence what
can be called ubiquitous growth: during organism development, growth may occur everywhere in
the organism by local subdivisions and or expansion of existing atomic regions. This is observed in
various animal or plant tissues at cellular level. However, other types of growth may be identified
at organ or individual level. At macroscopic scales for instance, plants develop their branching
structures by apical or edge growth. Rather than subdividing already existing structures (axes,
leaf blades, etc.), plants add new components at the extremities or boundaries of these structures
if space allows. Such a boundary growth has efficiently been modelled with L-systems in 3-D
Euclidean spaces, e.g. (Prusinkiewicz and Lindenmayer, 1990; Godin et al., 2005; Prusinkiewicz
et al., 2018). Riemmanian L-system generalizes this approach to the modeling of boundary growth
on various types of curved embedding spaces.

This may be illustrated by the modeling of leaf growth. The young leaf of the kidney fern
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Figure 20: Feedback of surface growth on patterns living at the surface: example of
subdivisions (a-b) von Koch prefractal curve initially developed at level 3 (dark blue segments)
gets deformed by the growth of a flat surface, without subdivision feedback (a) and with feed-
back (segment are colored purple (detail level 4) and green (detail level 5) (b). Note additional,
non homogeneous fractal details on (b) due to the subdivision of segments that reached a length
threshold during growth. (c) subdivision feedback on a Sierpinski carpet. Details are added only in
places where the initial motif has been significantly stretched by surface growth. (d) Deformation
of a Peano prefractal curve. The Peano curve is developed up to level 3 on a flat surface starting
to grow out (left). As soon as segments are stretched above a given threshold, they divide into 9
smaller segments (Peano subdivision rule, that is derived from the Sierpinski carpet rule illustrated
on Fig.19a by tracing the fifth (middle) segment instead of skipping it). Due to growth, waves
of subdivisions can be observed at the surface. The rightmost image shows the result after two
rounds of divisions on the topmost part of the growing surface, see Supplementary Movie#2

(Hymenophyllum nephrophyllum) Fig.21a, has a curved and thin blade that embeds a conspicuous
dichotomic venation pattern. As the fern grows, this fractal-like pattern gets branching over and
over, suggesting that the growth mainly occurs at the apical edge of the fern and that the venation
pattern is progressively built bottom-up as the edge growth progresses.

Here we model this process using a couple of assumptions. First, we assume that the blade
is a growing surface that extends only at the periphery (rim). For this, a NURBS patch is used
to model the surface with its growth begin emulated by extending through progressive increase of
its parameterization range. At an initial time t, a number of N(t) of target points are regularly
distributed over the blade rim perimeter, from which originates N(t) veins. In a small amount of
time ∆t, the rim grows and convects the N(t) source points with it. As it extends, the N(t) source
points get further away from each other. At a given distance from the original source points, each
source point is divided into two new source points on the rim, leading to a double number of source
points N(t+ ∆t). This process can be repeated over time.

Our simulation based on Riemaniann L-systems emulates the successive stages of vein ramifi-
cation over the growing surface. At each time step t, N(t) sources points are uniformly positioned
along the rim R(t) at equidistant intervals (as depicted in Fig. 21b). Sequential pairs of these
source points are associated with corresponding points on the preceding rim R(t − ∆t). The
geodesic paths are determined using the RiemannLineTo command. As the preceding part of the
structure has become fixed with respect to the existing surface at previous time step, the StaticF
command can be used to anchor it and apply the surface deformation. Consequently, the shape
formation integrates both convected and floating mechanisms. The different steps produced by
the simulation, delineating the various stages of vein ramification, are given in Fig.21c, see also
Supplementary Movie#3.
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Figure 21: Kidney fern model. (a) Hymenophyllum nephrophyllum (Kidney fern). (b) Steps of
the growth algorithm. The algorithm proceeds by growing recursively the fern blade (grey) and its
vasculature (green). At some time, a binary structure of veins has already been constructed (green)
with branching points indicated in yellow. 1. initial step of the recursion: the last blade growth
band (between the last two black lines), containing the active points (yellow) regularly positioned
on the rim line (black), reaches a size ∆L. 2. This triggers the formation of a new generation of
active points (red arrowheads) on a new rim line at the next time step, with twice as many points
as in the previous one (yellow points). Geodesic paths (blue lines) are constructed from the last
row of branching points (yellow) toward the new target points (the direction of the red arrowheads
indicate the direction of the geodesic construction). This produces binary branchings. 3. The
blade continues to grow. Geodesic lines (blue) are recomputed to adapt to the rim growth and
changing geometry. 4. Final step of the iteration: a new blade band has been constructed with
new branching segments ending at regularly spaced points and the recursion can proceed similarly
for a new blade band.(c) Consecutive stages of the simulated developmental model.

