
BULL. AUSTRAL. MATH. SOC. 2 6 A I 8

VOL. 28 (1983) , 53-66 . (54H2O)

ARE CHAOTIC FUNCTIONS REALLY CHAOTIC

BAU-SEN DU

We give a class C of continuous functions from [0, 1] onto

i t s e l f which are chaotic in the sense of Li and Yorke, but with

the property tha t almost a l l (in the sense of Lebesgue) points of

[0, l ] are eventually fixed. For some continuous functions from

[0, 1] onto i t s e l f which are not in C , we also show tha t t h e i r

non-wandering sets are a l l equal to the in te rva l [ 0 , 1 ] .

1. Introduction

Let fix) be a continuous function from the interval [0, 1] into

itself. For any x in [0, l ] and any natural number m , let f (xn)

denote the mth iterate of x under / . x is called a fixed point of

f(x) if fix
0) ~ xn • xn i s called a periodic point of f(x) with

minimal period n if f[xA = x and f [x) t x , k = 1, . . . , n-1 .

x is called an eventually periodic point of fix) if, for some natural

number m , j [x-J is a periodic point of fix) . xn is called an

eventually fixed point of fix) if, for some natural number m , f (x)

is a fixed point of fix) . x is called an asymptotically periodic point

of fix) if there is a periodic point y of fix) such that

tends to zero as k tends to infinity.

Received 7 April 1983.

53

https://doi.org/10.1017/S0004972700026113 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026113


54 Bau-Sen Du

In [JO], it is shown that if f{x) is a continuous function from the

interval [0, l] into itself-and if /(x) has a periodic point with

minimal period 3 > then there is an uncountable set S (a scrambled set)

such that

(1) f(x) has infinitely many periodic points of different

periods, and

(2) every x in S is not asymptotically periodic and for each

x, y in S , x # y , we have

0 = lira inf \f(x)-f(y)\ < lim sup |/(x)-/(i/) | .
fc-x» fe-x»

This result has been extended to include those continuous functions from

[0, l] into itself with a periodic point whose period is not an integral

power of 2 ([3], [S], [JJ]). Such functions have been called chaotic by

several people ([33, [8], [9], 1101, [//]). It is shown in [3] (see [9]

also) that the set of all chaotic functions from [0, l] into itself

contains an open dense subset of the space of all continuous functions from

[0, l] into itself with the max norm.

But as indicated in [4, pp. 21-22] and [12], such scrambled sets 5

for any chaotic function may have (Lebesgue) measure zero. Therefore, the

chaotic behavior may be essentially unobservable. In [4, p. 18], the

2
function f(x) = 1 - 1.1)01155 • . . x is given. For this function f(x) ,

it is said that almost all (in the sense of Lebesgue) initial points are

attracted to the same stable, but nonperiodic orbit. However, the

dynamical behavior on this stable, nonperiodic orbit appears to be chaotic

even though this orbit has (Lebesgue) measure zero.

In this paper we give a class C of continuous functions from [0, l]

onto itself which are chaotic in the sense of Li and Yorke, but are very

well behaved from a physical point of view. To be specific, all functions

in C are piecewise linear and have "flat bottoms". For all these

functions, we show that almost all points of [0, l] are mapped onto the

same, but unstable fixed point x = 1 . That is, almost all points of

[0, l] are eventually fixed. Therefore, from a physical point of view,

every function in C is not chaotic after all. This seems to suggest that

chaotic functions should be further classified (see [9] also).
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Now let fix) be a continuous function from [0, l ] into i tself and

let X- be an element of [0, l ] . We shall call x recurrent if, for

every 6 > 0 , there exists a natural number w such that

< 6 . We shall call x non-wandering if, for every 6 > 0 ,

there exists y in [0, l ] with l^o"^! < ^ a n d
0

< 6 for

some natural number m . Let P., be the set of a l l periodic points of

fix) , Rr. the set of a l l recurrent points of fix) , and ft,, the set of

all non-wandering points of fix) . Then i t is obvious that

P„ c R c ft In [6] , i t is shown that P. = R~ . But in general,

Rf # &f • In this note, we also show that, for every fix) in a class C"

containing the above-mentioned class C (see- Section' 2) ,
P . = R_p = ft, = Cl([0, l]\K) , where Cl denotes the closure and K is the
J I T - _,

set of a l l x in [0, l ] such that f (x) = 1 "for" some natural number

m . In particular, if fix) : [0, l ] •* [0, 1,] is^-defined by fix) = 2x

if 0 5 x 5 k , and fix) = 2 - 2x if ^ . 2 x 5 1 ',- tnen. we show that the

non-wandering set of this fix) is the whole interval•*• [0^ l ] .

