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Abstract

We give two-sided estimates for positive solutions of the superlinear elliptic problem −∆u = a(x)|u|p−1u
with zero Dirichlet boundary condition in a bounded Lipschitz domain. Our result improves the well-
known a priori L∞-estimate and provides information about the boundary decay rate of solutions.
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1. Introduction

Let Ω be a bounded Lipschitz domain in Rn (n ≥ 3). We investigate the boundary
behaviour of positive weak solutions of the superlinear elliptic boundary value problem−∆u = a(x)|u|p−1u in Ω,

u = 0 on ∂Ω,
(1.1)

where p > 1 and a(x) is a nonnegative function in L∞(Ω) \ {0}. A weak solution
of (1.1), or simply a solution of (1.1), is a function u ∈ W1,2

0 (Ω) satisfying |u|p−1u ∈
(W1,2

0 (Ω))∗ and∫
Ω

∇u(x) · ∇φ(x) dx =

∫
Ω

a(x)|u(x)|p−1u(x)φ(x) dx for all φ ∈ W1,2
0 (Ω).

First, let us recall some results concerning a priori estimates for this problem. The
well-known result due to Brezis–Turner [4] states that all positive weak solutions of
(1.1) are bounded in L∞(Ω) when ∂Ω is smooth and 1 < p < pBT := (n + 1)/(n − 1)
(see also [13, Section 11]). Later, the validity of this statement for 1 < p < pS :=
(n + 2)/(n − 2) was shown by Gidas–Spruck [6] and de Figueiredo–Lions–Nussbaum
[5] under some additional assumptions on a(x). For bounded Lipschitz domains, the
a priori L∞-estimate was obtained by McKenna–Reichel [12] who introduced a new
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critical exponent corresponding to the Brezis–Turner exponent pBT (see Remark 1.2).
They actually discussed positive ‘very’ weak solutions and the optimality of the range
of p. Note that these results show that every positive (very) weak solution has a
continuous representative that belongs to C1(Ω). If Ω has a C2-boundary, a(x) ≡ 1 and
1 < p < pS, then it is known that every positive (very) weak solution u of (1.1) belongs
to C2(Ω), that is, u and its first and second partial derivatives on Ω have continuous
extensions to Ω, and therefore, by the mean value theorem,

u(x) ≤ CδΩ(x) for all x ∈ Ω, (1.2)

where δΩ(x) stands for the distance from a point x to the boundary ∂Ω. Note here that
the constant C may depend on u itself because a priori bounds of ‖∇u‖∞ are unknown.
We can see its actual dependence from a result of Bidaut-Véron and Vivier [2], where
it is shown that (1.2) holds with a constant C depending only on p, n and Ω if we
restrict the range of p to 1 < p < pBT. However, a lower estimate and an alternative
upper estimate in a nonsmooth domain are unknown. We are interested in studying
how positive continuous solutions of (1.1) behave near ∂Ω. By developing the a priori
L∞-estimate, we give two-sided estimates, including information about the boundary
decay rate of solutions. Let x0 ∈ Ω be fixed and let

gΩ(x) := min{GΩ(x, x0), 1},

where GΩ is the (Dirichlet) Green’s function on Ω for the Laplacian. Our main result
is the following theorem.

Theorem 1.1. Let Ω be a bounded Lipschitz domain in Rn (n ≥ 3), let a(x) be a
nonnegative function in L∞(Ω) \ {0}, let p > 1 and let M > 0. Then there exists
C = C(p, ‖a‖∞, M, n,Ω) > 1 such that, for any positive continuous solution of (1.1)
with ‖u‖∞ ≤ M,

1
C

gΩ(x) ≤ u(x) ≤ CgΩ(x) for all x ∈ Ω.

Moreover, the ratio u/gΩ can be extended continuously up to ∂Ω.