6 L-systems in abstract Riemannian spaces
Surfaces embedded in R3 are a particular example of the general concept of Riemannian manifold,
e.g. (Boothby, 2003; Carroll, 2014). Intuitively, a Riemannian manifold of dimension n is an
abstract space that locally looks everywhere like the Euclidean space Rn for some n (i.e. a space
of points where one can locally measure distances between points and angles between directions).
According to this definition, Euclidean spaces Rn themselves are trivial manifolds. A smooth
surface in R3 is another example of a 2-dimensional manifold as it locally looks like a plane around
each surface point. Likewise, a curve on this surface, in the plane or in R3, is a 1-dimensional
manifold being locally akin to a straight line.

What is specific of these examples, is that they consider Riemannian manifolds embedded in
higher-dimensional Euclidean spaces. This makes it possible to exploit the metric of the embedding
space to define locally their own metric to measure distances and angles. However, general Rieman-
nian manifolds can be defined on spaces that are not necessarily embedded in higher-dimensional
spaces. For this, it suffices to define a smooth metric, i.e. a way to measure distances and angles
at every point, directly on the manifold structure. General relativity for instance postulates that
the spacetime in which we live is such an abstract Riemannian manifold with four dimensions,
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not embedded in a higher-dimensional space and whose metric is locally imposed by the spatial
distribution of matter through Einstein’s field equations (D’Inverno, 1992; Carroll, 2014).

In this section, we explore the possibility to construct forms using L-systems in such abstract
Riemannian spaces. For this, we will be led to find ways to define metrics on these spaces, and
revisit the way key differential geometric quantities are evaluated in order to compute geodesics
and construct forms in these spaces.

6.1 Riemannian manifolds
We briefly introduce here essential definitions and notations classically used to manipulate mani-
folds. For a more extensive introduction to Riemannian manifolds, readers can refer to e.g. (Schutz,
1980; D’Inverno, 1992; Boothby, 2003; Carroll, 2014; Rouvière, 2016; Frankel, 2017).

Definition The key feature that a manifold locally looks like Rn leads naturally to (loosely)
define a manifold M as a set of points that locally possesses coordinates (u1, u2, · · · , un) = uα,
α = 1, n that varies smoothly over the manifold, with values in a connected region of Rn 1, e.g.
(D’Inverno, 1992). A local vector basis, called covariant basis, can be attached to each point P of
coordinates uα ofM. Vectors of the covariant basis are usually denoted ∂α 2. In two dimensions,
a picture of the coordinate lines and the associated covariant basis is given by Fig.2a where the
basis vectors e1, e2 should be substituted by ∂1, ∂2. A Riemannian manifold is a manifold equipped
with a (positive definite) metric, e.g. (Carroll, 2014). As in this abstract case the metric cannot
be inherited from a higher-dimensional space, one needs to define a proper and smoothly varying
metric, i.e. scalar product, at every point P of the manifold:

gαβ =< ∂α, ∂β > . (54)

Note that the dependency of the metric on the point P is not indicated here. The metric allows
to define how lengths should be measured locally around each point. Consider for example a small
segment in the manifold corresponding to a variation duα of coordinates. Then the length ds of
this small segment is defined by the metric:

ds2 = gαβdu
αduβ . (55)

It is important to note that without a metric, the notion of distance is not defined and one
cannot rely on the coordinates for that. Two points with close coordinates may actually, depending
on the metric, be very far away from each other in terms of distance according to Eq.55.