In [/, 2] , one-parameter families of "flat top" .functions, are studied

and discussed. In particular, they,proved \he "supergeqmetric" convergence

of the period doubling sequence which are peculiar to,the trapezoid

functions. The results are in contrast to those found by Peigenbaum for

mappings which are quadratic in a neighborhood of the crit ical point.

Since a l l our functions in the above-mentioned class C are "bottom flat",

they are conjugate to "flat top" functions through the function

gix) = 1 - x . Therefore, a i r results obtained in [1 , 2] for top flat

functions also hold fdr a l l functions in the class C .

In Section 2, we state our main results (Theorems 1 and 2). In

Section 3 we give a proof of Theorem 1. The proof of Theorem 2 is similar

and shall be omitted. In the last section we pose an open question.

2. Statement of main results

Given any two rea l numbers m< 0 and m^ > 0 . For pos i t ive
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integers m and i with 1 S i 5 2 , we define n . recursively as
TTl ,"Z-

follows:

and

' "1,2 " mZ '

a n d

' i f l i s O d d

if i is even and n . .„ > 0 .
m t / 2

These numbers n . can also be obtained by way of binary t rees as follows

(see Figure l ) .

^2

12

2222

FIGURE 1

In Figure 1, on each level m , there are 2 nodes. Each node is

represented by a string of l's or 2's . To get the explicit

representation of these nodes, we start with 1 and 2 on the first

level. Then from each node on the mth level, we attach 1 or 2 to

obtain 2 nodes on the (m+l)th level. The rule of attachment, from left

to right, is as follows:

(1) from the first node on the mth level, we attach 2 first

and then 1 to get the first and second nodes on the

(m+l)th level;

(2) from the second node on the mth level, we attach 1 first

and then 2 to get the third and fourth nodes on the
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(m-l)th level ;

(3) repeat the above procedures; but note that we attach, from

left to right on the mth level, the numbers 2, 1, 1, 2

repeatedly to obtain representations of nodes on the

(ffH-l)th level as shown in Figure 1.

Now let the ith node on the wth level be represented by

a a ... a , where a, = X or 2 , k = X, ..., m . Then it can be
_L c. TTl K.
easily shown that n . = m m ... m . Note that

m,%. a dp a

Z ! / l M
m ^ l = (~ (1/7 7 ?

1J+(1/m2J J
i=X '

for a l l natural numbers m (recall that m< 0 and m > 0 ) . This fact

will be used l a t e r .

Given any two real numbers 0 < a 2 b < 1 . With the above definition

of n . , we now define a , and b , recursively for a l l natural
m,i m,k m,k

numbers m and k with 1 2 k 5 2 -1 as follows:

u - u " = (b-X)/n , b = (<
m,X m-1,1

m d bmX,k=am,k/2 l f 1 < ^ < 2 ^ - 1 and k even,

amx,k = bm,(k-X)/2 + a/nm,(fc+l)/2 a n d

= b , , . ._ + &/n , , i W o i f 1 < fe S 2"""1-! , k odd,
m(fc-l)/2 m,(k+l)/2

and (fc+l)/2 even,

b/nm,(k+X)/2 a n d

= am,(k+X)/2 + a / " m , ( f e + l ) / 2 i f 1 < k ~ ^ ^ ' & O d d '

a n d ( k + l ) / 2 o d d .

Note that * m l t k - *mlfk= lb-a)/\nmt{k+l)/2\ for a l l 1 S k < 2
m + 1 - l

and fe odd. This fact will be used l a t e r .

Let g{x) be a continuous function from [0, l ] onto i t se l f and le t
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0 < a 2 £> < 1 . I f g{x) i s l inear on [a, b] and g{ [a, b]) = [0, l ] ,

then we say g(x) i s ful ly l i nea r on [a, b] . I f g(x) i s fully l inea r

on [a, b] and g(a) = 1 , g(b) = 0 , then we say g(x) i s n.f. l i nea r

( fu l ly l inea r with negative slope) on [a, b] . I f g{x) i s fully l i nea r

on [a , b] and g{a) = 0 , g(b) = 1 , then we say g(x) i s p.f . l inea r

( fu l ly l inea r with pos i t ive slope) on [a, b] .

