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CONDITIONS ON NEAR-RINGS WHICH IMPLY
THAT NIL N-SUBGROUPS ARE NILPOTENT

by A. OSWALD
(Received 28th November 1975)

1. Introduction

We assume the reader to be familiar with the basic definitions of
near-rings, N-subgroups etc. as presented, for example, in (4). Throughout,
N will denote a left near-ring (i.e. a,b,cGN imply a(b + c) = ab + ac) in
which On = 0 for each n E N. We say that N is strictly semiprime if
A2 = (0) implies A = (0) where A is an N-subgroup of N. An N-subgroup A
is nilpotent if A" = (0) for some positive integer n and an element a G N is
nil if a" = 0 for some n. An element a 6 N is regular if ax = 0 or xa = 0
implies x = 0.

Theorem 1. N is strictly semiprime if and only if N has no nonzero
nilpotent N-subgroups.

Proof. We need only suppose that N is strictly semiprime and that A
is a nonzero nilpotent N-subgroup. Then for some k ^ 3, Ak = (0) whilst
Ak~l ¥• (0). Hence we can choose au a2,..., ak-i G A with a\a2. • • a*-i ^ 0.
But then (axa2... ak-2A)2C A2k'2C Ak = (0) from which we see that
ata2.. • ak-2A = (0) contrary to assumption.

Theorem 2. / / the near-ring N is distributively generated by S, or has a
regular element, then N is strictly semiprime if and only if xNx = (0) implies
x = 0.

Proof. Suppose. xNx = (0) implies x = 0 and A is an N-subgroup of N
with A2 = (0). If a e A then aNa = (0) and so a = 0 and A = (0). Con-
versely, if N is strictly semiprime it has no nilpotent N-subgroups by
Theorem 1. If N has a regular element then xNx = (0) implies (xN)2 = (0)
and thus xN = (0) from which x = 0. Alternatively, if N is distributively
generated the result follows by (5; Lemma 14).

We wish to establish some results concerning nil and nilpotent N-
subgroups analogous to those in ring theory.

2. Nilpotent and nil iV-subgroups

Theorem 3. If N is a strictly semiprime near-ring with the maximum
condition on right annihilators and if N is either distributively generated or
has a regular element then a nil N-subgroup of N is zero.
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Proof. If A is a nil AT-subgroup and a G A with a 5*0 then
Choose ta G Na with r(ta) maximal among all r(za) with za^ 0. If x G N
then xfa G Na and either xta = 0 or, for some k > 1, (xfa)* = 0 ?* (xta)k~x.
Since r(ta)C r((xta)*"'), if xta^ 0 we have r(ta) = r((xta)k~l) and in either
case (ta)x(ta) = 0. Thus taNta = (0) yielding ta = 0 which is false. It
follows that A = (0) as required.

If AT is a near-ring with the maximum condition on right ideals the
family of nilpotent ideals of N will contain a maximal element.

Ramakotaiah (6; 3.3) proved that the sum of two nilpotent ideals is
nilpotent and hence there will be a unique maximal nilpotent ideal which
we denote by W.

Theorem 4. / / N has an identity or is distributive^ generated, if W
contains all the nilpotent N-subgroups of N and if N has the maximum
condition on right ideals then a nil N-subgroup is nilpotent.

Proof. Let N = N/W. If N has an identity so also has N and if N is
distributively generated then so is N. A right annihilator in N is the image
of a right ideal in N under the canonical homomorphism of N to N and
thus AT has the maximum condition on right annihilators. By Theorem 1, N
is strictly semiprime and then by Theorem 3 each nil AT-subgroup is zero. But
if / is a nil A/-subgroup of N its image 7 is a nil N-subgroup of N and so
IC.W. Since W is nilpotent, / is nilpotent.

In the case when N is distributive so that a, b, c G N imply (a + b)c =
ac + be it is easy to see that every nilpotent N-subgroup is contained in a
nilpotent ideal and hence in W. Trivially, a distributive near-ring is dis-
tributively generated and so

Corollary. If N is distributive with the maximum condition on right
ideals then every nil N-subgroup is nilpotent.