Connections and derivatives Interestingly however, if a metric measures and compares vectors
in the same tangent plane, it does not give per se any means to compare vectors living in different
tangent planes. For this, one needs to introduce the additional notion of connection, e.g. (Carroll,
2014, p 95). A connection defines the rate at which the difference of coordinates of two vectors,
considered parallel in neighboring tangent spaces, vary as one tangent space gets closer to the
other one and the coordinate difference tends to 0. It can be defined by a series of coefficients,
Γγαβ , called connection coefficients, specifying how to compute the coordinates of vectors parallel
to a given vector in its neighborhood (D’Inverno, 1992, p. 72). Let X = Xα∂α be a vector field
evaluated at P of coordinates u (= uγ). We define the parallel vector X̄ = X̄α∂α at a neighboring
point of coordinates u+ δu as:

X̄(u+ δu) = X(u)− ΓαβγX
βδuγ∂α. (56)

This expression defines how the components of a given vector must change to stay parallel to
the original vector when one moves on the manifold. Here again, these connection coefficients

1Note that it is in general not possible to use a single coordinate system to cover a manifold in this way and,
that then several regions of the manifold can be covered with different coordinate systems, that make up an atlas.
A manifold is then defined in general as a set endowed with an atlas of coordinate systems (Boothby, 2003; Carroll,
2014). However, we do not consider the full definition hereafter.

2In abstract manifolds, tangent spaces cannot be represented physically and vectors in the tangent plane are
defined by differential operators that can operate at each point P on scalar functions f(P ) defined on the manifold.
The notation ∂α = ∂

∂uα
comes from the fact that basis vectors actually correspond to partial directional derivatives

operators along each coordinate line. Together they form a basis of the local tangent plane TPM, e.g. (Boothby,
2003)
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should be understood as depending smoothly on the point P in the manifold. Using connections,
neighboring vectors can thus be compared by first parallel transporting one vector in the tangent
plane of the other (Eq.56), and then comparing them. This parallel transport thus make it possible
to define a notion of derivative on the manifold, called covariant derivative. Covariant derivatives
quantify the rates of variations of quantities living on the manifold such as vectors and tensors,
in specific directions, independently of the chosen coordinate system. This generalizes the notion
of directional derivative. If X = Xα∂α denotes a vector field, its covariant derivative ∇αX in the
direction of the basis vector ∂α at P of coordinate u is defined by (D’Inverno, 1992):

∇αX = lim
δuα→0

1

δuα
(
X(u+ δu)− X̄(u+ δu)

)
, (57)

which leads for abstract Riemannian spaces to an expression similar to Eq.24 for surfaces embedded
in R3:

∇αX = (∂αX
β +XγΓβαγ)∂β . (58)

This expression can be generalized by linearity to the derivative of vector X in any direction
Y = Y β∂β in the same tangent plane:

∇YX = Y β∇βX. (59)

Choice of a specific connection compatible with the metric The situation is thus as
follows: on the one hand we have a metric, defined by coefficients gαβ , that specifies how to
compare vectors in common tangent spaces. On the other hand we have connection coefficients
that correspond to selecting a notion of parallelism on the manifold, i.e. what it means for vectors
living in different tangent planes to be parallel. These two notions can be defined independently.
However, they interact and it is possible to define connection coefficients so that length and angles
of vectors parallel transported along the same curve remains constant. This condition, calledmetric
compatibility, formally links the two notions ∇ and g by imposing:

∇g = 0. (60)

In addition, if it is assumes that the connection coefficients are symmetric in their lower indexes,
Γγαβ = Γγβα (the connection is said to be torsion free), then it can be shown that there exists a
unique connection, called the Levi-Civita connection, that is both metric compatible and torsion
free. The connection coefficient, are then called Christoffel symbols, and are determined by the
metric:

Γγαβ =
1

2
gγλ(∂βgλα + ∂αgλβ − ∂λgαβ) (61)

This formula is remarkable in that it shows that the Christoffel symbols can be derived by using
only the metric and its first derivatives. Applied to surfaces as a particular case of Riemannian
spaces, it shows that the Christoffel symbols can be computed by using only intrinsic properties
of the surface (while we actually used the (non-intrinsic) Euclidean scalar product previously in
Eq.21).

Summary Altogether, once a metric is defined on a manifold, it becomes a Riemannian manifold.
However, a suitable notion of differentiability still needs to be added so that spatial variation rates
of geometric or physical quantities living on the manifold can be computed independently of the
coordinate system. This is called covariant derivative and requires the definition of the additional
notion of "connection" between tangent spaces. Interestingly, among all the possible options, the
definition of the manifold metric already induces a unique one, the Levi-Civita connection, that
has the very natural property to preserve angles and length of vectors parallel transported along
the same curve. For this reason, the Levi-Civita connection is often used to define covariant
differentiability on manifolds3.