Now we can s t a t e our main theorems.

THEOREM 1. Let 0 < a S b < 1 and let f(x) be a continuous

function from [0, l ] onto itself with the following three properties:

(i) f(x) = 0 for all a 5 x 5 b ;

(ii) f(0) = /(I) = 1 ;

(Hi) f is n.f. linear on [0, a] and p.f. linear on [b, l ] .

Assume that the slopes of f(x) on [0, a] and on [b, l ] are m

and m respectively. For these values of m , m , a , and b , let

n •, a , , and b , be defined as above. Also let P, R , and ft bem,v m,K. m^K.

defined as in the introduction with respect to the above f(x) (we

suppress the subscript / ) . The the following hold.

(l) For each natural number m ,

(a) the graph of j (x) contains exactly 2 line

segments whose slopes are not zero. These nonzero

slopes, from left to right, are n . ,
m,i

i = 1, 2, . . . , 2 , respectively.

0 on [a_ ,,, b_ ,1 for

o n

(c) the equation f (x) = x has exactly 2 distinct

solutions. These solutions are (a ]/(l+a ) ,

k-hmk-d ' ^ = 3 , 5 , . . . , 2 m - l ,

for al l ]

and

L <k <

and

k

2m-

k

odd,

• 1

even.
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' k = 1. 3, 5, . . . , 2m-3 , and

1 . In particular,

is a periodic point of f(x) with minimal period m .

(2) If a < b , then the following hold.

(a) For almost all (in the sense of Lebesgue) points x in

[0, l] , f (x) = 1 for some natural number m .

(Note that x = 1 is a fixed point of f(x) . So

almost all points of [0, l] are eventually fixed.)

cc 2
m - l

(b) P = R = n = [0, l] \ U U [am^n, bm^) = ci([0, 1}\K) ,

where K is the set of all x in [0, l] such that

f (x) = 1 for some natural number m . (So f2 is a

Cantor-like set with Lebesgue measure zero.)

(3) If a = b , then P = f l = n = [0> ! ] = c l (#) ^ where X is

the set of al l x in [ 0 , 1 ] such that f (x) = 1 for some natural

number m .

REMARK. If a = 1/3 and b = 2/3 , then the non-wandering set of

this f(x) is the usual Cantor ternary set . See [7] for details and other

related results.

The following theorem is a generalization of Theorem 1. Since the

proof is similar to that of Theorem 1, we shall omit i t .

THEOREM 2 . Let n > l be any integer and let

0 < ax 5 b± < c± < dx < a2 2 i>2 < c^ < dg < . . .

< a < b < e , 5 d < a 2 & < 1 .
n - 1 n - 1 n - 1 « - l M n

Let /(x) fee a continuous function from [0, l ] onto itself with the
following four properties:

( i ) f ( x ) = 0 f o r a l l a . S x S b . , i = l , 2 , . . . , « ;
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(ii) fix) = 1 for all. c. 5 x < d. , i = 1, 2, . . . , n-1 ;
If 1r

(Hi) f(0) = /(I) = 1 ;

(iv) f{x) is fully linear on each of the following intervals:

[0, a^ , \dv a i + 1 ] , \bv cP\ , i = 1, 2, . . . , n-1 , and

[b , l ] .L n J

Then the following hold.

(1) For every natural number m ,

(a) the graph of j(x) contains exactly (2n) line

segments whose slopes are not zero. These nonzero

slopes can be obtained by a recursive formula similar

to that in Theorem 1. ( i t would be easier to use the

k-ary tree method. Start from the first level with n

nodes labelled 1, 2, . . . , n , the rule of attachment

now, from left to right, is

n, n -1 , . . . , 2, 1, 1, 2, . . . , n-1 , n .)

(b) the equation j{x) = x has exactly (2n) distinct

solutions. These solutions can be easily computed by a

recursive formula similar to that in Theorem 1.

{Therefore, the coordinates of all periodic points of

f(x) can be explicitly expressed.) In particular,

x = a \[l-b } \/\a {l-b ) +1 is a periodic point

of f(x) with minimal period m .

n ? n-1 ?