Remark 1.2. As stated above, McKenna–Reichel [12] showed the existence of a priori
bounds for all positive very weak solutions of (1.1) when Ω is a bounded Lipschitz
domain and

1 < p <
n + αΩ

n + αΩ − 2
,

where

αΩ := inf
{
α > 0 : inf

x∈Ω

gΩ(x)
δΩ(x)α

> 0
}
. (1.3)

Therefore, for such p, the conclusion of Theorem 1.1 holds for all positive continuous
solutions of (1.1).
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Remark 1.3. Theorem 1.1 shows that every positive continuous solution u of (1.1)
vanishes continuously on ∂Ω with the same speed as gΩ. This suggests that u ∈ C1(Ω)
does not always hold, unlike in the case of smooth domains. Namely, the gradient of u
is not necessarily continuous up to ∂Ω. For example, letω be an open connected subset
of the unit sphere in Rn that is strictly bigger than a unit hemisphere and assume that
Ω ∩ B = {x ∈ Rn \ {0} : x/‖x‖ ∈ ω} ∩ B, where B is some ball centred at the origin in Rn.
Then gΩ(x) vanishes more slowly than δΩ(x) as x→ 0 nontangentially. Therefore we
see from the mean value theorem that ‖∇u‖ blows up at the origin.

Using an estimate in [7, pages 37–38], we can obtain the following gradient estimate
from Theorem 1.1.

Corollary 1.4. The assumptions are the same as in Theorem 1.1. Then there exists
C = C(p, ‖a‖∞,M, n,Ω) > 0 such that, for any positive solution u ∈ C2(Ω) of (1.1) with
‖u‖∞ ≤ M,

‖∇u(x)‖ ≤ C
gΩ(x)
δΩ(x)

for all x ∈ Ω.

If Ω has a C1,1-boundary, then gΩ is comparable to the distance function δΩ and
the ratio gΩ/δΩ has a positive and finite nontangential limit at each boundary point.
Theorem 1.1 and a priori estimates obtained by Gidas–Spruck [6] and McKenna–
Reichel [12] yield the following corollary.

Corollary 1.5. Let Ω be a bounded C1,1-domain in Rn (n ≥ 3) and let a(x) be a
nonnegative function in L∞(Ω) \ {0}. Assume either:

(a) 1 < p < pS and a(x) is a continuous function on Ω with min
Ω

a > 0; or
(b) 1 < p < pBT.

Then there exists C = C(p,a(x),n,Ω) > 1 such that, for any positive solution u ∈ C1(Ω)
of (1.1),

1
C
δΩ(x) ≤ u(x) ≤ CδΩ(x) for all x ∈ Ω.

Moreover, the ratio u/δΩ can be extended continuously up to ∂Ω.

In Section 3, we give a proof of Theorem 1.1 based on the integral representation
of (1.1), careful estimates of the Green’s function and iteration arguments.

2. Preliminaries

In the rest of this paper, we suppose that Ω is a bounded Lipschitz domain in Rn

(n ≥ 3). As in the previous section, we use the symbol C to denote an absolute positive
constant whose value may vary at each occurrence. Writing C(a, b, . . .) means that the
constant C may depend on the parameters a, b, . . . . In particular, C(Ω) means that C
depends on Lipschitz constants of functions defining ∂Ω, the diameter of Ω and δΩ(x0),
where x0 is a fixed point in Ω. Also, for two positive functions f and g, we write f . g
if f (x) ≤ Cg(x) for some positive constant C independent of x. If f . g and g . f ,
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then we write f ≈ g. A constant appearing in this relation is called a constant of
comparison. We recall some estimates for the Green’s function GΩ(x, y). As stated in
[8], there exists C = C(Ω) > 1 such that, for any pair of points x, y ∈ Ω, the set

B(x, y) :=
{
b ∈ Ω :

1
C

max{‖x − b‖, ‖y − b‖} ≤ ‖x − y‖ ≤ CδΩ(b)
}

is nonempty. The following estimate can be found in [3, 8].

Lemma 2.1. For all x, y ∈ Ω and b ∈ B(x, y),

GΩ(x, y) ≈
gΩ(x)gΩ(y)

gΩ(b)2 ‖x − y‖2−n,

where the constant of comparison depends only on n and Ω.

To estimate the Green’s function, the following well-known facts are useful.

