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^-ISOMORPHISMS OF TRANSFORMATION GROUPS 
AND PROLONGATIONS 

LARRY K I N G 

1. Introduction. In [8] the notion of a reparameterizing isomorphism of 
transformation groups, henceforth called an ^-isomorphism, is introduced 
generalizing Ura's type-2 isomorphism (see [13]). We have shown [8] that an 
^-isomorphism is weaker than a transformation group isomorphism. For 
example, although ^-isomorphisms preserve pointwise almost periodicity and 
minimality they do not preserve the existence of slices [7] or almost periodicity. 
This suggests that ^-isomorphisms might be a useful classification tool in 
topological dynamics. 

An ^-isomorphism is defined in terms of continuous and bi-continuous 
families of homeomorphisms and the following important question arises. 
When is a continuous family of homeomorphisms a bicontinuous family? 

In the first part of the paper we show that if the continuous family consists 
of homeomorphisms of a locally compact metric space and if the family 
satisfies an equicontinuity condition then such a continuous family is bicon­
tinuous. Using the terminology and notation found in T8] we show that if 
(h, (fx : T —> T\x G X)) is an i?-homomorphism of the transformation group 
(X} T, 7r) onto the transformation group (F, T, p) where T is a locally compact 
metric topological group and if (ft : X —> T\t £ T), where ft is defined by 
x —> tfx, is an equicontinuous collection of functions then 

(A, (fx: T-+T\xtX)) 
is an ^-isomorphism. 

In order for ^-isomorphisms to be of use in any sort of classification theory, 
it is necessary to determine those topological dynamics properties preserved 
by ^-isomorphisms and those not preserved. Although some attempt to do 
this was made by us in [8], we were not able to identify any general family of 
properties that were ^-isomorphism invariant. 

For dynamical systems Markus [10] found that the properties of being 
unstable, completely unstable and unstable with no saddle at infinity are 
preserved by i^-isomorphisms. Now we generalize the notions of limit set, 
prolongation and prolongational limit set so that they can be used in topological 
dynamics. Our definitions are equivalent to Hajek's generalizations (see [5]). 
Limit set, prolongation and prolongational limit set are .^-isomorphism 
invariant and so any topological dynamics property characterizable in terms 
of these sets is preserved by J^-isomorphisms. In particular, the property of a 
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transformation group being proper is equivalent to the prolongational limit 
sets being empty generalizing the analogous situation occurring in dynamical 
systems and this result is very useful in the study and characterization of 
actions of locally compact semigroups with zero (see [6; 9]). 

2. Definitions, notation and a lemma. A general reference for the 
standard topological dynamics terms is [4]. To fix the notation at the outset, 
a transformation group, henceforth abbreviated tg, usually denoted as an 
ordered triple (X, T, -K) where X is a topological space, T a topological group 
and 7T a map from X X T onto X will be denoted by (X, T) unless ambiguity 
is imminent. We shall let all functions act on the right and denote an element 
t G T acting on x G X by xt. 

Let X, Y,Z be topological spaces. (fx : Y —> Z\x G X) is said to be a 
continuous family if / : I X Y-^> Z, by (x,y)^—>yfx, is continuous; 
(fx : Y —> Z\x G X) is a bicontinuous family if the maps/^ : Y —> Z are one-to-
one for x G X and the maps / : X X F —» Z by (x, y) i—» 3 ^ a n d / : X X Z —» F, 
by (x, 2) 1—» 2/r"1 are continuous. 

Let (X, T) and (F, T) be /gs. An R-homomorphism from (X, 2") into (F, 2") 
is an ordered pair (h, (fx : 2" —» T\x G X)) where ^ is a continuous map 
from X into F and (/z : J" —> T|x G X) is a continuous family of homeo-
morphisms of T such that xth = xhtfx for x G X and t G 2". An R-isomorphism 
from (X, T) 0?z/0 (F, JT) is an i^-homomorphism (h, (fx : J" —> T|x G X)) 
where h is a surjective homeomorphism and (/^|x G X) is a bicontinuous 
family of homeomorphisms of T. 

For the remainder of this section let T be a locally compact metric space 
with metric d. Also, if (O is a net in 2" then by the notation /a —> 00 we mean 
that no subnet is contained in a compact set. 

LEMMA 1. Let f : T -^ T be a homeomorphism. Let x0 G T and e > 0. 27zew 
^ere is a positive integer M such that if d(x0, y) > M then d(x0f, yf) > e for 
y G T. 

