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Abstract

For a Markov renewal process where the time parameter is discrete, we present a novel
method for calculating the asymptotic variance. Our approach is based on the key renewal
theorem and is applicable even when the state space of the Markov chain is countably
infinite.
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1. Introduction

Let {(Jn, Yn, Tn); n ∈ Z+∪{−1}}, where Z+ is the set of nonnegative integers, be a sequence
of random variables defined on a probability space (�, F , P) such that

(i) Jn takes values in a countable set E,

(ii) Yn is real valued,

(iii) T−1 < 0 ≤ T0 < T1 < · · · ,

(iv) Tn is integer valued.

Let Fn = σ((Jm, Ym, Tm); m ≤ n) and assume that

P{Jn+1 = k, Yn+1 ∈ B, Tn+1 − Tn ≤ t | Fn} = µk(B)Q(Jn, {k} × [0, t]).

Here, for each k ∈ E, µk(·) is a probability measure on B, the Borel subsets of the real line,
B ∈ B, and Q(k, ·) is a probability measure on P(E) ⊗ B, where P(E) is the collection of
all subsets of E and t ∈ Z+. We note that, given Jn, Yn is independent of {(Jn, Tn); n ∈ Z+}
and that, for n1 �= n2, Yn1 and Yn2 are conditionally independent given {(Jn, Tn); n ∈ Z+}.
Moreover, the process {Jn; n ∈ Z+} is a Markov chain which we assume is aperiodic,
irreducible nonnull recurrent with stationary vector ν. In addition, we assume that, for each
j ∈ E, the distribution function Q(j, E × (0, t]) has period one. We specify the distribution
of (J0, Y0, T0) later. In this setting, {(Jn, Tn); n ∈ Z+} is a Markov renewal process.
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A diffusion approximation for Markov renewal processes 367

We motivate the main result of this paper with the following example from queueing theory.

Example 1. Suppose that Tn is the time of the nth arrival to a single server queue, Jn is the
customer’s type, and Yn the amount of work the customer brings. Let Wt be the amount of
work that arrives by time t . To apply heavy traffic approximations for the virtual waiting time
process it is necessary to have a functional central limit theorem (FCLT) for W·. One approach
is to first develop an FCLT for {Yn} and use a random change of time to obtain an FCLT for W·.
See [10, Chapter 13] for details on random time changes. When {Yn} is stationary, which is the
case when {Jn} is stationary, we may apply an FCLT for stationary sequences. The asymptotic
variance term in the FCLT is given by

σ 2 = var(Y0) + 2
∞∑

n=0

cov(Y0, Yn)

(see, for example, [3], [7], or [5]). Using the Poisson equation (see [11, Chapter 2]), we can
develop an expression for σ 2 using solutions, x, to x(I − P ) = y for the appropriate vector y,
where I is an identity matrix and P is the one-step transition matrix for {Jn}. In [4], σ 2 was
calculated using spectral theory.

Our concern in this paper is to develop an FCLT for W· and a method for finding its asymptotic
variance. The method presented here for calculating the asymptotic variance is based on the
key renewal theorem and is applicable even when the state space of the Markov chain is
countably infinite. The FCLT is stated as Theorem 1 and the expression for σ 2 is given in
Theorem 5. Assumptions (iii) and (iv) in the statement of Theorem 1 are not given in terms of
the Markov renewal process but rather in terms of a related Markov chain defined in Section 2.
In Section 3, we provide conditions on the Markov renewal process for assumptions (iii) and
(iv) to hold. In particular, we show that (iii) is implied by appropriate rates of convergence to
the stationary distribution of the Markov chain {Jn; n ∈ Z+} and bounds on the Tn+1 − Tns.
This is accomplished by applying rate of convergence results for Markov chains given in [8]
and [6].