3The Levi-Civita connection is for instance the one selected by default in various developments in General
Relativity (Carroll, 2014), unless otherwise specified.
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Consequences for Riemannian L-systems The extension of Riemannian L-systems defined
on curved surfaces presented in sections 3-5 to abstract Riemannian spaces relies on this more
general intrinsic expression of the Christoffel symbols. In particular, moving the turtle forward
by a distance l can still be computed as the solution of an initial value problem defined by Eq.34
where the Christoffel symbols are now computed using Eq.61.

Turning in abstract Riemannian space also needs some adjustment. Indeed, Eq.50 used to
take place in the surface tangent plane and use the surface normal to define a rotation axis. In
abstract Riemannian space, one no longer can rely on this strategy, as no "outer" space exists to
define such a normal. The definition of the rotation axes must thus keep completely intrinsic to
the abstract space. In 2-D, one does not need such a rotation axis, as a unique point is necessary
to define the center of rotation. Rotations must thus be made in 2D with the precaution as before
of ortho-normalizing the basis beforehand. In 3-D, the turtle may turn naturally according to its
local reference frame (H,L,U) that respectively locally defined 3 axes of rotations in the curved
space. Here again, the local covariant basis carried by the turtle has to be ortho-normalized before
applying the corresponding rotations, according to Eq.50 with updated axes of rotation.

To represent the forms constructed in these abstract spaces, we will finally display the uα
coordinates of the abstract Riemannian spaces in our 2-D or 3-D Euclidean world. However,
while we apparently observe a 2-D or 3-D world, the Euclidean flat metric at each point of this
space is replaced by a metric gαβ defined by the user that locally distorts space. While the turtle
interprets the Lstrings, it produces uv-parameters corresponding to the form description in the
curved abstract space coordinates.

The following sections gives examples of how to program shapes in 2-D abstract Riemannian
spaces using Riemannian L-systems.

6.2 Examples in 2-D abstract Riemannian spaces
Defining an abstract Riemannian space and drawing geodesics

To illustrate the modeling of abstract Riemmanian spaces with Riemannian L-systems, we will
first use the Beltrami-Poincaré half plane. Historically, this space has played a fundamental role
in the development of non-Euclidean geometry (Needham, 2021). Many of its properties have
been thoroughly studied, and we will make use of this knowledge to test our Riemannian L-system
algorithms and constructs. In particular, this space has a constant negative Gaussian curvature
KG = −1 (hyperbolic space).

At first sight, the Beltrami-Poincaré half plane looks like a Euclidean half plane with cartesian
coordinates uα, Fig.22a.c. However, the metric is non-Euclidean and is defined at each point as:

ds2 =
1

(u2)2
δαβdu

αduβ , (62)

where δ is the Kronecker delta, δαβ = 1 if α = β, and 0 otherwise. The metric spatial distribution
is represented in Fig.22c at every point of coordinates uα by a small disc representing the ds2

for small local variations (du1, du2) of the coordinates such that (du1)2 + (du2)2 = ε2, epsilon
being a small real constant. One can observe that as Eq.62 specifies, the circles gets bigger as
points approach the u1–axis. This intuitively means that a line crossing this region will be much
longer than a line with identical coordinate variations crossing a region further up in the space
(i.e. with higher u2 coordinates). Note that a dual representation of the metric, where ds would
be considered as a constant at every point, is possible and would provide increasing circle size for
increasing values of du2, reflecting the size of the coordinate space to cross for a constant amount
of ds at different locations of the Beltrami-Poincaré plane.

A geodesic in the Euclidean space is a straight line, Fig.22b. In the Beltrami-Poincaré half
plane, the geodesic starting at the same coordinates and in the same direction is a portion of
a circle whose center in located on the u1–axis Fig.22d. It can be shown that any geodesic in
this hyperbolic plane of constant negative curvature is either a circle centered on the u1–axis, or
a vertical line, as is illustrated in Fig.22e for different geodesics starting at the same point with
different orientations and of the same length (the four uppermost geodesics go beyond the scope
of the visible grid).

