
BULL. AUSTRAL. MATH. SOC. 30C45

VOL. 29 ( 1 9 8 4 ) , 8 3 - 9 1 .

ANALYTIC MAPPINGS WITH NEGATIVE COEFFICIENTS
IN THE UNIT DISC

M.L. MOGRA

Let f{z) = z - Y, a z be analytic in the unit disc
n=2 n

U(\z\ < 1) and le t F(z) = (l-X)f(z) + X[f(z)*h(z)) where
GO

h(z) = z + Y, ° z with a 's are known and are nonnegative,
«=2 " n

X > 0 . In the present paper, using convolution methods we

investigate the mapping properties of F(z) when f(z) belongs

respectively to several subclasses of analytic functions with

negative coefficients.

1.

Let A denote the class of functions f(z) analytic in

U = {z : \z\ < 1} normalized by f(0) = 0 and /'(0) = 1 . A function

/ € A is said to be starlike of order a , 0 5 a < 1 , denoted by S ,

if Re{s(/'(3)//(3)J} > Ot for z € U and is said to be convex of order

a , 0 < a < 1 , denoted by Ka , if Be{l+z[f"{z)/f'{z))} > a for

z € I) . Further, let P denote the class of functions / € A such that

Re[f'(z)) > a , 0 < a < 1 , z € V .
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Given two functions f,g£A, f(z) = z + Y a zn and
n=2 n

oo

g(z) = z + Y, bn
z > their convolution or Hadamard product f(z) * g{z)

n=2

00

is defined by f(z) * g{z) = z + £ a b a " . Ruscheweyh [3] using

n=2 " *

convolution techniques, introduced and studied an important subclass of

A , the class of pre-starlike functions of order a , which is denoted by

Ra . Thus / € A is said to be pre-starlike of order a , 0 < a < 1 , if

On O
f(z) * z{l-z) " € Sa . It may be noted that R = KQ and R, = 5, .

oo

Let T be the class of functions of the form z - £ \a \zn , which
n=2 n

are analytic and univalent in U , and set T[a] = S n y , #[ot] = X n T

and P[a] = p^ n r . Silverman [6] studied the classes T[o] and X[a] ,

and Gupta and Jain [2] studied P[a] by obtaining several results for

these sub-classes including the characterization of extreme points of their

closed convex hulls . An analogous study for R n T (= i?[ct]) was made by

Silverman and Silvia [7] .

I t is well known [6] that f (. T if and only if

(1.1) I n\a | < 1
n=2

and a necessary and sufficient condition for f(z) to be in T[a] is that

h a 5 1 .
n'

It is also known [4] that a necessary and sufficient condition for f(z)

to be in P[ct] is that

(1-3) I

and / € R[a] if and only i f

\an\ 5 1 ,
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< 3.

where B(a, n) = TT (k-2 / ( « - ! ) ! , n = 2 , 3 , k, . . . (see [7 ] ) .

Sarangi and Uralegaddi [5] have studied the mapping properties of the

function F(s) defined by

(1.5) 2F(z) = {zftz))'

where f(z) is in T[a], K[a] or P[a] . Recently, Bhoonsurmath and

Swami [J] extended these results by studying the mapping properties of the

function F(z) defined by

(1.6) F{z) = (l-X)/(3) + X[zf'{z)) , X i 0 ,

where f(z) is in 2*, T[a], K[a] or P[a] .

In the present paper, using convolution methods, we study the mapping

properties of the function F(s) defined by

(1.7) F(z) = (l-X)f(z) + X(f(z)*h(z))

co

where h(z) = z + £ e z with a 's known and nonnegative, X > 0 and
n=2 n n

when f{z) is respectively in T, T[a], K[a], P[a] or R[a] . The

proposed study not only gives as a particular case, the results of Sarangi

and Uralegaddi [5] and Bhoonsurmath and Swami [7] but also lead to the

mapping properties for the functions of the form

(1.8) F(z) = (l-X)/(3) + Xz , 0 < X < 1 ,

where f{z) is in T, T[a], K[a], P[a] or R[a] .