2. Preliminaries

For t ∈ Z+ ∪ {−1}, define

(Xt , Zt , Lt ) =
{

(Jn, Yn, 0) if t = Tn,

(Jn, 0, t − Tn) if Tn < t < Tn+1,

and
Gt = σ(χ0, . . . , χt ),

where we have set χt = (Xt , Zt , Lt ). To see that the process {(Xt , Zt , Lt ); t ∈ Z+} is a
Markov chain, note that on {Xt = j, Lt = l},

{Xt−l = j, Lt−l = 0, . . . , Xt = j, Lt = l}.
So, for some nonnegative integer n,

Tn+1 − Tn > l and Jn = j.
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It follows that

P{Xt+1 = k, Zt+1 ∈ B, Lt+1 = u | Gt }

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P{Tn+1 − Tn > l + 1 | Xn = j}
P{Tn+1 − Tn > l | Xn = j} if k = j, u = l + 1, 0 ∈ B,

P{Jn+1 = k, Yn+1 ∈ B, Tn+1 − Tn = l + 1 | Xn = j}
P{Tn=1 − Tn > l | Xn = j} if u = 0,

Q(j, {k} × (l + 1, ∞))

Q(j, E × [l + 1, ∞))
if k = j, u = l + 1, 0 ∈ B,

Q(j, {k} × {l + 1})µk(B)

Q(j, E × [l + 1, ∞))
if u = 0.

In addition, {(Xt , Lt ); t ∈ Z+} is a Markov chain whose one-step transition matrix is given by
the above equation with B = R. We denote the [(j, l), (k, u)]th element of the t th power of
this transition matrix by pt

(j,l),(k,u). The probability measure γ denotes the initial distribution
of {χn; n ∈ Z+}, with

γ ({j} × B × {l}) = P{X0 = j, Z0 ∈ B, L0 = l},
and

γj,l = P{X0 = j, L0 = l}.
The notation γpt

(k,u) denotes the probability that, at t , Xt = k and Lt = u, given that the initial
distribution is γ .

The assumptions on {(Jn, Yn, Tn); n ∈ Z+} imply that {(Xt , Zt , Lt ); t ∈ Z+} is ergodic
and, hence, has an invariant measure that is also a limiting distribution which is denoted by π .
The measure π on (P(E) ⊗ B ⊗ P(Z+)) is given by

π({k} × B × {s}) =

⎧⎪⎪⎨
⎪⎪⎩

µk(B)νk

ν · m
if s = 0,

1{0∈B}νkQ(k, E × (s, ∞))

ν · m
if s > 0,

where 1{A} denotes the indicator function of an event A, νk is the kth component of the vector
ν, E = {1, . . . , k, . . . }, and m = (m1, . . . , mk, . . . ) with

mk = Ek[T1] < ∞.

For k ∈ E and s ∈ Z+ set πk,s = π({k} × R × {s}). The Markov chain {(Xt , Zt , Lt ); t ∈ Z+}
is stationary when the initial distribution is given by π . In this case, the process {Zt ; t ∈ Z+}
is also stationary.

To see that π is the stationary distribution, we observe that {(Xt , Zt , Lt ); t ∈ Z+} is
regenerative with regeneration times being the times at which X = 1 and L = 0. Thus,
by Smith’s theorem (see, for example, [9, p. 265]), we obtain

π({k} × B × {s}) = E[amount of time spent in {k} × B × {s} during a cycle]
E[cycle time] . (1)
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For some c > 0 independent of k, cνk is the expected number of visits to k during a cycle and
mk is the expected time spent in k during each visit. Thus, the denominator of (1) is equal to
cν ·m. The expected time spent in {k}×B ×{s} during a cycle is the expected number of visits
to k, multiplied by the probability that a visit lasts at least s, multiplied by either the probability
that the mark is in B if s = 0, or 1 if 0 ∈ B (if s > 0), or 0 if 0 ∈ Bc (if s > 0), where Bc

denotes c �∈ B. That is,

E[amount of time spent in {k} × B × {s} during a cycle]

=
{

cµk(B)νk if s = 0,

1{0∈B}cνkQ(k, E × (s, ∞)) if s > 0.

The initial distribution for (J0, Y0, T0) is given as the forward recurrence time when Lt = 0
given that the initial distribution on (X0, Z0, L0) is γ . Thus,

P{J0 = j, Y0 ∈ B, T0 = t} =

⎧⎪⎪⎨
⎪⎪⎩

γ ({j} × {B} × {0}) if t = 0,

∑
i∈E

∑
l≥1

γi,l

Q(i, {j} × {l + t})
Q(i, E × (l, ∞))

µj (B) if t > 0.