To compute these geodesics with Riemannian L-systems is no more difficult than drawing
straight lines in a Euclidean space, see Lst.17. First, the metric is defined by functions gαβ of
the coordinates (here called u, v instead of u1, u2), lines 2-4. The metric is then assembled as a
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Figure 22: Beltrami-Poincaré half plane. (a-b) Euclidean half plane with uniform isotropic
metric, represented by small discs with equal size at every point of the space (representing them-
selves ds2). A geodesic is a straight line (b). (c-d) Beltrami-Poincaré half plane. The metric varies
vertically (u2 coordinate), and the geodesic generated at the same point and with the same orien-
tation as in a-b is a portion of a circle (d). (e) In the Beltrami-Poincaré half plane, all geodesics
are circles centered on the u1-axis. Geodesic starting with a vertical orientation are vertical lines
(degenerated circles).

dictionary of functions (the metric is symmetric and then g21 need not be defined), line 5. A special
type of space object, RiemannianSpace2D has been defined to represent 2D abstract Riemannian
spaces. At its construction, this object must be given the dictionary of metric functions (line 7).
Then after positioning and orienting the turtle (lines 8-9), a series of N segments of unit length is
drawn, giving rise to a geodesic of length N lunit (lines 12 and 14-15, here N = 5).

1 lunit = 1 # unit of length
2 def g11(u,v,*args): return 1./v**2
3 def g12(u,v,*args): return 0. # g12 == g21
4 def g22(u,v,*args): return 1./v**2
5 metric = {’g11’:g11,’g12’:g12,’g22’:g22} # metric matrix
6 Axiom:
7 nproduce SetSpace(RiemannianSpace2D(** metric ,umin=-1.0,umax=1.0,vmin=0.0,vmax=2))
8 nproduce InitTurtle([-0.5,0.10,0,1]) # initial position and orientation
9 nproduce -(10) # reorient the turtle

10 nproduce A(0)
11

12 derivation length: N # Make N derivations
13 production:
14 A(n):
15 nproduce F(lunit)A(n+1) # geodesic segments of 1 unit of length

Listing 17: Geodesics in the Beltrami-Poincaré half plane (see Fig.22d)

Immersion of an intrinsic geometry in an abstract space

A form specified using L-systems is usually defined in an intrinsic way as only lengths and relative
angles between consecutive components are used in its description. The turtle interpretation then
immerses this intrinsic description in a specific space, leading to a form with explicit geometry.

In classical L-systems, the turtle embeds the L-system’s intrinsic forms in the Euclidean 3D
space. The form implicit geometry is thus always associated, in a one to one way, with a default
explicit geometry. In Riemannian L-systems, we can use abstract spaces to embed intrinsic ge-
ometries specified by L-systems into various types of curved spaces which will associate different
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explicit geometries to the original form. While preserving the intrinsic shape, this new embedding
results in different explicit geometric shapes, reflecting the curvature the embedding spaces.

To illustrate this fact, in Fig.23 we use a form consisting of a fractal von Koch flake, and move
it progressively to the right through an abstract curved space. The space metric linearly depends
on the distance to the central point of coordinates (u1

0, u
2
0)(small reference dot close to each form

on figure Fig.23): the metric is small close to the point and increases with the distance to the
central point.

ds2 = r2δαβdu
αduβ . (63)

with

r2 = (uα − uα0 )(uβ − uβ0 )δαβ . (64)

Due to curvature spatial inhomogeneity, the geometric embedding varies continuously as a
function of the position of the flake in space (Fig.23), Supplementary movie #4. This suggests
that abstract curved spaces could be used to model the deformation of natural objects. We explore
this idea in the next section by modeling different types of tropisms on plants.

Figure 23: Different geometric embeddings of the same intrinsic von Koch flake curve.
Sequence of snapshots showing a von Koch flake moving progressively from left to right (the fixed
point in each snapshot serves as a position reference) in an abstract 2D space where the metric
linearly depends on the distance at the origin (small yellow dot). During this move, the flake is
deformed by the metric. Geodesics forming the segments close to the origin tend to be strongly
curved, thus deforming the entire flake. At the end of the sequence, the metrics becomes more
homogeneous over the entire flake, which is less and less distorted. The dotted lines indicate the
order of the snapshots during the move.

Modeling growth within heterogeneous substrates, tropism

Various systems, such as roots, veins or pollen tubes, may grow within substrates that are not
uniform (i.e. not homogeneous or not isotropic or both) in their physical or chemical contents.
Plant shoots for instance, growing within plant canopies, usually progress in a non-uniform light
environment and are also subject to the anisotropy of the gravity field. Such interactions are
usually mediated by chemical or bio-physical forces, that affect the direction and/or size of the
growing elements. Plants respond in general to these forces with a high degree of plasticity, which
is responsible for example of tropism phenomena, such as gravitropism (response to gravity),
phototropism (response to light), thigmotropism (response to touch or contact), etc.

