ON CONVEX UNIVALENT FUNCTIONS

T. BAŞGÖZE, J. L. FRANK, AND F. R. KEOGH

In what follows, we suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is regular for |z| < 1. Let

$$egin{aligned} s_n(z) &= \sum_0^n \, a_k z^k, \qquad \sigma_n(z) = rac{1}{n+1} \sum_0^n \, s_k(z), \ k(r, heta) &= rac{1-r^2}{2(1-2r\cos heta+r^2)} \,, \ k_n(r, heta) &= rac{1-r^2-2r^{n+1}\{\cos(n+1) heta-r\cos n heta\}}{2(1-2r\cos heta+r^2)} \,, \end{aligned}$$

and

$$K_n(r,\theta) = \frac{1}{2n\pi} \int_0^{2\pi} \frac{\sin^2 \frac{1}{2} n(\theta - \phi)}{\sin^2 \frac{1}{2} (\theta - \phi)} k(r,\phi) d\phi, \qquad 0 \le r < 1.$$

Then (see, for example, [6, pp. 235–236]), for $0 \le r < \rho < 1$, we have:

(1)
$$s_{n}(re^{i\theta}) = \frac{1}{\pi} \int_{0}^{2\pi} f(\rho e^{i(\theta-\phi)}) k_{n}\left(\frac{r}{\rho}, \phi\right) d\phi,$$
$$\sigma_{n}(re^{i\theta}) = \frac{1}{\pi} \int_{0}^{2\pi} f(\rho e^{i(\theta-\phi)}) K_{n+1}\left(\frac{r}{\rho}, \phi\right) d\phi.$$

The following results are well known.

THEOREM A. If |f(z)| < M for |z| < 1, then $|\sigma_n(z)| < M$ for all n and |z| < 1. Conversely, if $|\sigma_n(z)| < M$ for all n and |z| < 1, then |f(z)| < M.

THEOREM B. If |f(z)| < M for |z| < 1, then $|s_n(z)| < M$ for all n and $|z| < \frac{1}{2}$. The number $\frac{1}{2}$ is best possible.

The proof of Theorem A (see, for example, [6, pp. 235–236]) depends on the facts that $K_n(r, \theta) > 0$ for r < 1 and

(2)
$$\frac{1}{\pi} \int_0^{2\pi} K_n \left(\frac{r}{\rho}, \phi\right) d\phi = 1,$$

(3)
$$\lim_{n \to \infty} \sigma_n(z) = f(z);$$

the proof of Theorem B (see, for example, [6, pp. 235–236]) follows in a similar way from the properties

$$k_n(r,\theta) > 0 \ (r < \frac{1}{2})$$
 and $\frac{1}{\pi} \int_0^{2\pi} k_n \left(\frac{r}{\rho}, \phi\right) d\phi = 1$,

Received October 23, 1968. This research was supported by the National Science Foundation under Grant GP-8225.

of $k_n(r,\theta)$. The function f(z)=(z-a)/(az-1), where 0 < a < 1, satisfies |f(z)| < 1, and the fact that $s_1(-\frac{1}{2}a^{-1})=(a^2+1)/(2a) > 1$ (with a arbitrarily near to 1) shows that the number $\frac{1}{2}$ in Theorem B is best possible.

Theorems A and B are very special cases of the following more general results.

THEOREM 1. (i) Suppose that the values taken by f(z) for |z| < 1 lie in a convex domain D. Then the values taken by $\sigma_n(z)$ also lie in D for all n and |z| < 1.

(ii) Conversely, if the values taken by $\sigma_n(z)$ lie in a convex domain D for all n and |z| < 1, then the values taken by f(z) lie in D for |z| < 1.

Proof. (i) By (1) and (2) we have

$$\sigma_n(re^{i\theta}) = \int_0^{2\pi} f(\rho e^{i(\theta-\phi)}) K_{n+1}\left(\frac{r}{\rho}, \phi\right) d\phi / \int_0^{2\pi} K_{n+1}\left(\frac{r}{\rho}, \phi\right) d\phi.$$

For fixed $re^{i\theta}$, the right-hand side is the centre of mass of a positive linear mass distribution of density $K_{n+1}(r/\rho, \phi)$ along the curve $w = f(\rho e^{i(\theta-\phi)})$ described as ϕ varies from 0 to 2π . Since D is convex, this centre of mass lies in D.

(ii) The converse follows from (3).

THEOREM 2. Under the conditions of Theorem 1 (i), the values taken by $s_n(z)$ lie in D for all n and $|z| < \frac{1}{2}$.

Proof. This is exactly as in the proof of Theorem 1 (i), but with $K_n(r/\rho, \phi)$ replaced by $k_n(r/\rho, \phi)$.

Alternatively, we may reduce the proof of Theorem 1 as well as the proof of Theorem 2 to the special (and classical) case when D is the half-plane Rw > 0, using the fact that a convex domain is the intersection of half-planes.