Notice that if the initial distribution for (X0, Z0, L0) is π then

P{J0 = j, Y0 ∈ B, T0 = t} =
∑
i∈E

νi

µm
Q(i, {j} × (t, ∞))µj (B),

which agrees, realizing that we are working with a discrete time process, with stationary forward
recurrence time given in [2, Example 6.18 of Chapter 10].

In what follows, E[·] will denote expectation under the assumption that the initial distribution
is γ , Eπ [·] will denote expectation when the process is stationary, and Ej [·] will denote
conditional expectation given that J0 = j and T0 = 0.

For n ∈ Z+ and a positive integer N , define

ζN,n = 1√
N

(Zn − Eπ [Z0])

and, for all real numbers τ ≥ 0, define

S(N)
τ =

∑
n≤Nτ

ζN,n.

The process S
(N)· has sample paths in the space D∞ of real-valued functions on [0, ∞) that are

right-continuous with left-hand limits. We let do∞ be the metric on D∞ given in [1, p. 168]. We
use the notation ‘

d−→’ to denote convergence in distribution of stochastic processes with sample
paths in D∞.

Theorem 1. Suppose that the following conditions hold:

(i) K1 ≡ supj∈E

∫
R

|x|µj (dx) < ∞,

(ii) K2 ≡ supj∈E

∫
R

x2µj (dx) < ∞,

(iii)
∑

(j,l)∈E×Z+ πj,l‖pt
(j,l),· − π·‖2

tv = o(t−2−δ), for some δ > 0,
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(iv) for a fixed i∗ ∈ E and with τi∗ = inf{t = 1, 2, . . . : (Xt , Lt ) = (i∗, 0)}, we have

E(i∗,0)[τi∗ ] < ∞.

Then, provided that σZ > 0, we have

S(N)·
d−→ σZB·,

where B· is a standard Brownian motion and

σ 2
Z = varπ (Z0) + 2

∞∑
t=1

covπ (Z0, Zt ). (2)

The proof of Theorem 1 is carried out in two steps. The result is first proved in the special case
where the process {(Xt , Zt , Lt ); t = 0, 1, . . . } is stationary. The result stated in Theorem 1
will follow as a special case using a coupling argument. As stated, Theorem 1 may appear
unappealing in that conditions (iii) and (iv) are not given in terms of the semi-Markov kernel
of the Markov renewal process {(Jn, Yn, Tn); n = −1, 0, 1, . . . }. However, in Section 3, we
develop conditions for the semi-Markov kernel that imply conditions (iii) and (iv) of Theorem 1.

Proof of Theorem 1. First assume that the initial distribution is π . In this case the process
{(Xt , Zt , Lt ); t = 0, 1, . . . } is stationary. By [3, Theorem 7.6, Chapter 7], it suffices to show
that ∞∑

n=1

[Eπ [Eπ [Zt − c | X0, L0]2]]1/2 < ∞,

where

c =
∑
j ′∈E

∫
R

πj ′,0xµj ′(dx),

or, equivalently, it suffices to show that

Eπ [Eπ [Zt − c | X0, L0]2] = o(t−2−δ).

This follows since the left-hand side of the above equation is equal to

∑
(j,l)∈E×Z+

[ ∑
(j ′,l′)∈E×Z+

∫
R

(pt
(j,l),(j ′,l′) − πj ′,l′1{0}(j ′)x)µj ′(dx)

]2

≤ K2
1

∑
(j,l)∈E×Z+

πj,l‖pt
(j,l),· − π·‖2

tv

= o(t−2−δ),

by assumptions (i) and (iii).
Let {(Xt , Zt , Lt ); t ∈ Z+} have initial distribution γ and let {(X̃t , Z̃t , L̃t ); t ∈ Z+} be an

independent copy of {(Xt , Zt , Lt ); t ∈ Z+}, but having initial distribution π . Let

τ = inf{t ∈ Z+ : (Xt , Lt ) = (X̃t , L̃t ) = (i∗, 0)}.
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From [6, Theorem 3.1, Chapter II], assumption (iv) implies that τ < ∞ with probability one.
Define {(X̂t , Ẑt , L̂t ); t ∈ Z+} by

(X̂t , Ẑt , L̂t ) =
{

(Xt , Zt , Lt ) if t ≤ τ,

(X̃t , Z̃t , L̃t ) if t ≥ τ.