Models of growth in non-uniform media usually rely on a mechanistic description of the sys-
tem’s interaction with the substrate. These models take various forms depending on the spatial
and temporal scales considered. Recently, for example, multiscale models of tropisms have been
proposed (Moulton et al., 2020; Moulia et al., 2022) and make it possible to integrate various types
of tropisms in unified approaches. The models rely on the expression of differential growth at dif-
ferent scales controlled by the sensing of different environmental signals or fields (Jensen, 2021). In
this approach, forces of different nature are affecting the plant components during growth, which
in turn affect the growth intensity or directions of the branching system itself.

By contrast, we consider here the possibility to model branching system growth (roots, veins,
aerial branching system) within a non-uniform substrate (soil, leaf blade, aerial space) in an effective
rather than in a mechanistic manner. For this, instead of describing how the substrate non-
uniformity impacts the growth through force interaction, we seek to describe a system developing
straight axes in a substrate curved by the presence of non-uniformity. This non-uniformity modifies
the substrate’s metric, which becomes non-flat, which in turn impacts the development of the
growing components, that follows substrate geodesics instead of growing in straight lines.
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Let us consider a simple branching structure growing in a flat Euclidean space (Fig. 24a). This
tree structure is made of straight branches that are represented in the figure as geodesics of the
Euclidean plane, i.e. straight lines. At each point of the Euclidean space, the metric is Euclidean
and in Cartesian coordinates, this can be expressed as:

ds2 = δαβdu
αduβ . (65)

Now, let us illustrate this with a simple branching system model, in which the metric is a
function of points in spaces. We wish to understand how this affects the form being constructed
in this space. In Fig.24b, the metric was changed to that of the Beltrami-Poincaré half plane
introduced above (Eq.62). We observe that the "straight" branches now become portions of circles
as they correspond to straightest lines in the curved space, i.e. geodesics of the Beltrami-Poincaré
half plane. This mimics (here in a caricatured way) the bending of the branches under the effect
of gravity. We observe also that as a side effect the metric "compresses" or "stretches" the length
of the branches depending on the intensity of the ds2: curves at the bottom cross high values of
ds2, represented by the size of the local grey circles, and are much compressed. Curves at the top
on the contrary cross small ds2 values and get stretched. This is due to the fact that for a given
length L to draw, more increments of coordinates duα will be needed in the upper part of the half
plane than in the lower part to achieve the same length L. Movie #5.1, shows the action of a
continuous change of the metric (augmenting the strength of the gravity attraction) on the tree
structure and that "bends" the tree branches downwards.

Figure 24: Modeling tropism using abstract Riemannian spaces. (a) simple branching
system in a Euclidean plane. (b) same branching system interpreted in a Beltrami-Poincaré half
plane. This simulates a form of "gravity attraction" of the branches. (c) abstract Riemannian
space with point-like source of metric distorsion, simulating shadow-avoiding behaviour of trees.

By changing the spatial distribution of the metric, one can simulate qualitatively different types
of tropisms. Fig24c and Movies #5.2 and #5.3 for instance shows how a metric can be defined
as a field emanating from a particular source point (yellow sphere on the right) according to Equ.
63. The metric is inversely proportional to the distance from the source point. This curves the
space in the way that geodesics bend away from the source point as illustrated by the branches
of the trees. This simulates a shadow-avoiding tropism, were the source point could represent a
source of shadow in space (due to another plant, to a wall, etc.). Branches then bend away from
the shadow to seek for more light. Here again, the length of the branch segments is affected as well
by the metric, with the branches in areas with small metric being longer than branches in areas
with large metric.

These preliminary simulations show that modifying the metric spatially may curve the space
such that growing forms "look like" being attracted or repulsed by different type of sources. This
bending deformation is coupled with a compression or stretching of the branch segments. Further
work must be carried out to explore how these properties can be used to construct effective mod-
els of growth in non-uniform substrate, where potentially, similarly to spacetime deformation by
the matter it contains in general relativity, the plant processes themselves could be a source of
substrate’s curvature that contributes to locally orient fluxes and/or growth (Jaeger et al., 2008).
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7 Conclusions
In this paper we have presented an extension of the classical formalism of L-systems to parametric
Riemannian spaces (2-D surfaces in R3 and 2-D abstract non-Euclidean spaces). This is made
by extending turtle geometry to these curved spaces and by developing high-level language con-
structs to program form development in these spaces. Both theoretical and applied examples have
been presented to illustrate concepts of differential geometry as well as the potential of this new
framework to model realistic phenomena in biology.