Suppose that g(z) and h(z) are regular for |z| < 1, h(z) is univalent, and g(z) is subordinate to h(z). We shall then write

$$g(z) \prec h(z)$$
.

In the case when the function of Theorem 2 is univalent and of the normalized form $f(z) = z + \sum_{2}^{\infty} a_n z^n$, and maps |z| < 1 onto a convex domain D in the w-plane, the conclusion of the theorem for n = 2 is the familiar fact (see, for example, [2, p. 13]) that D contains the disc $|w| < \frac{1}{2}$, i.e., that

The purpose of the remainder of this note is to show the solution of the problem of determining necessary and sufficient conditions on complex numbers λ , μ under which, for all convex $f(z) = z + \sum_{2}^{\infty} a_{n}z^{n}$, $\lambda z + \mu a_{2}z^{2}$ is convex and

a stronger form of (4). A necessary condition for the left-hand relation in (5) is that $|\lambda| \ge \frac{1}{2}$ (see, for example, [4, p. 228]), and it is easily seen (by considering $\lambda e^{i\theta}z + \mu e^{2i\theta}a_2z^2$) that we may suppose with no effective loss of generality that λ is real and positive. The solution of the problem is then as follows.

Theorem 3. (i) If, for all convex $f(z) = z + \sum_{n=1}^{\infty} a_n z^n$, $\lambda z + \mu a_2 z^2$ is convex and

$$\frac{1}{2}z < \lambda z + \mu a_2 z^2 < f(z),$$

then $\lambda = \mu + \frac{1}{2}, \mu \leq \frac{1}{6}$.

(ii) Conversely, for all convex $f(z) = z + \sum_{2}^{\infty} a_n z^n$ and $\mu \leq \frac{1}{6}$, $(\mu + \frac{1}{2})z + \mu a_2 z^2$ is convex and

$$\frac{1}{2}z < (\mu + \frac{1}{2})z + \mu a_2 z^2 < \frac{2}{3}z + \frac{1}{6}a_2 z^2 < f(z).$$

The theorem is the combination of a number of lemmas proved below.

LEMMA 1. The function $z + cz^2$ is convex if and only if $|c| \leq \frac{1}{4}$.

Lemma 1 is equivalent to the fact that $z + cz^2$ is starlike if and only if $|c| \le \frac{1}{2}$ (see, for example, [1]).

LEMMA 2. If for all convex $f(z) = z + \sum_{2}^{\infty} a_n z^n$, $\lambda z + \mu a_2 z^2$ is convex and $\frac{1}{2}z < \lambda z + \mu a_2 z^2 < f(z)$,

then u is real and non-negative and

$$\lambda = \mu + \frac{1}{2}, \qquad \mu \leq \frac{1}{6}.$$

Proof. If $\lambda z + \mu a_2 z^2$ is convex for all convex f(z), then, with

$$f(z) = z/(1-z) = z + z^2 + \dots$$

by Lemma 1 we must have

$$|\mu| \le \frac{1}{4}\lambda.$$

The minimum value of $|\lambda z + \mu z^2|$ on |z| = 1 is then $\lambda - |\mu|$; hence $\frac{1}{2}z < \lambda z + \mu z^2$ implies

$$(7) \lambda - |\mu| \ge \frac{1}{2}.$$

With the same f(z), if $\lambda z + \mu z^2 < f(z)$, then, for real x, -1 < x < 1, we have $\lambda x + R\mu x^2 > -\frac{1}{2}$, and allowing $x \to -1$,

$$\lambda \le R\mu + \frac{1}{2}.$$

Combination of (6), (7), and (8) yields the conclusions stated. We suppose from now on that μ is real and non-negative.

LEMMA 3. Suppose that b_0 , b_1 , and b_2 are complex numbers, $b_2 \neq 0$, and let $P(z) = b_0 + b_1 z + b_2 z^2$.

(i) If $|b_0| < |b_2|$ and

$$|b_0\bar{b}_1 - \bar{b}_2b_1| \le |b_2|^2 - |b_0|^2,$$

then the zeros of P(z) lie on $|z| \leq 1$.

(ii) If the zeros of P(z) lie on $|z| \le 1$, then $|b_0| \le |b_2|$ and (9) holds.

A proof of this is given in [3].

LEMMA 4. For all convex $f(z) = z + \sum_{2}^{\infty} a_n z^n$ and all $\mu \leq \frac{1}{6}$, $(\mu + \frac{1}{2})z + \mu a_2 z^2$ is convex and

$$\frac{1}{2}z < (\mu + \frac{1}{2})z + \mu a_2 z^2 < \frac{2}{3}z + \frac{1}{6}a_2 z^2$$
.

Proof. By Lemma 1, since $|a_2| \le 1$ (see, for example, [2, p. 12]) and $\mu \le \frac{1}{6}$, $(\mu + \frac{1}{2})z + \mu a_2 z^2$ is convex. Furthermore, in |z| = 1 we have

$$|(\mu + \frac{1}{2})z + \mu a_2 z^2| \ge \mu + \frac{1}{2} - \mu |a_2| \ge \frac{1}{2};$$

hence

$$\frac{1}{2}z < (\mu + \frac{1}{2})z + \mu a_2 z^2$$
.

