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We perform a theoretical study to understand vortex-acoustic lock-in in the presence of
an additive Gaussian white noise using a lower-order model. The acoustic field is realized
as an external harmonic excitation. Frequency, harmonic excitation and noise amplitudes
are varied over ranges encountered in practical and lab-scale combustors. Probability
density functions (PDFs) for shedding time periods and phase instants are obtained in
the Fokker–Planck framework. Unlike the general scenario, where stochastic bifurcation
is identified by a qualitative change in the stationary PDFs, in this case, stochastic lock-in
is identified by a qualitative change in the spectrum of the transition probability matrix.
The effect of the noise is to reduce the extent of lock-in while preserving the underlying
deterministic dynamical features. Although various orders of lock-in are identified, 1 : 1
stochastic lock-in with the excitation frequency close to the natural vortex shedding
frequency is found to be the most favourable condition for combustion instability to occur.
We show that lock-in can be accompanied by both instability and amplitude suppression.
Stochastic resonance is also observed; however, its contribution to instability is marginal.

Key words: low-dimensional models, vortex shedding, hydrodynamic noise

1. Introduction

Combustion instability is a plaguing problem for the operation of land aeroderivative gas
turbines and rocket engines. It is characterized by large-amplitude pressure fluctuations
sustained by positive feedback from the unsteady flame. Instability occurs frequently
in high thermal power density combustors, such as in rockets (Culick 2006) and lean
premixed pre-vaporized gas turbine combustors, which are designed for low pollutant
emissions (Zinn & Lieuwen 2006). The complex interactions among combustor acoustic
field, unsteady hydrodynamics and the associated flame dynamics lead to instability.
Prediction of the occurrence of instability is challenging, as the mechanism associated
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with flame–acoustic coupling is specific to the geometry of the burner and the mode
of operation (for example, premixed, partially premixed). However, some common
mechanisms are identified (Polifke & Lawn 2007) through which acoustic waves perturb
the flame: flame surface area, equivalence ratio, hydrodynamic fluctuations, to mention a
few.

Modern combustors/afterburners have a swirler, a bluff body, or their combination
to anchor flame. These burner geometries cause vortex shedding, which perturbs the
flame strongly (Schadow & Gutmark 1992) and in many cases becomes the dominant
mechanism causing instability (Zukoski 1985; Poinsot et al. 1987). One of the important
and exciting features occurring in such vortex shedding combustors is the phenomenon
of vortex-acoustic lock-in. In general, the frequencies of vortex shedding and acoustic
field of the combustor are different. During instability (occurrence of large-amplitude
oscillations), it was found experimentally (Poinsot et al. 1987; Chakravarthy, Sivakumar
& Shreenivasan 2007; Singh & Mariappan 2021) that vortex shedding and acoustic
oscillations occur at a common frequency. This common frequency is close to the natural
duct acoustic frequency. Therefore, the study of lock-in is an interesting academic problem
and has an essential practical relevance.

In the last decade, pioneering experimental investigations to study forced lock-in in
both reacting (Li & Juniper 2013a; Emerson & Lieuwen 2015; Guan et al. 2019a)
and non-reacting (Li & Juniper 2013b; Guan et al. 2019b) cases were performed. The
experiments showed that the heat release rate response to external velocity excitations
drops when the excitation parameters (such as frequency) are near or in the lock-in region.
Therefore, by tuning the external excitation correctly during combustion instability, it is
possible to achieve instability control, also termed asynchronous quenching (Kashinath,
Li & Juniper 2018; Guan et al. 2019b; Mondal, Pawar & Sujith 2019).

Some investigations in the above two paragraphs (Poinsot et al. 1987; Chakravarthy et al.
2007; Singh & Mariappan 2021) indicate that lock-in is accompanied by high-amplitude
instability, while others (Guan et al. 2019b; Mondal et al. 2019) show that the amplitudes
are suppressed during lock-in. Therefore, the exact role of lock-in during instability is
unclear. The present work provides a clarification, where the response (measured in terms
of circulation and therefore the unsteady heat release rate transported by the vortex) of the
vortex can be higher (instability) or lower (amplitude suppression) than its unperturbed
value, depending on the phase of the excitation velocity at the instant of shedding (§ 5.1).