CO

It may be noted that choosing h(z) = s/(l-s) = z + £ nz in (1.7)
M=2

we get the mapping properties of the functions defined in (1.6) while

taking h(z) = z will lead the mapping properties for the functions

defined by (1.8) where f(z) belongs respectively to the classes T, T[a],

K[ct], P[a] or
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2.

THEOREM 1. Let f(z) be in T and F{z) = (l-X)/(s) + \(f(z)*h(z))

CO

with h(z) = z + £ o z . If X and the c ' s are real, nonnegative
n=2 n n

and satisfy the condition 1 - X + Xe ^ 0 , then Re[zF'(z)/F(z)) > B ,

0 5 3 < l , for \z\ < r(\, g; a ) where

r(X, B i an) = inf

The result is sharp.

Proof. Since f(z) is in T we have

F(z) = (l-X)f(z) + X{f{z)*h{z))

00

n

n=Z
(l-X+Xcn)|aM|3 .

It is sufficient to show that | (zF'(z)/F{z))-l\ < 1 - 3 for

\z\ < r(X, 3; o\ . Suppose X and the c 's are real, nonnegative and

satisfy the condition 1 - X + Xe > 0 . Then

F'(z)
F(z) ~

OO

n=2

00

_n-l

n=2
(n-l)(l-X+Aen)|aB||a|M-l

00

1 - T. (l-X+Xe ) \a \z

n=2

n-l\

.n-i

Thus | (zF'(z)/F(z))-l\ 5 1 - 3 if

(n-D^-X+XeJI^IlBl"-1 < (1-3) 1 - £ (l-X+XcJ |^| | z \ ^
n=2

which is equivalent to

(2.1) I

n=2

Since /(s) is in T , from (l.l) it follows that the inequality (2.1)

https://doi.org/10.1017/S0004972700021298 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021298


A n a l y t i c m a p p i n g s 87

will be true if

(2.2) j-g — lajlzl"-1 S n\an\ (n = 2, 3, U, . . . ) .
(n-g) (l-X+XeJ

Solving (2.2) for \z\ , we obtain

./(n-1)
, n = 2, 3, U, ... .

Setting \z\ = r(X, g; c ) in (2.3), the result follows.

The functions given by

fn(z)=z-±z
n (n = 2, 3, ..-)

show that the result obtained in the theorem is sharp.

00

2 n
As stated in Section 1, choosing h(z) = z/(l-z) = z + £ nz so

n=2

that c = n in the theorem, we get the following result found in [ I ] ,

COROLLARY 1 . Let f(z) be in T and F(z) = ( l - X ) f ( z ) + Xzf'(z)

for z € U where X > 0 . Then Re(zP'(z)/F(z)) > g , 0 < g < l / o r

\z\ < r ( X , g) unere

(« = 2 , 3 , U, . . . ) .

The result is sharp, with the extremal function being of the form

n
/ M U ) = 3 - \ (n = 2 , 3 , . . . ) .

COROLLARY 2. Let f{z) be in T and F{z) = ( l -X)f(s) + Xs for

z i U and 0 < X < l . 2%en Re[zF'(z)/F(z)) > g , 0 ^ 6 < 1 for

U | < r(X, g)

' 3 ) = i f [(l-XKn-g)j ( » = 2 , 3 , U , . . . ) .

27ie result is sharp with the extremal function being of the form

4 ( 2 ) = 2 - T ' »-2. 3. ••• •
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The result is obtained by choosing h(z) = z so that e = 0 in the

above theorem.

It may be noted that for X = \ our Corollary 1 gives the

corresponding result due to Sarangi and Uralegaddi [5].

THEOREM 2. Let f(z) be in T[OL] and

F(z) = (l-A)/(2) + X(f(z)*h(z))

with h(z) = z + Y, ° z • -TfX and the c 's are real, nonnegative
n=2 n n

and satisfy the condition 1 - X + Xe i 0 , then F{z) is starlike of

order 3 , 0 5 3 < 1 for \z\ < r[\, a, 3; c ) where

r{X, cc, 3; o) = inf | <, _^Ia<U I<^ \\ > « = 2, 3, . . .
n

The result is sharp.

