ON CONVEX UNIVALENT FUNCTIONS
T. BASGOZE, J. L. FRANK, AND F. R. KEOGH

In what follows, we suppose that f(z) = > ¢” a,2" is regular for |z] < 1. Let
n 1 n
su(z) = Zo ag’, o.(2) = ;*_}‘_“1‘ S sk(2),
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K,(r,0) = nrd, S 10 = ) k(r, ¢) de, 0=sr<1.

Then (see, for example, [6, pp. 235-236]), for 0 = 7 < p < 1, we have:
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S,L(f'e 6) = '7; J; f(Pe ¢ ¢))kn<£1 d’) do,
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The following results are well known.

THEOREM A. If [f(2)| < M for |2| < 1, then |o,(2)] < M for all n and
|z| < 1. Conversely, if |o,(2)| < M for all n and |2| < 1, then |f(z)| < M.

TueoreM B. If |f(z)| < M for |2| < 1, then |s,(2)| < M for all n and
|2] < 3. The number % is best possible.

(1

The proof of Theorem A (see, for example, [6, pp. 235—236]) depends on
the facts that K,(r,0) > 0 for» < 1 and

1 27

3) lim o,(2) = f(2);

n—o0

the proof of Theorem B (see, for example, [6, pp. 235—-236]) follows in a
similar way from the properties

2T
ka(r,0) >0 (r < %) and lf kn<£, ¢> do =1,
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of k,(r,0). The function f(z) = (z — a)/(az — 1), where 0 < a < 1, satisfies
|f(z)] <1, and the fact that s;(—3%a¢™') = (@24 1)/(2¢) > 1 (with a
arbitrarily near to 1) shows that the number % in Theorem B is best possible.

Theorems A and B are very special cases of the following more general
results.

THEOREM 1. (1) Suppose that the values taken by f(z) for |z| < 1 lie in a
convex domain D. Then the values taken by o,(2) also lie in D for all n and
2] < 1.

(ii) Conversely, if the values taken by c,(2) lie in a convex domain D for all
n and |3| < 1, then the values taken by f(z) lie in D for || < 1.

Proof. (i) By (1) and (2) we have

27 2T
iy _ i(0—o) r / <£ >
Tpn (76 ) L f(Pe )Kn+l<p ) ¢> d¢ J; Kn+1 0 ) d) d¢'

For fixed re??, the right-hand side is the centre of mass of a positive linear
mass distribution of density K,y1(7/p, ¢) along the curve w = f(pei—9)
described as ¢ varies from 0 to 2w. Since D is convex, this centre of mass
lies in D.

(ii) The converse follows from (3).

THEOREM 2. Under the conditions of Theorem 1 (i), the values taken by s,(z)
lie in D for all n and |z| < 3.

Proof. This is exactly as in the proof of Theorem 1 (i), but with K, (r/p, ¢)
replaced by k,(r/p, ¢).

Alternatively, we may reduce the proof of Theorem 1 as well as the proof of
Theorem 2 to the special (and classical) case when D is the half-plane Rw > 0,
using the fact that a convex domain is the intersection of half-planes.

Suppose that g(z) and k(z) are regular for |z| < 1, k(2) is univalent, and
g(2) is subordinate to % (z). We shall then write

g(2) < h(z).

In the case when the function of Theorem 2 is univalent and of the normalized
form f(z) = z + 22" a,2", and maps |z| < 1 onto a convex domain D in the
w-plane, the conclusion of the theorem for #» = 2 is the familiar fact (see,
for example, [2, p. 13]) that D contains the disc |w| < %, i.e., that

4) 1z < f(2).

The purpose of the remainder of this note is to show the solution of the
problem of determining necessary and sufficient conditions on complex numbers
N, u under which, for all convex f(2) = 2z + >_2° @,3", Nz + paqz? is convex and

(5) 32 < Nz + pasz? < f(2),
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a stronger form of (4). A necessary condition for the left-hand relation in (5)
is that [\ = § (see, for example, [4, p. 228]), and it is easily seen (by
considering \e®z -+ ue?t®ay3?) that we may suppose with no effective loss of
generality that \ is real and positive. The solution of the problem is then
as follows.

TrEOREM 3. (i) If, for all convex f(2) = 2z + X2 a,2", Nz + paqz?® is convex
and
32 < N2 + paqg® < f(2),

then N\ = p+ 3%, 0 = §.
(i) Conversely, for all convex f(2) =z+ X o® az"and u < %, (u + )z + paqz?
15 convex and

12 < (o + D5+ pesst < 32 + s < 1),
The theorem is the combination of a number of lemmas proved below.
LeMMA 1. The function z 4 c2* is convex if and only if |c| = %.