We show, with the obvious notation, that do∞(ŜN· , S̃N· ) → 0 in probability for which it suffices
to show that do

m(ŜN· , S̃N· ) → 0 for each positive integer m. To this end, note that, for each
t = 0, 1, . . . ,

|S̃N
t − ŜN

t | ≤ 1√
N

Nt∑
n=1

|Z̃n − Ẑn|

=
min(Nt,τ )∑

n=1

|Z̃n − Ẑn|

≤
τ∑

n=1

|Z̃n − Ẑn|.

Since the right-hand side of the above equation does not depend on t and

do
m(ŜN· , S̃N· ) ≤ max

0≤t≤m
|ŜN

t − S̃N
t |,

we have, for ε > 0,

P{do
m(ŜN· , S̃N· ) > ε} ≤ P

{
1√
N

τ∑
n=1

|Z̃n − Ẑn| > ε

}

→ 0

since
∑τ

n=1 |Z̃n − Ẑn| is a finite valued random variable.
By the first part of the proof, S̃N· �⇒ σB·. By [1, Theorem 3.1], ŜN· �⇒ σB·. Since SN·

and ŜN· have the same distribution, we have SN· �⇒ σB·, and the proof is complete.

In Section 3, we give sufficient conditions for Theorem 1(iii) and (iv) to hold in terms of the
Markov renewal process {(Jn, Yn, Tn); n ∈ Z+}.

To motivate the calculation of σ 2
Z , consider the special case where E consists of a single

point and Yn = 1 for all n. In this case, W· is the counting process for a stationary renewal
process. Then (see, for example, [1, p. 154] or [3, p. 107]), we obtain

Wm·
d−→ σZB·,

where σ 2
Z = σ 2/m3, σ 2 is the variance of the inter-renewal distribution and m is the expected

value. We observe that the expression for σ 2
Z in Theorem 1 reduces to σ 2/m3 in the renewal

case. Our method, applied to a renewal counting process, for determining σ 2
Z is to first observe

that ∞∑
t=1

covπ (Zt , Z0) = lim
t→∞

1

m
E0

[
Wt − t

m

]
,

where E0[(·)] is the expectation for the ordinary renewal process. We then develop a renewal
equation for E0[Wt − t/m] and apply the key renewal theorem to obtain the limit. For a
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nonarithmetic renewal process these calculations are well known; see [2, pp. 297–298]. Once
we have the infinite sum, it is an easy matter to compute σ 2

Z .
Our derivation of σ 2

Z , in the setting described at the beginning of this section, is accomplished
by steps similar to those suggested above. Theorem 3 develops an appropriate Markov renewal
theorem and Theorem 4 determines the limiting solution. Using Theorem 4, we determine in
Theorem 5 the sum of the covariances and, thus, σ 2

Z .

3. Assumptions (iii) and (iv) of Theorem 1

We elaborate on conditions (iii) and (iv) in Theorem 1 by exploiting coupling arguments for
rates of convergence. Following [6], for the process {(Xt , Lt ); t ∈ Z+} consider a version
{(X(i,l)

t , L
(i,l)
t ); t ∈ Z+} having initial distribution δ(i,l) for each pair (i, l), and a version

{(Xπ
t , Lπ

t ); t ∈ Z+} having initial distribution π . Fix a state i∗ and let

T(i,l),π = inf{t = 0, 1, . . . ; (X
(i,l)
t , L

(i,l)
t ) = (Xπ

t , Lπ
t ) = (i∗, 0)}.

