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ON UNIFORM CONVERGENCE OF CONTINUOUS 
FUNCTIONS AND TOPOLOGICAL 

CONVERGENCE OF SETS 

BY 

G E R A L D B E L R 

ABSTRACT. Let X and Y be metric spaces. This paper considers 
the relationship between uniform convergence in C(X, Y) and to
pological convergence of functions in C(X, Y), viewed as subsets of 
X x Y . In general, uniform convergence in C(X, Y) implies Haus-
dorff metric convergence which, in turn, implies topological con
vergence, but if X and Y are compact, then all three notions are 
equivalent. If C([0, 1], Y) is nontrivial arid topological convergence 
in C(X, Y) implies uniform converger ce then X is compact. 
Theorem: Let X be compact and Y be loyally compact but noncom-
pact. Then topological convergence in C(X, Y) implies uniform 
convergence if and only if X has finitely many components. We also 
sharpen a related result of Naimpally. 

Let (X,dx) and (Y, dY) be metric spaces and let C(X, Y) denote the 
collection of continuous functions from X to Y. The purpose of this note is to 
describe circumstances under which the uniform convergence of a sequence of 
functions {fn} in C(X, Y) to a continuous function / is equivalent to the 
so-called topological convergence of {/n} to /, where we view each function as a 
subset of X x Y. The notion of topological convergence of a sequence of sets 
rests on two primitive notions: the lower and upper limits of a sequence of sets 
[7]. 

DEFINITION. Let {Cn} be a sequence of sels in a metric space. Then Li Cn 

(resp. Ls Cn) is the set of all points y each neighborhood of which meets all but 
finitely (resp. infinitely) many sets Cn. 

Both Li Cn and Ls Cn are closed sets. It is clear that y e Li Cn if and only if 
there are points yn e Cn, n = 1, 2, 3 , . . . , such <:hat {yn}—> y. Similarly, y e Ls Cn 

if and only if there is an increasing sequence {nk} in Z + and points yk e C„k, 
k = 1, 2, 3 , . . . , such that {yk}^ y. We say thav {Cn} converges topologically to a 
(possibly empty) set C if Li Cn = Ls Cn = C. From the above remarks, we can 
characterize topological convergence in C(X, Y) locally. 
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LEMMA 1. Let X and Y be metric spaces and let /, fl9 f2, f^ . . . be functions in 
C(X, Y). Then {fn} converges topologically to f if and only if at each x in X 

(1) Whenever {(xk, fUk(xk)} converges to (x, y), then y=f(x) 
(2) There exists a sequence {x^} convergent to x for which limn_^00/n(xn) = 

fix). 

Proof. Condition (1) says that Ls/ n <=/ and condition (2) says that /<=Li/n. 
Since we always have Li fn c Ls fn, these two statements in conjunction are 
equivalent to the statement / = Li fn = Ls fn. 

To see the connection between topological convergence of graphs and 
uniform convergence, we next consider the notion of Hausdorff distance 
between sets. Let C be a set in a metric space with metric d, and let Be[C] 
denote the union of all closed balls of radius e > 0 whose centers run over C. If 
K is another set in the metric space and there exists e > 0 for which both 
Be[C]=>K and Be[K]^ C, then the Hausdorff distance 8d between C and K is 
given by 

8d (C, K) = M{e : Be [C] ^ K and Be [K] => C} 

If no such s exists, we set ôd(C, K) = °o. If we identify sets with the same 
closure, then 8d is well defined on the equivalence classes so induced, and 8d 

determines an extended real valued metric on the class of nonempty closed 
subsets of the space. Now if {Cn} is a sequence of closed sets in the space 
convergent in the Hausdorff metric to a closed set C, it is evident that 
C = Li Cn = Ls Cn. The converse is false. For example, in the line, if we let 
Cn = [0, l]U{n}, then {Cn} converges topologically to [0, 1] but for each n > 1 
ôd(Cn, [0, l]) = n —1. When the underlying space is compact, everything be
comes quite nice. In this context topological convergence does imply con
vergence in the Hausdorff metric [8]. Moreover, both the collection of 
nonempty closed sets and the collection of nonempty closed connected sets in 
the space are compact when equipped with this metric; a nice proof of these 
results can be constructed using the Ascoli theorem [1]. 