Proof. The proof is similar to that of Theorem 1. The only

difference is that the estimate (1.2) is to be used in place of ( l . l ) .

The result is sharp with the extremal function being of the form

T « \ z > - z - „ „. z \ n - d, 5 , . . . ) .

THEOREM 3. Let f(z) be in K[a] and

F(z) = (l-A)/(2) + \{f{z)*h{z))

with h(z) = z + Y, ° z* • If X and the c ' s are real, nonnegative
n=2 n n

and satisfy the condition 1 - X + Ac > 0 then F(z) is convex of order

S , 0 2 3 < 1 for \z\ < r(\, a, g; c^\ where r{\, a, 3; o^ is as

stated in Theorem 2. The result is sharp with the extremal function being

of the form

Proof. We have
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(2.U) zF'(z) = (l-X)af'(a) + Xs(f(a)*h(a)) '

= (l-X)a/'(a) + \{zf'{z)*h(z)) .

Since f(z) € K[a] , i t fol lows t h a t zf'(z) € T[a] . So , apply ing Theorem

2 wi th z f ' ( s ) i n s t e a d of f{z) , i t fol lows from (2.k) t h a t zF'(z) i s

s t a r l i k e of o rde r 3 , 0 5 3 < 1 i n \z\ < r(\, a, 3 ; a ) or

e q u i v a l e n t l y F(z) i s convex of order 3 i n | z | < r ( A , a , B ; e ) where

r(X, a, 3; c ) is as stated in Theorem 2.

The following theorem can be proved on similar lines as that of

Theorem 2. Hence we omit the proof.

THEOREM 4. Let f{z) be a function in R[a] and

F(z) = (l-X)/(a) + \[f(z)*h(z))

00

with h ( z ) = 3 + J c 2 . I / X and the a ' s are real, nonnegative
n = 2 n n

and satisfy the condition 1 - X + X e 2 0 , then F(z) is starlike of

order & , 0 £ 3 < 1 for \z\ < r[\, a, 3 ; c ) w h e r e

.fi iv A , \ - • * \ (»-«)(l-P)B(o,n) l 1 / ( n

n = 2, 3, . . . ,

n
where B(a, n) = 1 f ( k - 2 a ) / ( n - l ) ! , n = 2 , 3, . . . . 2fce resuZt -is sharp,

k=2

the extremal function being of the form

Wz) = z - (n-a)B?a,n) Z - " =

THEOREM 5. Let /(z) fee in P[a] and

F(a) = (l-X)f(s) + \{f(z)*h{z))

3 ' - •

with h (z ) = z + £ e z , z Z U . J / X and the c ' s a r e real,
n=2 n n

nonnegative and satisfy the condition 1 - X + X e > 0 , then

Re[F'(z)) > 3 , 0 < 3 < 1 for \z\ < r ( X , a , 3 ; cn) where
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'I*, a. Bi O = inf L ^ h . u i , 1 - n = 2, 3, . . . .
n X - X + A c n>

The result is sharp.

Proof. I t i s s u f f i c i e n t t o prove t h a t the values for F'(z) l i e in a

c i r c l e cent red a t 1 whose rad ius i s 1 - B for \z\ < r(\, a , B ; c ) .

We have

CO

M=2 " "

Thus, i f X and the c 's satisfy the condition 1 - X + Xo > 0 , then

\F'(z)-l\ 5 1 - 3 i f

00 n[l
(2.5) I —

Since f{z) i s i n P[ot] , we have ( 1 . 3 ) . Thus (2 .5) w i l l be t r u e i f

n(l-X+Xe ) in

Now the remaining part of the proof is similar to that of Theorem 1.

The functions of the form

fn(z) = z - ^ z n (n = 2, 3, .-•)

show that the estimate obtained in the theorem is sharp.
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