(2) If T {b.-a.) + Y, [d--o.) # 0 , then the following
i ' * l i t t

hold:

(a) for almost all x in [0, l ] , j {x) = 1 for some

natural number m (so almost all points "of [0, l ]

are eventually fixed);

(b) P = R = n = Cl([0, 1]\K) , where K is the set of all

x in [ 0 , 1 ] such that /"(x) = 1 for some natural
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number m .

(3) if | ( Y « J 2 + 1 ( V e ; ) 2 = ° ' t>ien

t-—1 t—1

P = fl = n = [ o , l ] = ClU) , where K is the set of all x in [0, l ]

such that j (x) = 1 for some natural number m .

REMARK. The classes C and C we mentioned in the introduction are

defined as follows: C" is the set of al l continuous functions from

[0, l ] onto i tse l f satisfying the hypotheses of Theorem 2. C is the set

of all continuous functions from [0, l ] onto i tself satisfying the

hypotheses of Theorem 2 and the additional condition that

^=l v=\

Obviously, C is a proper subset of C .

3. Proof of Theorem 1

Assume that f (x) is n.f. (p.f. respectively) linear on [e, d]

with slope s . Since the composition of two linear functions is also

linear, f (x) divides the interval [e, d] into three subintervals

[a, a ] , [a, 6] , and [6, d] such that

(a) f (x) is n.f. linear on [c, a] with slope sm [sm

respectively],

sm2

. . . i -i

(b) j ^ (x) is identically zero on [a, 3] , and

(c) x (x) i s P*f- linear on [&, d] with slope sm., [

respectively).

Also, a = d + b/s (e + a/s respectively), 6 = d + a/s (c + b/s

respectively), and 3 - ot = (2?-a)/|s| . Therefore (l) (a) follows easily

by induction on m .

To show (1) (b), we note that x = 1 is a fixed point of fix) . So

if j (x.) = 1 for some natural number m , then J (ac0)
 = 1 for a l l
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integers n > m . Since f (x) = 0 or 1 on \a , , b /] ,
TTl S K TTl yK

fc-l. 2, . . . , 2 " - ! , / ^ O - l on [ o ^ , t ^ ] ,

fc = 1, 2, . . . , 2m-l . Hence f*'1(x) = 1 , by definition, on

' fe = ! ' 2 ' • • • ' 2 " - l "

. 1 < * < 2 m l - l and fe even. Now l e t a = ^ ^ ,

d - a , , where 1 S k S 2 m - l and k odd (when k = 2m - 1 , we l e t
77? j / C + 1

a , = 1 ] . Then J {x) is p.f. linear on [e, d] with slope n

So, from above,

a = b , + a/n , , = a
m,Ac m,Ac+l

and

This proves most of (l) (b). The rest of (l) (b) can be proved similarly.

To prove (l) (c), we note that j (x) is n.f. linear on

\b , a /} , k = 3, 5, •••, 2m-l . Their slopes are

-l/(a ,-Z? T,-,) » fe = 3, 5» • • •» 2 -1 , respectively. So their equations

are y = - (x-a J/(a ^-i ,, ,) , k = 3, 5, ..., 2m-l , respectively. By
777 j/C fit 9K ffl yK—J.

le t t ing y = x , we obtain that x = a , / (l+a 7,-k 7, ,) ,
*77 j/C * fit j / t m 3K—J.

k = 3 , 5, . . . , 2 - 1 . This gives pa r t of ( l ) ( c ) . The other part of ( l )

(c) follows s imi la r ly .

For the proof of (2) (a) i t suffices to show tha t

2m-l
Z [b k~

a
m J = 1 •

k = l m'K m'K

By def ini t ion of a , and £> , , we have, for every natural number m ,
m,k m,k

I • k - X' 3' 5' -•
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So

= (fc-a)

() I
k=0

= (fc-a) ^-{-

a-(l-&)] (since ^ = -I/a and m^ = l/(l-b))

= 1 - (a+l-b)"*1

•*" 1 as m tends to in f in i t y .

This proves (2) ( a ) .