We now look at the Hausdorff metric as applied to C(X, Y), viewed as a 
collection of closed subsets o f X x Y . We first need a metric on Xx Y to induce 
the Hausdorff metric. For definiteness and computational simplicity, we take p 
defined by p[(x1? yt), (x2, y2)] = max{dx(x1, x2), dY(yl9 y2)}. By our above re
marks, convergence in C(X, Y) with respect to 8P implies topological con
vergence. It is also clear that uniform convergence in C(X, Y) implies 8P-
convergence, for if supx e XdY[/(x), g(x)]<e, then for each x in X 
p[(x,/(x)), (x, g(x))]<8, whence both /<=Be[g] and g<=Be[/]. As a consequ
ence, for general X and Y uniform convergence in C(X, Y) implies topological 
convergence. If Y is at all interesting, a necessary condition for the converse to 
hold is the compactness of X 
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EXAMPLE 1. Let Y be a metric space whose path components are not all 
singletons, i.e., a space for which C([0, 1], Y) is nontrivial. Let X be a 
noncompact metric space. We produce functions / , / i , / 2 , / 3 , • • • > m C(X, Y) 
such that {/n} converges topologically to /, yet {/n} fails to converge to / 
uniformly. Choose a continuous functon c/>:[0, 1]—» Y such that (f)(0) ^ (f)(1), 
and choose a sequence {zn} in X with no convergent subsequence. We can find 
a sequence {Àn} of positive numbers such that for each n Xn< 1/rc, and the 
collection of balls {BK[zn]:neZ+} is pairwise disjoint. Define for each neZ+ 

fn:X-^Yby 

fn(x)=< 
<t> — d(x, zn) 

A„ 
if d(x, zn)< \n 

(f)(1) otherwise 

We claim that {fn} converges topologically to the function / that is identically 
equal to 4>(1) on X Since at each x {fn(x)} is (f)(1) eventually, condition (2) of 
Lemma 1 is satisfied. On the other hand, if {(xk, fUk(xk))} converges to a point 
(x, y), then eventually xk^BKk[znk] because LsBXk[zk] is empty. Thus, y = 
(f)(1), and condition (1) holds. Since for each n, fn(zn) = (f)(0), the sequence does 
not converge uniformly to f. 

In light of Example 1 we now restrict our attention to compact X Naimpally 
[9] first observed that in this context 8P -convergence in C(X, Y) implies 
uniform convergence. Thus, if Y is also compact, then since topological con
vergence in C(X, Y) now implies 8P -convergence, it also implies uniform 
convergence. As an application of this result we present a novel proof of Dini's 
theorem: Let {/n} be a decreasing sequence of continuous real functions defined 
on a compact metric space X. If / = inf fn is a continuous real valued function, 
then {fn} converges uniformly to /. First, since {/„} converges pointwise to /, 
condition (2) of Lemma 1 is satisfied, i.e., Li/M=>/. Since each term of the 
sequence lies in the epigraph of /, the closed set 

e p i / = {(x,y):y^/(x)} 

it is clear that Ls fn <= epi /. If (JC, y) G epi / —/, choose N so large that fN(x) < y. 
There exists y* < y and A > 0 such that if w e Bk[x] then /N(w) < y*. It follows 
that Bk[x]x[y*, oo) is a neighborhood of (JC, y) that fails to meet \Jn=Nfn

 s o that 
(x,y)4 Ls fn. Hence Ls fn c /, and we have Ls fn =Lifn= f. Since each term of 
{fn} lies in the compact set {(x,y):xeX and f(x)<y <fi(x)}, the sequence 
converges uniformly to /. 

If Y is noncompact, then topological convergence in C(X, Y) need not imply 
uniform convergence. 

EXAMPLE 2. Let X = {0}U{1M: n e Z + } , viewed as a metric space subspace 
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of the line. Let feC(X,R) denote the zero function, and for each neZ+ let 

0 if x>l/n 
/»(*) = 

.n if 0 < x < l / n 

Each function above is continuous, Li fn = Ls fn = f, but {fn} fails to converge in 
the Hausdorff metric to / or even pointwise to /. 

One might guess from Example 2 that a connectivity requirement on X 
would patch things up. However, the problem is more involved: if X is a metric 
continuum and Y is complete, topological convergence in C(X, Y) does not 
force uniform convergence. 