Lower-order models played a crucial role in understanding lock-in in thermoacoustic
systems. Two classes of models were used exhaustively: Van der Pol/Duffing class
oscillators and integrate-and-fire models. The dynamics of the former class of models
is continuous. It reproduces the transition features and bifurcations qualitatively from the
unlocked to locked-in states observed in academic combustors (Li & Juniper 2013a). On
the other hand, the latter class of models are discontinuous in time. The model proposed
by Matveev & Culick (2003) to describe the evolution and shedding of a vortex behind
the bluff body falls into this class. It is a phenomenological model, where the evolution of
circulation (Γ ) of the vortex is governed by the local flow velocity. The vortex grows as the
circulation (from zero) increases with time. Shedding occurs when Γ reaches a threshold
value for the first time. Immediately after shedding, Γ is reset to zero, and the process
repeats for the next vortex. The reset represents the discontinuity in the model. Despite
its simplicity, the model is found to reproduce the experimentally observed lock-in in a
variety of geometrical configurations (Britto & Mariappan 2019).

Furthermore, recently our group has performed theoretical investigations on the
Matveev & Culick (2003) model under forced excitation. In particular: (i) we were able
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Stochastic bifurcation and resonance

to extract the regions of lock-in analytically, and spotted the bifurcations (saddle-node)
leading to it using cobweb diagrams (Britto & Mariappan 2019); (ii) we extended the
investigation to two (multiple) commensurate frequency excitations, where occurrence
of a change in the order of lock-in, and the existence of a bistable region within the
lock-in boundary, are identified (Britto & Mariappan 2021). Some of these predictions,
especially (ii), are to be explored with experiments. In experiments, background noise
is inevitable. Past investigations indicate that noise masks the dynamical features and can
lead to new non-trivial phenomena such as stochastic resonance. Therefore, it is imperative
to re-perform the theoretical analysis in the presence of noise, and identify its effect on
lock-in characteristics and overall system dynamics. This exercise allows us to make our
theoretical work relevant to practical noisy combustors. A brief review of the past work to
study the effects of noise in thermoacoustics follows.

Noise can do the following to the system: (i) mask the dynamical features, such
as the reduction or the suppression of the bistable region (Jegadeesan & Sujith 2013;
Gopalakrishnan & Sujith 2015); (ii) make the system move from one stable state to
another in a bistable region (Waugh & Juniper 2011b; Faure-Beaulieu et al. 2021); (iii)
produce non-trivial phenomena such as stochastic resonance, where the excitation signal
is amplified in the system response for an optimum non-zero noise level (Kabiraj et al.
2015). Inherently, flow in practical combustors is noisy (due to turbulence). This fact
was exploited to determine system parameters during both the limit cycle (Noiray &
Schuermans 2013a; Noiray & Denisov 2017) and stable states (Lee et al. 2021).

Theoretical investigations take the route of solving either the time domain stochastic
differential equations followed by an ensemble (or time) averaging of the unknown (Waugh
& Juniper 2011b), or the corresponding Fokker–Planck equation to obtain the evolution
of the dependent variable’s probability density function (PDF) (Noiray & Schuermans
2013a; Gopalakrishnan & Sujith 2015). Stochastic bifurcations can be identified using
both frameworks. In the former framework, a change in the sign of the largest Lyapunov
exponent is associated with a dynamic stochastic bifurcation (termed D-bifurcation).
On the other hand, in the latter framework, a qualitative change (such as a change
in the number of maxima) in the stationary (time t → ∞) PDF of the observable is
associated with a phenomenological stochastic bifurcation (termed P-bifurcation). Based
on the bifurcation type (D or P), the critical values of the parameters where bifurcation
occurs vary (Arnold 1995). P-stochastic bifurcations are less preferred, as the bifurcation
characteristics are based on a static measure, stationary PDF of the observables (Arnold
1995). Our study shows no qualitative change in the stationary PDF of vortex shedding
time periods during the occurrence of stochastic lock-in (termed s-lock-in throughout this
paper). S-lock-in is identified by the eigenvalues of the transition probability matrix, which
contains the complete information about the stochastic evolution of the system.