Lemma 2.2. There exist positive constants α, β and C, depending only on n and Ω, with
the following properties:

(1) β ≤ 1 ≤ α;
(2) for all x ∈ Ω,

1
C
δΩ(x)α ≤ gΩ(x) ≤ CδΩ(x)β;

(3) for each x, y ∈ Ω and b ∈ B(x, y),

max{gΩ(x), gΩ(y)} ≤ CgΩ(b);

(4) for each x, y ∈ Ω and b ∈ B(x, y),

gΩ(x) ≤ C
(
δΩ(x)
‖x − y‖

)β
gΩ(b).

Proof. The existence of α and β satisfying (1) and (2) was proved by Maeda–Suzuki
[11]. Statement (3) follows from the Carleson estimate (see [10, Lemma 4.4]) and
the Harnack inequality for harmonic functions (see the argument below). Also, (4)
can be proved easily by the use of [10, Lemmas 4.1 and 4.4]. For the reader’s
convenience, we sketch a proof of (4). Let x, y ∈ Ω and let b ∈ B(x, y). Take ξ ∈ ∂Ω

with ‖x − ξ‖ = δΩ(x). If δΩ(x) ≥ r0, then δΩ(b) ≥ δΩ(x) − ‖x − b‖ ≥ δΩ(x) −CδΩ(b), and
so δΩ(b) & r0. Therefore gΩ(x) ≈ gΩ(b) by the Harnack inequality. Since Ω is bounded,
we can obtain (4) in this case. Consider the case δΩ(x) < r0. If ‖x − y‖ ≤ δΩ(x),
then the Harnack inequality yields gΩ(x) ≈ gΩ(b), and so the conclusion follows. If
‖x − y‖ > δΩ(x), then by [10, Lemmas 4.1 and 4.4],

gΩ(x) .
(
δΩ(x)
‖x − y‖

)β
gΩ(ξ‖x−y‖),

where ξ‖x−y‖ is a nontangential point in Ω ∩ ∂B(ξ, ‖x − y‖). Since

‖ξ‖x−y‖ − b‖ ≤ ‖ξ‖x−y‖ − ξ‖ + ‖ξ − x‖ + ‖x − b‖ . ‖x − y‖ . min{δΩ(ξ‖x−y‖), δΩ(b)},

it follows from the Harnack inequality that gΩ(ξ‖x−y‖) ≈ gΩ(b). Thus (4) is proved. �
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Note that, from Lemmas 2.1 and 2.2(3),

GΩ(x, y) .
gΩ(x)
gΩ(b)

‖x − y‖2−n (2.1)

for all x, y ∈ Ω and b ∈ B(x, y). This will be used frequently in the next section.

3. Proof of Theorem 1.1

In the argument below, let u be a positive continuous solution of (1.1) with
‖u‖∞ ≤ M. Note that u has the representation

u(x) =

∫
Ω

GΩ(x, y)a(y)u(y)p dy for all x ∈ Ω. (3.1)

In Section 3.1, we give a proof of the upper estimate u(x) . gΩ(x) considering two
cases α < 2 and α ≥ 2 separately, where α is as in Lemma 2.2. The case α < 2 follows
easily from a simple estimation of the right-hand side in (3.1), but the other case
needs iteration arguments to improve the estimates because

∫
Ω

GΩ(x, y) dy vanishes
slowly at some boundary point. In Section 3.2, we give a proof of the lower estimate
gΩ(x) . u(x) by the use of the Harnack inequality for (1.1) and the uniform lower
boundedness of u(x0). In Section 3.3, we prove that the ratio u/gΩ has a continuous
extension to Ω.

3.1. Upper estimate.

3.1.1. The case α < 2. Let x ∈ Ω. By (2.1) and Lemma 2.2(2),

GΩ(x, y) . gΩ(x)‖x − y‖2−n−α for all y ∈ Ω.

Using (3.1),

u(x) ≤ ‖a‖∞Mp
∫

Ω

GΩ(x, y) dy .
‖a‖∞Mp

2 − α
gΩ(x).