EXAMPLE 3. Let l2 denote the Hilbert space of square summable real 
sequences and let {en : n e Z+} denote the standard orthonormal basis for the 
space. For each neZ+ define fn : [0,1] -> l2 by 

fnW 

1 
xel + {l-nx)en if 0 < x < -

n 

xex if - < x < l 
n 

The graph of fn in [0, 1] x l2 consists of the segment joining (0, en) to 
(1/rc, (l/n)ei) plus the segment joining (1/n, (lln)ex) to (1, ex). If / : [0, 1] -> l2 is 
defined by f(x) = xe1, then Li/n = Ls/n = / . However, the Hausdorff distance 
from fn to / is one for each index n; so, {fn} does not converge uniformly to /. 

If X is a metric continuum and Y is locally compact rather than complete (a 
stronger requirement [6; pg. 294]), then topological convergence in C(X, Y) 
does imply uniform convergence. Our main result says much more on this 
matter. 

THEOREM 1. Let X be a compact metric space. The following are equivalent. 
(1) X has finitely many components. 
(2) For each locally compact metric space Y the topological convergence of 

sequences of functions in C(X, Y) implies their uniform convergence. 

Proof. (1)—>(2) Let Y be a locally compact metric space. Suppose 
If, A, h, • • . I e C(X, Y) and Li /n = L s / n = / . By Naimpally's result it suffices to 
show that {fn} ôp-converges to f. To accomplish this it suffices to show that all 
but finitely many terms of {/n} lie in some common compact subset of X x Y 
Since / c X x Y is a compact set and X x Y is locally compact, there exists a 
finite subset {x l 5 . . . , xn} of X and positive numbers {kl9. . ., An} such that for 
each i the ball BK[(xh f(xt))] is compact and fa hit UT=i BK[(Xi, f(xt))]. Denote 
the set on the right hand side of the above inclusion by E, and let e = 
\ min{p[(x, /(%)), (z, y)]: xeX and (z, y ) e X x Y — E}. Since / is compact, the 
set Be[f] is closed. Since cl E is compact, and Be[f]^c\ E, the set Be[f] is also 
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compact. We claim that all but finitely many terms of {fn} lie in Be[f]. If not, 
there exists a subsequence \fnk} of {/n} and points {xk} in X such that for each k 
(xk,fnk(xk))<£B£[f]. Since X has finitely many components, we can assume 
w.l.o.g. that each xk lies in the same component C of X Since the components 
of X are compact sets, there exists À > 0 for which Bk[C] meets no other 
component of X. Let z e C be fixed. By Lemma 1 there exists a sequence {zk} 
in C convergent to z for which \imk^OD fnk{zk) = f(z). By the connectedness of 
(the graph of) fnk \ C, for each sufficiently large index k 

/ jCn{ (x ,y ) : r f (x ,y ) , / ] = e } ^ 

Since {(x, y): p[(x, y) , / ] = e} is a closed subset of Be[f], it, too, is compact. 
Hence this boundary set must contain a point of Ls/n , in contradiction to 
Ls/ n = / . This establishes the claim, whence {fn} converges uniformly to /. 

(2) —> (1) Suppose that X has infinitely many components. Let {Cn} be an 
arbitrary sequence of distinct components. By the compactness of the closed 
connected nonempty subsets of X with respect to ôdx, we can assume that {Cn} 
converges to a nonempty closed connected set C By throwing out at most one 
term from our sequence, we can assume that for each n CnC\C = $. Choose 
en<lln such that B e JC n ] f ïC = 0, and let Fn be the closed set 
X - i n t (Be[Cn]). Since X is compact, by Theorem IV-5.6 of [10] there exist 
for each positive integer n disjoint open sets Vn and Wn such that (i) Cn <= Vn 

(ii) Fn c Wn (iii) Wn U Vn = X. Let Y be a noncompact space and let {yn} be a 
sequence in Y with no convergent subsequence. For each n e Z+ let fn be the 
following continuous function: 