Riemannian L-systems provide an intuitive high-level programming language to program the
development of a large variety of forms in a wide spectrum of curved spaces. By using turtle
geometry and its locality principle, such programming is, most of the time, not more difficult
than programming in flat Euclidean spaces as Riemannian spaces are locally Euclidean. All the
complexity related to the handling of complex differential geometry algorithms is mostly hidden to
the user. It should allow modelers to easily address new modeling problems where the growth of
forms takes places in various sorts of curved embedding spaces in either plant or animal systems.
For example, the recently identified ability of animal cells to move on a surface according to the
local curvature of the supporting surface, called curvotaxis (Pieuchot et al., 2018; Werner et al.,
2019), could naturally be modeled using Riemannian L-systems. Finally, Riemannian L-systems
also offers interesting new possibilities to learn and teach differential geometry from a natural and
easy perspective.

The modeling of growth phenomena in non-uniform substrates using intrinsically curved spaces
(here called abstract Riemannian spaces) is a promising avenue for the development of Riemannian
L-systems. Curved trajectories of growing forms in abstract Riemannian spaces are reminiscent
of trajectories of massive objects in the intrinsically curved spacetime of general relativity (GR)
(D’Inverno, 1992; Carroll, 2014). However, both situations are not quite identical. Here, we
consider a curved space and not a curved spacetime as in GR, and the forces that are responsible
for plant form growth are both of gravitational and electromagnetic nature, while the curvature
of spacetime corresponds to gravitation only in GR. As expected, the framework of GR thus does
not apply as such to the morphogenesis of living forms. On the other hand, the situation has
strong similarities with other physical systems. For example, the propagation of light rays in
media with varying optical index, in which the rays follow geodesics that bend according to the
local changes of optical index (Needham, 2021). This phenomenon is for instance at the origin of
astronomical refraction and results in the fact that astronomic objects like the sun for instance
appear higher above the horizon than they actually are (Thomas and Joseph, 1996), which itself
has connections with GR (Hui and Zhu, 2024). By providing computational concepts and tools to
manipulate curved spaces and information propagation inside, this approach can also be viewed
as a first step towards a concrete implementation of the concept of a general relativistic theory of
positional information introduced by Jaeger et al.(Jaeger et al., 2008). While still at an early stage,
abstract Riemannian L-systems open up a new possibility of formalizing growth in non-uniform
fields. These effective fields can in principle be generated by the plant environment or by the plant
matter itself, for instance to grow or to bend locally, thus making yet another connection with the
concept of general relativistic positional information (Jaeger et al., 2008).

Based on the current system, we have shown that a whole new set of biological questions, such
as the growth of pollen tubes on papillae, or the joint growth of a leaf blade and its venation
network, are becoming easily accessible to modeling. However, Riemannian L-systems could be
further extended in several directions. Addressing more complex biological systems would require
to integrate gene regulation networks, molecular transport and tissue mechanics within the curved
spaces, and explore feedback regulation loops between these factors. To model such multi-physics
systems, we could possibly enrich Riemannian L-systems to endow a given topological space with
several overlaying metrics corresponding to constraints imposed on growth by the different chem-
ical/physical processes, and compute trajectories realizing some trade-off between geodesics from
these different metrics. On the computational side, the currently implemented notion of manifold
relies on a unique coordinate map. This restricts the possibility to deal with degenerated coordi-
nates and with complex manifold topologies. In the current implementation, degenerated points
are handled as exceptions with dedicated algorithms (see Supplementary technical documentation
of Riemannian L-systems in L-Py). To overcome these limits, a complete implementation of the
notion manifold, relying on collections of coordinate maps called atlases (Carroll, 2014), would be
needed. Another direction of research is the development of abstract Riemannian spaces in 3D or
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even 4D (3D + time). Such an implementation would make it possible to model growth phenom-
ena taking place in volumes (such as the formation of vascular tissues growing stems for instance).
Finally, generalizations of such combination of rewrite rules and dynamic/differential modeling of
geometry could certainly be developed in other declarative (rule-based) morphodynamic systems
beyond L-systems and turtle geometry, such as MGS (Giavitto and Spicher, 2008), Dynamical
Grammars (Mjolsness, 2010), or Graph Grammars (Hemmerling et al., 2008).
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