Using [6, Equation (8.3), p. 35], for α > 1, we have

t−α‖pt
i,l;· − π·‖2

tv ≤ 4t−α P{T(i,l),π > t}
and, hence, ∑

(i,l)∈E×Z+
πi,l t

−α‖pt
i,l;· − π·‖2

tv ≤ 4t−α P{Tπ,π > t}. (3)

Suppose that
Eπ [τα

0 ] < ∞, E(i∗,0)[τα
1 ] < ∞,

where
τ0 = inf{t = 0, 1, . . . ; (Xt , Lt ) = (i∗, 0)},
τ1 = inf{t = 1, 2, . . . ; (Xt , Lt ) = (i∗, 0)},

then, by [6, proof of Theorem 8.6, Chapter I], the right-hand side of (3) goes to zero as t → ∞.
That is, condition (iii) is satisfied. Since

E(i∗,0)[τ1] ≤ E(i∗,0)[τα
1 ],

condition (iv) will also be satisfied.
By construction τ0 = TR0 and τ1 = TR1 , where

R0 = inf{n = 0, 1, . . . ; Jn = i∗}, R1 = inf{n = 1, 2, . . . ; Jn = i∗}.
Theorem 2. If conditions (iii) and (iv) in Theorem 1 are replaced by the conditions

(iii′) with α = 2(1 + δ)

m(α) = sup
(i,j)

{ ∑
t∈Z+

tα+1 Q(i, {j} × {t})
Q(i, {j} × (0, ∞))

}
< ∞,

(iii′′) Eν[Rα
0 ] < ∞ and Ei∗ [Rα

1 ] < ∞ hold,

and conditions (i) and (ii) of Theorem 1 hold, then so does the conclusion of Theorem 1.
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Proof. We need to show that (iii′) and (i′′) imply (iii) and (iv) and in light of the above
remarks it suffices to show that (iii′) and (i′′) imply both Eπ [τα

0 ] and E(i∗,0)[τα] are finite.
Recalling that τ0 = TR0 and using the convexity of tα , we have

Eπ [T α
R0

]

=
∞∑

n=0

∑
i0,...,in−1 �=i∗

Eπ [T α
n 1(J0 = i0, . . . , Jn−1 = in−1, Jn = i∗)]

≤
∞∑

n=0

∑
i0,...,in−1 �=i∗

(n + 1)α−1
n∑

k=0

Eπ [(Tk − Tk−1)
α1(J0 = i0, . . . , Jn−1 = in−1, Jn = i∗)],

(4)

where T−1 ≡ 0. Using the initial distribution for J0, T0, and (iii′), we obtain

Eπ [T α
0 1(J0 = i0, . . . , Jn−1 = in−1, Jn = i∗)]

=
∞∑
t=1

tα
νi0

ν · m
Q(i0, {i1} × (t, ∞))Q(i1, {i2} × (0, ∞)) · · · Q(in−1, {i∗} × (0, ∞))

≤ m(α)

ν · m
νi0Q(i0, {i1} × (0, ∞))Q(i1, {i2} × (0, ∞)) · · · Q(in−1, {i∗} × (0, ∞)). (5)

Similarly,

Eπ [T α
0 1(J0 = i0, . . . , Jn−1 = in−1, Jn = i∗)]
≤ m(α)

ν · m
νi0Q(i0, {i1} × (0, ∞))Q(i1, {i2} × (0, ∞)) · · · Q(in−1, {i∗} × (0, ∞)). (6)

Inserting (5) and (6) into (4) and applying (i′′) gives

Eπ [T α
R0

] ≤ m(α)

ν · m

∞∑
n=0

∑
i0,...,in−1 �=i∗

(n + 1)ανiQ(i0, {i1} × (0, ∞))Q(i1, {i2} × (0, ∞)) · · ·

× Q(in−1, {i∗} × (0, ∞))

= m(α)

ν · m
Eν[(R0 + 1)α]

≤ 2α−1 m(α)

ν · m
Eν[Rα

0 ] ≤ ∞.

Showing E(i∗,0)[T α
R1

] < ∞ is similar, and the proof is complete.

4. Calculating the asymptotic variance

In this section we calculate the variance term given in (1) as an application of the key renewal
theorem.