Proof. Suppose no such M exists for some eo > 0. Then there exists a 
sequence (xn) such that xn —» 00 and d(x0f,xnf) ^ e0. T is locally compact 
so that we may assume (by taking a subsequence if necessary) that xnf —> yo 
where d(xof, yo) ^ e0. But then (xw / ) /_ 1 —> 00 which is a contradiction. 

3. Continuous and bicontinuous families. Let T be a locally compact 
metric space, X a Hausdorff space and (fx : T —» T|x G X) a family of 
homeomorphisms of 7\ For t G 2" define /* : X —» T by x *-» (f̂ . 

THEOREM 1. If (fx : T —» T|x G X) is a continuous family of homeomorphisms 
of T and (ft\l G 2") is an equicontinuous collection then 

(/.I* € X) 
is bicontinuous. 
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Proof. Let x G X. We need only show (see [3, p. 261]) that if K C Wfx 

for K compact and W open subsets of T then there is a neighbourhood U oî x 
in X with Z C Wfy for all y G £7. 

If no such C7 exists then we have sequences (tn) C K, (xn) C X and 
( O C ^ — W such that 4 —> £ for some t £ K, xn-^> x and 4 = 47^- Let 
t = /o/z where £0 is some element of W. If any subsequence of (tn

f) converges 
then it follows tha t / x is not one-to-one which is a contradiction. Therefore, we 
shall assume that tn

f —> co. 
Let e > 0. We shall show that there is a positive integer N such that if 

m, n ^ N then 

( * ) d(tofxn'tm'fxn) < €. 

In fact, the triangle inequality implies that 

d(kfxni tmfxn) = d(tofxn, tnfxn) + d(tn'fXn, tm'fXm) 

~T U'V'mJxm') tmjx) T~ U,\lmJx, tmJXn). 

Continuity of the function (x, i) »—» (/*x implies that there is an integer iVi such 
that \{ n ^ Ni then d(tofXn, tn

ffXn) < e/4. Similarly there is an integer N2 such 
that if n, m ^ N2 then d(tn'fXn, tm'fXm) < e/4. Equicontinuity of (/*|/ £ T) 
implies that there is an integer iV3 such that \î m, n ^ N% then 

d ( ^ « , tfx) < e/4 and d ( ^ f tfXn) < e/4 for all t £ 7\ 

Hence(*) follows. 
We claim now that for any e > 0 there is a positive integer N' such that 

d(*o, y) > N' implies that d(t0fx, yfx) > e' and d(t0fXn, yfXn) > e' for an infinite 
number of n and for y £ T where the particular infinite subset of integers n 
depends on y. It is clear that once the claim is established, then it, the fact 
that tn' —» oo together with (*) give a contradiction and so a proof of the 
theorem. 

It remains, therefore, only to prove the claim. Let N(e) denote the positive 
integer guaranteed by Lemma 1 such that d(t0, y) > N(e) implies that 
d(t0fx, yfx) > e for y Ç T. If the claim is false then there is an e0 > 0 such that 
for each positive integer N ^ N(eo) there is yN Ç T with d(t0, yN) > N and 
d(hfXniyNfXn) S eo for all but a finite number of n. Applying Lemma 1 for 
e = 3eo we obtain a positive integer iV(3e0) with the property that if 
d(t0, t) > iV(3e0), y G T then d(t0fx, yfx) > 3e0. On the other hand, we have 

(**) d(tofx, yfx) ^ d(t0fx, t0fXn) + d(hfXn, yfxn) + d(yfXn, yfx) 

for all n and y G T. Select yN^eQ) G T such that d(t0, yN^eo)) > N('Se0) and 
d(tofxn> yN(deo)fxn) = ô for all but a finite number of n. Continuity of 
f : X X T —> T and (**) imply that d(t0fX} yN(z**)fx) < 3e0 which is a con­
tradiction. 
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If T is a locally compact topological space let K = T\J {p), p d T be its 
one-point compactification. If / : T —> T is a homeomorphism of T onto 7" 
then there is a unique homeomorphism f : K -+ K which extends / (by 
fixing £). 

The following theorem is found in [8]. We include its statement here for 
completeness. 

THEOREM 2. Let {fx : T —> T\x £ X) be a continuous family of homeo-
morphisms of T onto T. Then {fx\x G X) is bicontinuous if and only if 
{-fx : K —> K\x £ X) is a continuous family. 