, , x fyi if xeWn 
fn(x)=< 

Lyn if x e Vn 

We claim Ls/ n = L i / n = / , where / is the function identically equal to y ! on X 
Again we show that the local conditions of Lemma 1 are satisfied. Condition 
(1) holds because if {(xk, fnk(xk)} is p-convergent, then eventually fnk(xk) = yu or 
else {yn} would have a convergent subsequence. To see that condition (2) holds, 
we consider two cases: (i) x e C (ii) x<£ C. If x e C then for each nfn(x) = yl, and 
v/e are done. On the other hand, if x<£ C then since limn_0O ôdx(BCn[Cn], C) = 0 
and Vn c: B e JC n ] , there exists an index N such that for each n > N the point x 
lies in Wn. Hence, for each n > N fn(x) = y^ Thus, condition (2) holds; in fact, 
{fn} converges pointwise to /. However, the convergence can't be uniform, or 
else {yn} would converge to y1. 

We now look at Naimpally's result more closely. Even if Y = R, the 
equality of the topology of uniform convergence and the Hausdorff metric 
topology on C(X, Y) does not imply that X is compact. For example, equality 
holds for any set X metrized by the discrete metric. However, the equality of 
these topologies does characterize the compact metric spaces among the metric 
spaces with finitely many components. 
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THEOREM 2. Let X be a metric space with finitely many components. Then the 
topology of uniform convergence and the Hausdorff metric topology on C(X, R) 
are equal if and only if X is compact. 

Proof. By Naimpally's theorem, one direction is immediate. Conversely, 
suppose X is noncompact. Let {zn} be a sequence in some component C of X 
with no convergent subsequence. Since the components of X are open, there 
exists for each positive integer n An<l/rc such that the balls {Bkn[zn]:neZ+} 
are pairwise disjoint, and each ball lies in C. Define f:X-*R as follows: 

f 1 - (d x (x , zn)/An) if for some n 0 < d x ( x , zn)< An 

fw=< 
CO otherwise. 

For each neZ+ define gn:BK[zn]-> R by 

, f l - (2d x (x ,z n ) /A n ) if 0<d x (x , z n )<A n / 2 
gn(x)=< 

CO if An/2<<ix(x,zn)<An 

and define /n : X —» JR by 

, / x fgn(x) if dx(x, zn)<An 

C/(x) otherwise 

We claim that for each n dp[fn, / ]<2 /n . To see this first note that if x£BK[zn], 
then p[(x,/(x)), (x,/n(x))] = 0. Now suppose X G B A J Z J . Since C is connected, 
for each A < An there exists xx G B x [z n ] for which dx(xÀ, zn) = A. Thus, both /n 

and / map BK[zn] onto [0,1]. In particular there are points w1 and w2 in the 
ball for which f(x) = fn(w1) and /„(x) = /(w2). Thus, p[(x,/(x)), (w1,/n(w1))]< 
2/n and p[(x, /n(x)), (w2, f(w2))]^2/n, and the claim is established. Now if for 
each n we choose pn such that dx(pn, zn) = An/2, the definition of gn implies 
that \fn(Pn)~f(Pn)\ = 2» s o t n a t i/nl cannot converge uniformly to /. 

We note that Theorem 2 remains true if R is replaced by any metric space Y 
for which C([0, 1], Y) is nontrivial. We mention that the compact spaces are 
also characterized among the spaces with finitely many components as follows: 
X is uniformly locally compact and each component of X is uniformly 
chainable [2]. 

The graph of a function /:X—» Y is not always the only set i n X x Y that 
one can naturally associate with the function. For example, if X is a normed 
linear space, then it is customary [11] to study the real valued convex functions 
on X by identifying each function with its epigraph in X x R, the convex set of 
points on or above its graph. Because of its importance in applied mathematics 
and nonlinear analysis, the topological convergence of epigraphs, first consi
dered by Wijsman [12] and, most recently, by Bergstrom and McLinden [5], has 
received much greater attention in the literature than has the topological 
convergence of graphs. We mention in closing that convergence in this sense 
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can be described locally as follows: at each x in X (i) whenever {xn}-> x, then 
liminfn_^œ/n(xn)>/(x) (ii) there exists {xn} convergent to x for which 
limn_>O0fn(xn)=f(x). F ° r t n e relationship between topological convergence of 
epigraphs, Hausdorff metric convergence of graphs and epigraphs, uniform 
convergence, pointwise convergence, and convergence in measure for real 
valued functions on compact spaces, the reader can consult [3] and [4]. 
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