3.1.2. The case α ≥ 2. For simplicity, we write

pk :=
k∑

j=0

p j.

Let N be the smallest nonnegative integer such that α < 2pN . Then N ≥ 1. We claim
that, for each k ∈ {0, . . . ,N − 1},

u(x) ≤ CgΩ(x)2pk/α for all x ∈ Ω, (3.2)

where C depends only on ‖a‖∞, M, p, n and Ω. We prove this by induction. Let x ∈ Ω.
It is easy to see that ∫

B(x,δΩ(x)/2)
GΩ(x, y) dy . δΩ(x)2 . gΩ(x)2/α. (3.3)
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To estimate the integral over Ω \ B(x, δΩ(x)/2), we take γ0 with

α − 2
α

< γ0 <
α − 2
α − β

.

Note that 0 < γ0 < 1. Then, by (2.1) and Lemma 2.2(2),(4), for all y ∈Ω \ B(x, δΩ(x)/2)
and b ∈ B(x, y),

GΩ(x, y) .
(gΩ(x)
gΩ(b)

)γ0(gΩ(x)
gΩ(b)

)1−γ0

‖x − y‖2−n

.
(
δΩ(x)
‖x − y‖

)βγ0( gΩ(x)
‖x − y‖α

)1−γ0

‖x − y‖2−n

. δΩ(x)βγ0 gΩ(x)1−γ0‖x − y‖2−n+(α−β)γ0−α.

By the choice of γ0, this yields∫
Ω\B(x,δΩ(x)/2)

GΩ(x, y) dy . δΩ(x)2+α(γ0−1)gΩ(x)1−γ0 . gΩ(x)2/α. (3.4)

It follows from (3.1), (3.3) and (3.4) that u(x) . ‖a‖∞MpgΩ(x)2/α, which implies that
(3.2) holds for k = 0. Next, we assume that (3.2) holds for some k ∈ {0, . . . , N − 2}.
Then, for all x ∈ Ω,∫

B(x,δΩ(x)/2)
GΩ(x, y)u(y)p dy . gΩ(x)2(pk+1−1)/αδΩ(x)2 . gΩ(x)2pk+1/α, (3.5)

where, in the first inequality, we used the Harnack inequality: gΩ(y) . gΩ(x) for all
y ∈ B(x, δΩ(x)/2). Take γk with

α − 2pk+1

α
< γk < min

{
α − 2(pk+1 − 1)

α
,
α − 2pk+1

α − β

}
.

Since

GΩ(x, y)gΩ(y)2(pk+1−1)/α .
(gΩ(x)
gΩ(b)

)γk gΩ(x)1−γk

gΩ(b)1−γk−2(pk+1−1)/α ‖x − y‖2−n

. δΩ(x)βγk gΩ(x)1−γk‖x − y‖2−n−βγk−(1−γk)α+2(pk+1−1)

by (2.1) and Lemma 2.2, it follows from the choice of γk that∫
Ω\B(x,δΩ(x)/2)

GΩ(x, y)u(y)p dy . δΩ(x)(γk−1)α+2pk+1 gΩ(x)1−γk . gΩ(x)2pk+1/α. (3.6)

Therefore we obtain from (3.1), (3.5) and (3.6) that u(x) . gΩ(x)2pk+1/α for all x ∈ Ω.
Thus (3.2) holds.

Let us apply (3.2) with k = N − 1 to show u(x) . gΩ(x). Let x ∈ Ω. Note that, for
all y ∈ Ω and b ∈ B(x, y),

GΩ(x, y)gΩ(y)2(pN−1)/α .
gΩ(x)

gΩ(b)1−2(pN−1)/α ‖x − y‖2−n.
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If 1 − 2(pN − 1)/α ≤ 0, then∫
Ω

GΩ(x, y)u(y)p dy . gΩ(x).

If 1 − 2(pN − 1)/α > 0, then∫
Ω

GΩ(x, y)u(y)p dy . gΩ(x)
∫

Ω

‖x − y‖−n−α+2pN dy . gΩ(x)

by our choice of N. Hence u(x) . gΩ(x) in all cases. This completes the proof of the
upper estimate.