THEOREM 3. Let f : X X T —» T be continuous where X is a Hausdorff space 
and T is a locally compact metric space. If the maps fx: T —> T defined by 
11—» {x, t)f are homeomorphism s of T for x £ X and if {ft : X —> T\t £ T) is 
an equicontinuous collection, then there is a unique continuous extension 
f : X X K —> K of f such that the maps fx : K —» K by 11—> {x, i)f are homeo-
morphisms of K for each x. 

Proof. By hypothesis {fx : T —» T\x G J ) is a continuous family of homeo-
morphisms of T and {ft\t 6 T) has the equicontinuity condition called for in 
Theorem 1. It follows that {fx\x G X) is a bicontinuous family. Theorem 2 
applies so that {fx : K —•> K\x G X) is a continuous family and hence 
f : X X K —» X is the continuous extension of/. 

We remark that an important application of Theorem 3 occurs when 
T = Rw, Euclidean w-space, and K = 5W, the w-sphere. 

4. Prolongations in a tg (X, r ) . Henceforth T is a locally compact topo­
logical group, X a Hausdorff space and {X, T) a tg. We define 

L{x) = {y Ç X|x/a —> 3/ for some net {ta) C 7 with ta —» 00 } ; 
Z>(x) = {3̂  G X\xJa —» y for some net (xa) C -X" with xa —» x and some net 

(/a) C T ) ; 
J(x) = {̂  G X\xata —> y for some net (xa) C X with xa —» x and some net 

(O C T with ^ -^ 00 }. 
L{x) is called the limit set of x. We observe that for T = R or Z, L{x) is 

equal to the union of the omega and alpha limit sets as defined in [2, 2.2.5]. 
D{x) is called the prolongation of x and J{x) is called the prolongational limit 
set of x. The definitions of these sets are equivalent to those found in [5] and 
so we remark that L{x) D{x), J{x) are closed T-invariant sets. 

It is known that these sets are preserved under tg isomorphisms. If {X, T) 
is a dynamical system (i.e., T = R) then it is known that these sets are 
preserved by ^-isomorphisms (see [13] and [10]). We show now that these 
distinguished sets are preserved by .R-isomorphisms in any tg {X, T). 

THEOREM 4. Let {h, {fx : T —> T\x G X)) be an R-isomorphism from tg 
{X, T) onto {Y,T). Then for x ^ I , 
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(i) L(x)h = L(xh); 
(ii) D(x)h = D(xh); 
(iii) J(x)h = J(xh). 

Proof, (i) Suppose y G L(x). Then there is a net (ta) C ^ with ta —> oo and 
ff^a -* J- It follows that x£a/z. = xhtafx—>yh so that 3//̂  G L(xh) since / x is a 
homeomorphism of 7\ For the other inclusion we observe that if (h, (fx\x G X)) 
is an ^-isomorphism then (A-1, ( ^ : r —> r | y G F)) where ^ is a homeo­
morphism defined by t^-^tfyh-i~

l is an ^-isomorphism from (Y,T) onto 
(X, T). Hence if y G L(xh), by the first inclusion ^ _ 1 G L(xhh~l) = L(x). 
Therefore it follows that y G L(x)h. 

For (ii), suppose y G D(x). Then there exist nets (xa) C X, (O C T with 
xa —• x and xata —» 3/. This implies that xa/a/£ = xaht(JXa —* yh. Since xa/z —> xA 
we conclude that yh G D(xh). The other inclusion follows as in the proof of (i) 
using h~x. 

To prove (iii), let y G J(x). We shall show that yh G J(xh). There are nets 
(xa) C X, (ta) C r with xa —>x, ta —> oo and xa4 —> 3/. Therefore (xa/a)^ = 
xahtajxa ~^ yh a n d xa& —» xA. We show that tafXa —» 00 . If not, there is a subnet 
°f (fe/xo) which converges to some / G T. For notation purposes, assume 
tajxa ~~* t- Hence (xa, tafXa) —» (x, /) and since (/* : T —> T|x G X) is a bicon-
tinuous family it follows that ta —» ^ _ 1 G 7" which gives a contradiction. 

As in (i) and (ii) above, the other inclusion follows by using the ^-iso­
morphism Qi~1, ($v\y G Y)) and thus completes the proof of the theorem. 

It follows now that any tg property that can be characterized in terms of 
D(x), L(x) and/or J(x) is invariant under ^-isomorphisms. The remainder 
of this paper deals with just such properties. 