For k ∈ E and t = 0, 1, . . . , let

Nk
t =

∞∑
n=0

1{Jn=k}1{0≤Tn≤t}.
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The process {Nk
t ; t = 0, 1, . . . } counts the number of times that the Markov renewal process

{(Jn, Tn); n = 0, 1, 2, . . . } visits the state k. Let

mk = Ek[T1], σ 2
k = Ek[(T1 − mk)

2].
Now define

δi,k =
{

0 if i �= k,

1 if i = k.

Finally, for each k, define the function h : E × {0, 1, . . . } → R by

hk(i, t) = Ei

[
Nk(t) − νk

ν · m
t

]
.

Theorem 3. The function hk satisfies the Markov renewal equation

hk(i, t) = δi,k − νk

ν · m

t−1∑
s=0

Q(i, E × (s, ∞)) +
t∑

s=1

∑
j∈E

hk(j, t − s)Q(i, {j} × {s}).

Proof. For t = 0, 1, . . . , we have

Ei

[
Nk

t − νk

ν · m
t

]
= Ei

[(
Nk

t − νk

ν · m
t

)
1{T1>t}

]
+ Ei

[(
Nk

t − νk

ν · m
t

)
1{T1≤t}

]
. (7)

When T1 > t , we have

Nk
t − νk

ν · m
t = δi,k − νk

ν · m
t,

so that the first term on the right-hand side of (7) is equal to(
δi,k − νk

ν · m
t

)
Pi{T1 > t} =

(
δi,k − νk

ν · m
t

)
Q(i, E × (t, ∞)). (8)

We rewrite the second term on the right-hand side of (7) as

Ei

[(
Nk

T1− − νk

ν · m
T1 + Nk

t − Nk
T1− − νk

ν · m
(t − T1)

)
1{T1≤t}

]

=
t∑

s=1

∑
j∈E

{(
δi,k − νk

ν · m
s

)
+ Ej

[
Nk

t−s − νk

ν · m
(t − s)

]}
Q(i, {j} × {s})

= δi,kQ(i, E × [0, t]) −
t∑

s=1

νk

ν · m
sQ(i, E × {s})

+
t∑

s=1

∑
j∈E

hk(j, t − s)Q(i, {j} × {s}). (9)

Inserting (8) and (9) into (7) gives

hk(i, t) = δi,k − νk

ν · m
(tQ

(
i, E × (t, ∞)) +

t∑
s=1

sQ(i, E × {s})
)

+
t∑

s=1

∑
j∈E

hk(j, t − s)Q(i, {j} × {s}). (10)
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Applying the summation by parts formula, we obtain

t∑
s=1

sQ(i, E × {s}) = tQ(i, E × [0, t]) −
t∑

s=1

Q(i, E × [0, s − 1]),

which gives

tQ(i, E × (t, ∞)) +
t∑

s=1

sQ(i, E × {s})

= t (1 − Q(i, E × [0, t])) + tQ(i, E × [0, t]) −
t∑

s=1

Q(i, E × [0, s − 1])

= t −
t∑

s=1

Q(i, E × [0, s − 1])

=
t−1∑
s=0

(1 − Q(i, E × [0, s]))

=
t−1∑
s=0

Q(i, E × (s, ∞)). (11)

Inserting (11) into the second term on the right-hand side of (10) yields

hk(i, t) = δi,k − νk

ν · m

t−1∑
s=0

Q(i, E × (s, ∞)) +
t∑

s=1

∑
j∈E

hk(j, t − s)Q(i, {j} × {s}),

which completes the proof.

Theorem 4. For k ∈ E, we have

lim
t→∞ hk(i, t) = νk

(ν · m)2

∑
j∈E

νj

σ 2
j + m2

j + mj

2
.

Proof. Set

gk(i, t) = δi,k − νk

ν · m

t−1∑
s=0

Q(i, E × (s, ∞)).