For a near-ring N we define the distributor ideal to be the ideal
generated by all elements of N of the form (a + b)c — be — ac and denote it
by D(N). N is distributive if D(N) = (0). Inductively we now define a
distributor series {Dk(N)} by D'(JV) = D(N), Dk(N) is the ideal generated
by the elements (M + v)c — vc — uc where u,vE. Dk~\N) and c G N. Clearly
D'(N) D D2(N) D • • •D£)*:(Ar)D - • •. Then N is weakly distributive if
Dn(N) = 0 for some n.

Theorem 5. For each positive integer k, D(N)k C Dk(N).

Proof. The result is evident for k = 1. Suppose D(N)k~l C Dk~\N). If
X = {(a + b)c -be- ac: a,b,c£. N} and u G D(N)k~l we see that, working
modulo Dk(N), uX = (0). Since D(N)k~lNQD{N)k~x we have X c
r(D(N)k~l) where r(D(N)*"') is an ideal of N. Thus D(N) C KDCAT)*"1) and
thus D(N)k C Dk(N).
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Corollary 1. / / JV is weakly distributive then D(N) is nilpotent.

Combining this with the corollary to Theorem 4 and the observation
that JV/D(JV) is a distributive near-ring we have

Corollary 2. // JV is weakly distributive with the maximum condition on
right ideals every nil N-subgroup is nilpotent.

Corollary 3. / / N is a distributively generated near-ring whose additive
group is soluble and if N has the maximum condition on right ideals then
every nil N-subgroup of N is nilpotent.

Proof. Since the additive group of N is soluble it follows from (1;
4.4.5) that JV is weakly distributive. The result now follows from Corollary
2.

3. Nil subnear-rings

For rings, Herstein and Small (2) proved that the maximum condition
on both right and left annihilators was sufficient to ensure that nil subrings
were nilpotent. In (3) there is a proof of this result which can be modified
to establish the corresponding result for near-rings. Because of a corollary
that we wish to establish as a consequence of this result, we have made
more extensive modifications than are necessary.

Theorem 6. // JV has the maximum condition on both left and right
annihilators, a nil subnear-ring of N is nilpotent.

Proof. Let P be a nil subnear-ring of JV which is not nilpotent and
K = r(P') = r(P'+i) for each / s* 0. Define Ft = {x G P: x<£ K}. Certainly P,
is non-empty. If z G P\ implies zP C K then z £ P implies P'zP = (0) and
P'+1 = (0) which is false. Thus 3?, = {r(x): x e P1( xP<£ K} is non-empty so
we can choose xt G Pi with r(xO maximal in &\. Notice that Pxx <£ K. Now
suppose we have defined Pi, P 2 , . . -, P&; #*i, £?2, • • • . &k and JCI, x2, •• • ,xk

with x, G Ph r(x,) maximal in 9{ and i>, = {x G P : JCC,_, . . . xt £ K} ¥• 0.
&i = {r(x): xGPh xxi-i... x,P£ K}^0. Then Pxkxk^x ... x, C K implies
P'+1XfcXfc_i... Xi = (0) and xkxk-\... Xi G K which is false. Hence Pk+i =
{x G P : xxk.. .Xi^K}jt0. If z e. P t + ) implies zx^x^-!.. . XiP C K then for
z G P either z G Pt+i in which case zxk... X\P C K o r z ^ P t + 1 in which case
zx t . . . x , £ K . Hence P'zxk... x,P = (0) for each z G P so xk...xtP QK
which is not true. Thus ^>

t+i = {r(x): xGP*+i , xxk... x,P<£ K}^ 0 so we
can choose xk+\E.Pk+\ with r(xfc+i) maximal in 3Pk+i. Now define ak =
xkxk-i... X!. Clearly r(a{) = r(xi) C r(ak). We next observe that, for j , m > 0,
r(Xj) C r(xi+m ... Xj) and ai+m$ K, ai+mP<£ K together imply r(xJ+m . . . x,) G
<P, from which r(x,) = r(x,+m... x,). Using these results we now establish
the existence of an infinite chain of left annihilators. From the construction
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of a, we observe that a,M^0 for some u G P. Since r(an) = r(ai) it then
follows that anu =£ 0 for each n. Now consider xnan+iu for / > 0. If xnan^u $ K
then xnan+j£. K. Putting y = xn, z = xn+j... xn+l we get xnan+ju = yzyan-\U.
If yzyan-iP(£K then, since zy G P, for some integer m > 1, (zy)m =
0 T* (zy)"1"1. Now y(zy)"1"1 ̂  0 implies that (zy)"1"1 £ r(yzy) but (zy)"1"1 E r(y)
whilst y(zy)m"' = 0 implies y(zy)m~2^0 and (zy)"1"2 G r(yzy) but
(zy)m~2£ r(y). In either case, r(y)(^r(yzy) which, since r(yzy) G &>„, con-
tradicts the definition of y = xn. Thus yzyan_iP C K. Then P'yzyan-iP =
(0) implies xn+1.. . xn+lxnan+jP - (0) and thus xnan+jP = (0) contradicting
xnan+ju#. K. It follows that xnan+ju£. K. But then P'xnan+ju = (0) yields
xnan+ju = 0. Thus for j > 0, xnan+ju = 0. Next suppose / = 0. Then xnanu =
x\an-xu. If xnanii$. i£ then xnan£ K and thus x2