5. Cartan and proper tgs. The notion of slice [7; 11; 12] is important in 
the study of tgs (X, T) since existence of slices gives some sort of local product 
structure on X in terms of T or some factor group and X/T. Palais' study of 
Cartan and proper tgs [11] arose precisely because such tgs possessed slices at 
each point (if X is completely regular and G is a Lie group) and so generalized 
(from the slice point of view at least) tgs (X, T) where T is a compact Lie 
group. 

In this section, for T an arbitrary locally compact topological group and X 
a first countable locally compact Hausdorff space we characterize the proper­
ties proper and Cartan in terms of J(x). For dynamical systems such charac­
terizations are known [2; 13]. In particular a Cartan tg (proper tg) for dyna­
mical systems is usually called wandering (dispersive). A dynamical system 
is wandering (dispersive) if x G J(x) (J(x) = 0) for all x in X. In dynamical 
systems theory such tgs are studied because of their parallelizability properties 
(see for example [13]). 

The importance of this characterization for arbitrary tgs lies with the fact 
that it bridges the work of Palais [11] with that of other mathematicians. For 
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example, parts of Theorem 2 and its Corollary in [10] are a special case of 
Palais' more general Proposition 1.1.4, Theorem 1.2.9 in [11]. Moreover the 
fiber bundle structure of unstable dynamical systems discussed by Markus [10] 
is not unexpected since i7-slices exist at each point of such tgs where H = {1} 
and Palais [12] discusses at some length (but not with differentiability con­
siderations) the fiber bundle structure of tgs which possess slices. 

A tg (X, T) is Cartan if for each x f l there is a neighbourhood [/containing 
x such that the closure of {t G T\ Ut P\ U ^ 0} is compact; (X, T) is proper 
if for any x, y G X there are neighbourhoods U of x and V of y such that the 
closure of {/ G T\Ut C\ V ^ 0} is compact. 

THEOREM 5. Let (X, T) be a tg where X is a locally compact first countable 
space and T is a locally compact topological group. Then 

(i) (X, T) is a Cartan tg if and only if x G J(x) for each x G X. 
(ii) (X, T) is proper if and only if J(x) = 0 for all x G X. 

Proof, (i) and (ii) follow easily from the definitions and the fact that if 
x, y G X and there do not exist neighbourhoods U of x and V of y such that 
the closure of {t G T\ Ut P\ V 9e 0} is compact, then y G J(x). To prove this 
fact, let { Un) be a base for the topology at x and { Vn) a base at y. Let N be 
any fixed compact neighbourhood of the identity of T. Select X\ G Ui, 3>i G V\ 
and h G T such that Xih = ylm Find x2 G U2, yi G V2, t2 G T such that 
x2t2 = 3>2 and t2 G Nh. We continue inductively and obtain sequences 
(xn) C X, (yn) C X, (4) C T with —> 3> with x„ G £/„, 
% G Vn and 4 G Uj<nNtj. We claim that /w —> 00. If not, then we may 
assume tn—> t for some / G T. Select a symmetric neighbourhood V of the 
identity of T with F F C iV". There is a positive integer m such that if n ^ m 
then tn G F£. Consequently / G F4 for n ^ m. Let p and g be integers greater 
than m with p > q. By construction 

But ^ G F/, / G Vtq and so tp G Wtq C. Ntq which is a contradiction. 

We remark in closing that there are many topological dynamics properties 
that may be described in terms of the sets L(x), D(x) and J(x) in a natural 
way and so invariant under ^-isomorphisms. For example, a tg (X, T) is 
minimal if and only if L(x) — X for all x in X or (X, T) is transitive; (X, T) 
is ergodic if and only if D(x) — X for all x in X. 

Ahmad [1] introduced the notion of characteristic 0 for dynamical systems 
which generalizes naturally to tgs (X, T) in terms of the set D(x). (X, T) is of 
characteristic 0 if and only if the closure of xT = D(x) for all x in X. This 
property seems to embody the difference between Cartan and proper tgs and 
ergodic and minimal tgs. Specifically one can show that if X is locally compact 
and first countable then a Cartan tg (X, T) is proper if and only if it has 
characteristic 0. Similarly it can be shown that (X, T) is ergodic and has 
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characteristic 0 if and only if it is minimal. These observations seem to indicate 
that further investigations of tgs having characteristic 0 would be most 
interesting. 
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