To show (2) (b), let X , for each natural number m , be the set of

all x in [0, l] such that f(x) = 0 or 1 . Then X <= K^ c K <= ...

and lim \i(K ) = 1 , where y is the Lebesgue measure. Let

w = U U

Then i t i s clear that il c [o, l ] \ l / . Now l e t x be any element of

[0, 1]W with x * a , or 2? , for a l l m > 1 and
U 1719K Tfl yK

k = 1, 2 , . . . , 2m-l . So x fc X for a l l m > 1 . For any 6 > 0 ,

there e x i s t , since lim \i\K I = 1 , a natural number w and two elements

j / , z in X such tha t y < x < z and |y-s | < 6 . Hence there ex i s t s

k with 1 < fe < 2 -1 such tha t f(x) i s fully l inea r on [& , , a , ]

and [Z> , , a r , , , ] ^ [z/, z] . Since the in te rsec t ion points of the curves

y = J (x) and y = x are period m (need not be minimal) points of
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/ ( x ) , t h i s shows tha t x i s in P . Therefore P = i? = fl = [0,

This completes the proof of (2) (b).

To prove (3 ) , l e t K , for every natural number m , be the set of

a l l x in [0, l ] such tha t j (x) = 0 or 1 . Then K consists of

exac t ly 2™ + 1 d i s t i n c t points and K c K c K c ... . Also f(x) i s

fu l ly l i n e a r on any in t e rva l whose endpoints are two consecutive elements

in K (that i s , no other elements of K l i e s t r i c t l y in between]. Let

6 ( ^ J = max{|c-<i| | c, d are any two consecutive elements in K } . Then i t

i s c l ea r that 6 ̂ •im.-\) K n>ax{a, l-a}<$ (K ) . Therefore lim 6 [K ) = 0 and

the s e t K = U K i s dense in [ 0 , 1 ] . The res t i s easy.
m

4. An open question

Let h(x) be a continuous function from [0, l ] into itself. For

every x in [0, l ] , let

CO

L, (x) = n Cl{h (x) | m is any integer greater than or equal to n} .
n=l

I t is obvious that L^ix) is compact and nonempty for every x in

[0, 1] .

Fix any two real numbers a and b with 0 < a < b < 1 . Let

/ : [0 ,1 ] + [0, 1] be defined by f(x) = -{x-a)/a if 0 5 x < a ,

/(x) =0 if a ^ x Sb , and f(x) = {x-b)/{l-b) if b < x < 1 . For

0 2 a 5 1 , let fa(
x) = afix) and consider fa(

x) a s a one-parameter

family of continuous functions from [0, l ] into itself with a as the

parameter. To simplify notations, we denote, from now on, £„ (x) as
•'a

La(x) .

When 0 2 a < a , i t follows from [5] that the unique fixed point

x = aa/(a+a) of /a(x) is globally stable. So for all x in [0, l ] ,

i a(x) = La(aa/(a+a)) = {aa/(a+a)} . In particular, L (x) = L (a) for all
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x in [0, 1] .

When a = a , every x with 0 < x < a/2 or a/2 < x 5 a is a

periodic point of / a(x) with minimal period 2 . But none is stable. In

this case L ((l+i>)/2) = L (a/2) = {a/2) and a l l other points are

eventually periodic (with minimal period 2 ).

When a < a - b , x=ot is a periodic point of f (x) with minimal

period 2 . In this case L ((a+a2>)/(oc+a)] = L (aa/(a+a)) = {aa/{a+a)}

and L (x) = L (a) = {o, a} for al l x * (a+ab)/(a+a) , aa/(a+a) .

So far, we have shown that , for almost a l l a (in fact, with only one

exception at a = a ) in [0, b] , L (x) = L (a.) for almost a l l x (in

fact, with only two exceptions at x = (a+ai>)/(a+a) and x = aa/(a+a)

when a < a < b ) i n [ 0 , l ] .

Now l e t a = \b+V b2+ka(l-b)]/2 and a2 = Q?+V b2+kb(l-b)~\/2 . Then

period 3 points bifurcate spontaneously at a = a and exist for a l l

a £ a S 1 . For a S a 5 a , x = a is a period 3 point of f (x)

and i t seems that L (x) = L (a) for almost all x in [0, l ] .

When a = 1 , Theorem 1 implies that L (x) = L (a) = L (l) = {l} for

almost a l l x in [0, 1] .

Based on the above observation, we make the following conjecture.

Note that La(0) = La(l) = I>a(a) for a l l a in [0, l ] .

CONJECTURE. Let f (x) , f (x) , and L (x) be defined as above. Then

for almost a l l a in the parameter space [0, l ] , L (x) = L (a) for

almost a l l x in [0, l ] .
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