3.2. Lower estimate. In a previous paper [9, Section 5], we proved the Harnack
inequality for positive classical solutions of the Lane–Emden equation −∆v = |v|p−1v
with 1 < p < (n + 2)/(n − 2), but the argument given there is applicable to a positive
continuous function v on Ω with a distributional Laplacian that satisfies 0 ≤ −∆v ≤
CδΩ(x)−2v in Ω. Since the distributional Laplacian of our object u satisfies 0 ≤ −∆u =

a(x)up ≤ ‖a‖∞Mp−1u in Ω, we can obtain the following Harnack inequality.

Lemma 3.1. There exists κ = κ(‖a‖∞,M, p, n) ∈ (0, 1) such that

u(x) ≤ 2u(y)

for any pair of points x, y ∈ Ω satisfying ‖x − y‖ ≤ κmin{δΩ(x), δΩ(y)}.

To guarantee that all solutions take their maximum values apart from the boundary,
we need the following lemma.

Lemma 3.2. There exists C = C(‖a‖∞,M, p, n,Ω) > 0 such that

u(x) ≤ Cu(x0) for all x ∈ Ω.

Proof. From the discussion in the previous subsection, we see that there exists γ > 0
such that, for all x ∈ Ω,

u(x) =

∫
Ω

GΩ(x, y)a(y)u(y)p dy . Mp−1‖a‖∞‖u‖∞g(x)γ.

Therefore, we find δ = δ(‖a‖∞, M, p, n,Ω) > 0 such that u(x) ≤ ‖u‖∞/2 for all x ∈ Ω

satisfying δΩ(x) ≤ δ. This implies that u attains its maximum at some point x1 ∈ Ω

with δΩ(x1) ≥ δ. By Lemma 3.1, u(x) ≤ u(x1) . u(x0) for all x ∈ Ω, as required. �

Let us show that gΩ(x) . u(x) for all x ∈ Ω. Let E := {x ∈ Ω : GΩ(x, x0) ≥ 1}. Then
E is compact in Ω. By Lemma 3.1, we have gΩ(x) = 1 and u(x0) . u(x) for all x ∈ E,
and so

gΩ(x)u(x0) . u(x) on E.

By the minimum principle for superharmonic functions, we see that this inequality
holds on the whole of Ω. Therefore it suffices to show that

u(x0) ≥ C > 0. (3.7)
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Since
sup
x∈Ω

∫
Ω

GΩ(x, y) dy ≤ C(n, diam Ω),

we have ‖u‖∞ ≤ C‖a‖∞‖u‖
p
∞. This, together with Lemma 3.2, yields

(C‖a‖∞)−1/(p−1) ≤ ‖u‖∞ . u(x0),

which gives (3.7). Thus the lower estimate is proved.

3.3. Continuous extension. Let ξ ∈ ∂Ω. Note that

lim
x→ξ

GΩ(x, y)
GΩ(x, x0)

= MΩ(y, ξ),

since the Martin boundary of a bounded Lipschitz domain is identical to the Euclidean
boundary (see [1]). By the upper estimate u(x) . gΩ(x), (2.1) and Lemma 2.2,

GΩ(x, y)
GΩ(x, x0)

a(y)u(y)p . gΩ(y)p−1‖x − y‖2−n . ‖x − y‖2−n

for all x, y ∈ Ω. It follows from a version of Lebesgue’s dominated convergence
theorem that

lim
x→ξ

u(x)
gΩ(x)

= lim
x→ξ

∫
Ω

GΩ(x, y)
GΩ(x, x0)

a(y)u(y)p dy =

∫
Ω

MΩ(y, ξ)a(y)u(y)p dy.

Hence u/gΩ has a continuous extension to Ω. This completes the proof of Theorem 1.1.

Remark 3.3. If αΩ defined by (1.3) is greater than 2, then
∫

Ω
MΩ(x, ξ) dx may diverge

for some ξ ∈ ∂Ω. Therefore we need the upper estimate u(x) . gΩ(x) to show the
existence of boundary limits of u/gΩ.
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