nG Pn so that if x\an-\P£ K
we have r(x2) G SPn and r(x2) = r(xn). For some m > 1, x" = 0, JC™"1 5^0. But
x2ac^"2 = 0 = xnjc^"2 = xJT1. Thus we have x\an-xP C J^ which implies that
anP G r(xn+,. . . xn) = r(xn) as before and hence xnanu = 0. We now see that
xn G l({aku: k S n}) whereas xnan-xu^ 0 so xn& l({aku: k^ n — 1}). This leads
to a properly ascending chain of left annihilators which contradicts the
maximum condition on left annihilators. Hence nil subnear-rings are nil-
potent.

We say that an N-subgroup of N is module essential (essential) if it has
non-zero intersection with all non-zero right ideals (N-subgroups) of N.
Furthermore, N has finite rank provided each chain A\C. A2C • • • of right
ideals of N in which for each i ^ 2 there is a non-zero N subgroup j?, C A,
with A,-, D Bt = (0) terminates finitely. Notice that finite rank is a maximum
condition on right ideals and that when N is a ring this reduces to an
equivalent definition to the usual one involving no infinite direct sums.

Lemma 1. / / N has finite rank and every module essential N-subgroup
of N is essential then every chain X,DX2D • • • of N-subgroups in which,
for each i^\, there is a non-zero N-subgroup Y, C X, with Y, D Xi+l = (0)
terminates finitely.

Proof. Construct an ascending chain of right ideals A,C A2C • • • as
follows. Choose Ai to be a right ideal of N maximal subject to A, DXi =
(0). Suppose Ak has been chosen. Choose At+1 to be a right ideal of N
maximal subject to Ak C Ak+l and Ak+t D Xk+\ = (0). For each k, Ak -+Xk is
module essential and hence essential in N. Now let yG Yk-iD(Ak-\-Xk)
with y ̂  0. Then y G Xt_, D (Ak + Xk) = (Xk-{ f~l Ak) + Xk. Since Yfc_, nX 4 =
(0) we must have Bk = Xk-i f l A ^ (0). Further Bk C Ak and Bk n Ak-i =
Ak D Xfc-i D Ak-i = (0). Since N has finite rank, the chain A i C A 2 C - -
must terminate finitely and hence so also must Xx D X2D

This leads to the following

Theorem 7. / / every module essential N-subgroup of N is essential and
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N has the maximum condition on right annihilators and finite rank then
each nil N-subgroup of N is nilpotent.

Proof. In the proof of Theorem 6 we constructed a chain of left
annihilators l{aku: k s= n}, in which the inclusions were strict at each stage,
on the assumption that P was a non-nilpotent nil subnear-ring of N. Now
put An = rl{aku: k s* n} to obtain a descending chain AtD A2D • • • of right
ideals of N. Now anu G An so anN D A,, # (0). If ant e. An+i then jcn+1 G
l(An+i) yields xn+lant = an+\t = (0). Hence with Bn = anN D An¥ (0) we have
Bn n An+i = (0). Applying Lemma 1 the chain AtD A2Z> • • • terminates fini-
tely and hence N has maximum condition on left annihilators of the form
/(An). But these are just l{aku: k 5= n}.

Since finite rank is a maximum condition we have

Corollary 1. If every module essential N-subgroup of N is essential and
N has the maximum condition on right ideals then nil subnear-rings of N
are nilpotent.

I am grateful to the referee for several comments.
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