Then the key renewal theorem [2, Theorem 9.2.8] implies that

lim
t→∞ hk(i, t) =

∞∑
t=0

∑
j∈E

νj

ν · m
gk(j, t)

=
∞∑
t=0

∑
j∈E

νj

ν · m

(
δj,k − νk

ν · m

t−1∑
s=0

Q(j, E × (s, ∞))

)
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=
∞∑
t=0

νk

ν · m

(
1 −

∑
j∈E

νj

ν · m

t−1∑
s=0

Q(j, E × (s, ∞))

)

= νk

ν · m

∞∑
t=0

∑
j∈E

νjmj

ν · m

(
1 − 1

mj

t−1∑
s=0

Q(j, E × (s, ∞))

)

= νk

ν · m

∑
j∈E

νjmj

ν · m

∞∑
t=0

1

mj

∞∑
s=t

Q(j, E × (s, ∞))

= νk

ν · m

∑
j∈E

νj

ν · m

∞∑
s=0

s∑
t=0

Q(j, E × (s, ∞))

= νk

ν · m

∑
j∈E

νj

ν · m

∞∑
s=0

(s + 1)Q(j, E × (s, ∞))

= νk

(ν · m)2

∑
j∈E

νj

σ 2
j + m2

j + mj

2
,

which completes the proof.

Set

ξk = E[Y0 | J0 = k, T0 = 0] =
∫

R

xµk(dx),

ξk,2 = E[Y 2
0 | J0 = k, T0 = 0] =

∫
R

x2µk(dx),

and

ξ =
K∑

k=1

ξk

νk

ν · m
.

Since the process {Zt ; t = 0, 1, . . . } is assumed to be stationary, we have

ξ = E[Z0].
Theorem 5. If ∑

i∈E

∑
k∈E

sup
t≥0

νi |ξiξkhk(i, t)| < ∞

then

σ 2
Z =

∑
k∈E

νk

ν · m
ξk,2 −

∑
j∈E

∑
k∈E

νjνk

(ν · m)2 ξj ξk

+
∑
i∈E

∑
j∈E

∑
k∈E

νiνjνk

(ν · m)3 ξiξk(σ
2
j + m2

j + mj) − 2
∑
i∈E

νi

ν · m
ξ2
i .

Proof. Recall that

σ 2
Z = E[(Z0 − ξ)2] + 2

∞∑
t=1

E[(Z0 − ξ)(Zt − ξ)]. (12)
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To calculate the first term on the right-hand side of (12) we first note that

E[Z2
0] =

∑
k∈E

νk

ν · m
ξk,2

and

E[Z0]2 = ξ2 =
(∑

k∈E

ξk

νk

ν · m

)2

.

It then follows that

E[(Z0 − ξ)2] =
∑
k∈E

νk

ν · m
ξk,2 −

∑
j∈E

∑
k∈E

νjνk

(ν · m)2 ξj ξk. (13)

To calculate the infinite sum in (12), we note that

E[(Z0 − ξ)(Zt − ξ)] = E[Z0(Zt − ξ)]
=

∑
i∈E

ξi

νi

ν · m
E[Zt − ξ | J0 = i, T0 = 0]

=
∑
i∈E

ξi

νi

ν · m
Ei[Zt − ξ ]. (14)

Since

Ei[Zt ] =
∑
k∈E

Ei[Yt (N
k
t − Nk

t−1)]

=
∑
k∈E

ξk Ei[Nk
t − Nk

t−1],

the right-hand side of (14) is equal to

∑
i∈E

ξi

νi

ν · m

∑
k∈E

ξk Ei

[
Nk

t − Nk
t−1 − νk

ν · m

]
.

Using (14) and Theorem 4, the second term in (12) is equal to

2 lim
n→∞

n∑
t=1

∑
i∈E

νi

ν · m
ξi

∑
k∈E

ξk Ei

[
Nk

t − Nk
t−1 − uk

ν · m

]

= 2
∑
i∈E

∑
k∈E

νi

ν · m
ξiξk

(
lim

t→∞ Ei

[
Nk

t − tνk

ν · m

]
− δi,k

)

=
∑
i∈E

∑
j∈E

∑
k∈E

νiνjνk

(ν · m)3 ξiξk(σ
2
j + m2

j + mj) − 2
∑
i∈E

νi

ν · m
ξ2
i , (15)

where in the first equality we applied the dominated convergence theorem which applies by
assumption. Inserting (13) and (15) into (12) gives the desired expression for σ 2

Z .
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