Lemma 1 is equivalent to the fact that z 4 ¢2? is starlike if and only if
le] =1 (see, for example, [1]).

LEMMA 2. If for all convex f(2) = z + 327 a,2", \2 + paq2? is convex and
1z < Az + paqz® < f(2),
then u is real and non-negative and
N=p+3 w=4
Proof. If Az 4 pa.2? is convex for all convex f(2), then, with
f@ =2z/1—2)=z+2+...,

by Lemma 1 we must have

(6) lu] <IN

The minimum value of |\z + pz?| on |z = 1isthen X — [u|; hence 3z < \z + pz?
implies

(7) A= lul 23

With the same f(2), if Az + pz? < f(2), then, for real x, —1 < x < 1, we
have Ax + Rux? > —3%, and allowing x — —1,

©) NS Rp+ 3

Combination of (6), (7), and (8) yields the conclusions stated. We suppose
from now on that u is real and non-negative.

LeEMMA 3. Suppose that by, b1, and by are complex numbers, by # 0, and let
P(2) = bo + b1z + be2%
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(i) If |bo| < |bo| and
9) [boby — baby| < |ba|? — [bol?,

then the zeros of P(z) lie on |z| £ 1.
(i1) If the zeros of P(z) lie on |2| £ 1, then |bo| < |bs| and (9) holds.

A proof of this is given in [3].

LeEMMA 4. For all convex f(z) = 2 + 22" a,g"and allp = %, (u + 3)z + pa.z?
1s convex and

1 < (u+ 1)z + nasz? < %z + Lalzl.

Proof. By Lemma 1, since |as] = 1 (see, for example, [2, p. 12]) and p <
(k4 %)z 4 pas2? is convex. Furthermore, in |2| = 1 we have

[(u+ 3)z + pasz?| = p+ 3 — plas] = 35
hence

32 < (v + 3)3 + pasz
It is now sufficient to show that, for each real @ and u < %, the polynomial
(10) 32+ dass? — (u+ B)e™ — paser’e

has a zero on [z] = 1. We shall show, in fact, that except when |a;] = 1 and
a takes a certain value, it has a zero in |z| < 1. Suppose that for some « it
has no zero in |z| < 1. Then the polynomial

[(r + )e™ + pase?™]s® — 3z — fas

has both zeros on |z| < 1; hence by Lemma 3,
[(1/9)as + (2/3)[(v + (1/2))e™ " + uase=?™]|

= [(u+ (1/2)) + pase®|? — (1/36)|as|?.
Writing a; = pe’®, « + ¢ = ¥, this is equivalent to
(11) [6p + 3 + 6upe’|? — 4[pe™ + 3(2u + 1) + 6upe— Y| =
But, since u < %, we have
(12)  |pe™ + 3(2u + 1) + 6ppe="¥| = [6ppe™ + 3(2u + 1) + Gupe=*¥

+ p(1 — 6u)e|
= 3(2u+ 1) + 12upcos ¥ — p(1 — 6u),

\
bl\?

and (11), (12) yield
— (1 — 36u?)p* — 12up(1 — 6p) cos ¥ — 3(1 + 2u) (1 — 6pu)

+ 4p(1 —6u) 20
Again since p < §, we may divide this inequality by 1 — 6g, and we obtain

4p(1 — Bucos ¥) = (1 + 6p)p% + 3(1 4 2u).
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This implies that
4p(1 + 3u) = (1 4 6u)p® + 3(1 + 2u),

or

(p—1)<p—1—1~f—a>§o.

Since p = 1, this is a contradiction (and shows that (10) has a zero in |3| < 1)
unless p = 1, ¥ = 7. But (10) then has a zero —e=%, and this completes
the proof.

LeMMA 5. For all convex f(2) = 2z + 2.2 a,2", we have 2z + %a:2% < f(2).

This is the particular case # = 2 of the relation

Valz, f) < f(2)
proved by Pélya and Schoenberg [5], where V,(z, f) is the de la Vallée Poussin

mean defined by
2\ 1 & 2n %
Vn(zyf) = n Zl n+k [17% 28

Theorem 3 now follows on combining Lemmas 2, 4, and 5.

In conclusion we remark that we have also a proof of Lemma 6 which is
exactly on the lines of the proof of the relation £z 4+ a:22 < f(2) for starlike
f(2) given in [3]. This consists of showing first that, for any w(z) = wiz +
wy2® + . .. regular for |z| < 1 and satisfying |w(z)| < 1, we have

2 1 2\ 2 Z_

3'wlz—l—6('w2+w1)z < 1—3z’
and then using the fact that any convex domain may be expressed as the
intersection of half-planes.
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