It is now sufficient to show that, for each real α and $\mu < \frac{1}{6}$, the polynomial

(10)
$$\frac{2}{3}z + \frac{1}{6}a_2z^2 - (\mu + \frac{1}{2})e^{i\alpha} - \mu a_2e^{2i\alpha}$$

has a zero on $|z| \le 1$. We shall show, in fact, that except when $|a_2| = 1$ and α takes a certain value, it has a zero in |z| < 1. Suppose that for some α it has no zero in |z| < 1. Then the polynomial

$$[(\mu + \frac{1}{2})e^{i\alpha} + \mu a_2 e^{2i\alpha}]z^2 - \frac{2}{3}z - \frac{1}{6}a_2$$

has both zeros on $|z| \le 1$; hence by Lemma 3,

$$|(1/9)a_2 + (2/3)[(\mu + (1/2))e^{-i\alpha} + \mu \bar{a}_2 e^{-2i\alpha}]|$$

$$\leq |(\mu + (1/2)) + \mu a_2 e^{i\alpha}|^2 - (1/36)|a_2|^2.$$

Writing $a_2 = \rho e^{i\phi}$, $\alpha + \phi = \Psi$, this is equivalent to

$$(11) \qquad |6\mu + 3 + 6\mu\rho e^{i\Psi}|^2 - 4|\rho\epsilon^{i\Psi} + 3(2\mu + 1) + 6\mu\rho e^{-i\Psi}| \ge \rho^2.$$

But, since $\mu < \frac{1}{6}$, we have

(12)
$$|\rho e^{i\Psi} + 3(2\mu + 1) + 6\mu\rho e^{-i\Psi}| = |6\mu\rho e^{i\Psi} + 3(2\mu + 1) + 6\mu\rho e^{-i\Psi} + \rho(1 - 6\mu)e^{i\Psi}|$$

 $\geq 3(2\mu + 1) + 12\mu\rho\cos\Psi - \rho(1 - 6\mu),$

and (11), (12) yield

$$-(1 - 36\mu^2)\rho^2 - 12\mu\rho(1 - 6\mu)\cos\Psi - 3(1 + 2\mu)(1 - 6\mu) + 4\rho(1 - 6\mu) \ge 0.$$

Again since $\mu < \frac{1}{6}$, we may divide this inequality by $1 - 6\mu$, and we obtain $4\rho(1 - 3\mu\cos\Psi) \ge (1 + 6\mu)\rho^2 + 3(1 + 2\mu)$.

This implies that

$$4\rho(1+3\mu) \ge (1+6\mu)\rho^2 + 3(1+2\mu),$$

or

$$(\rho - 1)\left(\rho - 1 - \frac{2}{1 + 6\mu}\right) \le 0.$$

Since $\rho \leq 1$, this is a contradiction (and shows that (10) has a zero in |z| < 1) unless $\rho = 1$, $\Psi = \pi$. But (10) then has a zero $-e^{-i\phi}$, and this completes the proof.

LEMMA 5. For all convex $f(z) = z + \sum_{n=0}^{\infty} a_n z^n$, we have $\frac{2}{3}z + \frac{1}{6}a_2 z^2 < f(z)$.

This is the particular case n = 2 of the relation

$$V_n(z,f) \prec f(z)$$

proved by Pólya and Schoenberg [5], where $V_n(z, f)$ is the de la Vallée Poussin mean defined by

$$V_n(z,f) = \binom{2n}{n}^{-1} \sum_{1}^{n} \binom{2n}{n+k} a_k z^k.$$

Theorem 3 now follows on combining Lemmas 2, 4, and 5.

In conclusion we remark that we have also a proof of Lemma 6 which is exactly on the lines of the proof of the relation $\frac{3}{8}z + \frac{1}{16}a_2z^2 < f(z)$ for starlike f(z) given in [3]. This consists of showing first that, for any $w(z) = w_1z + w_2z^2 + \ldots$ regular for |z| < 1 and satisfying |w(z)| < 1, we have

$$\frac{2}{3}w_1z + \frac{1}{6}(w_2 + w_1^2)z^2 < \frac{z}{1-z},$$

and then using the fact that any convex domain may be expressed as the intersection of half-planes.

References

- J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233.
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48 (Cambridge Univ. Press, Cambridge, 1958).
- 3. F. R. Keogh, A strengthened form of the ¼-theorem for starlike univalent functions (to appear in the A. J. MacIntyre Memorial Volume, Ohio Univ. Press).
- 4. Z. Nehari, Conformal mapping (McGraw-Hill, New York, 1952).
- 5. G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295-334.
- 6. E. C. Titchmarsh, The theory of functions, 2nd ed. (Oxford Univ. Press, London, 1939).

Middle East Technical University, Ankara, Turkey; University of Kentucky, Lexington, Kentucky