Given the above picture on the effects of noise and the importance of (vortex-acoustic)
lock-in in thermoacoustic systems, the present paper is focused on studying two aspects of
the Matveev & Culick (2003) model subjected to external harmonic excitation and noise:
stochastic lock-in and resonance. The former is the counterpart of the deterministic case
examined by our group (Britto & Mariappan 2019, 2021). The latter focus is to explore
noise-induced nonlinear effects, which have importance on thermoacoustic oscillations
(Kabiraj et al. 2015). These focuses are expected to make the model prediction more
relevant to practical noisy combustors.

The rest of the paper is arranged as follows. Section 2 discusses the governing equation
of the Matveev & Culick (2003) model with an additional Gaussian white noise term.
Random shedding of vortices is shown to follow a Markov process. Determination of the
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1 + u, outside

the bounday layer
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Figure 1. Schematic of a vortex formation at the separation edge of a bluff body, described by Matveev &
Culick (2003). Other geometries where this model applies are discussed in Britto & Mariappan (2019). 1 + u(t)
is the instantaneous total velocity at the separation edge, outside the boundary layer.

associated time period is posed as a first passage time problem. The transition probability
matrix T , which determines both s-lock-in and stochastic resonance, is then obtained.
Results and discussions span §§ 3–5. In § 3, we identity s-lock-in as a qualitative change
in the spectrum of T . Various orders of lock-in are also discussed. The next section (§ 4)
focuses the noise-induced effects on the system. In particular, stochastic resonance and its
mechanism are identified. The relevance of stochastic lock-in and resonance in the context
of thermoacoustic interaction is discussed in § 5. The last section, § 6, concludes with the
salient features and message of the paper.

2. Formulation and governing equations

A schematic showing the formation of a vortex at a sharp separation edge of a bluff body is
shown in figure 1. This process is described by the phenomenological model of Matveev &
Culick (2003). The model is also valid for other two-dimensional geometries having sharp
edges. The non-dimensional evolution equation (for details, refer to Britto & Mariappan
2019) for the circulation Γ of the mth vortex, along with the condition for its shedding, is

dΓ
dt

= [1 + u(t)]2

2
+ An η(t), u(t) = A sin(ωt + φ0), ω = 2πf , (2.1)

Γsep = 1 + u(t)
2

, (2.2)

Γ (t = tm−1) = 0, initial condition, (2.3)

tm = inf[t > tm−1 : Γ (t) = Γsep(t)], reset condition, (2.4)

where inf stands for the minimum of the set, and tm−1 and tm represent time instants
corresponding to (m − 1)th and mth vortex shedding, respectively. At the beginning
(t = tm−1) of the vortex formation, Γ is zero (see (2.3)). It grows with time according to
(2.1). Velocity at the separation edge 1 + u (1 and u represent steady-state and fluctuating
velocity, respectively) serves as the source for Γ . Vortex circulation grows until Γ = Γsep
and the vortex is shed at tm (see (2.4)). Here, Γsep is the critical circulation, which evolves
according to (2.2). External harmonic velocity excitation u = A sin(ωt + φ0) is imposed
with A, ω, f and φ0 representing the amplitude, circular frequency, oscillation frequency
and initial phase of the excitation, respectively. It is considered as a surrogate of the
acoustic field in a thermoacoustic system.

The model described above has its origin in the two-dimensional potential (inviscid)
flow computation for vortex shedding performed by Clements (1973). That the rate of
circulation accumulation equals half of the square of the velocity outside the boundary
layer at the separation edge is the main assumption of the computation (Clements 1973),
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Stochastic bifurcation and resonance

which is represented as (2.1). His computational predictions on shedding Strouhal number
and mean flow velocity outside the boundary layer compared well with the experiments.
Vortex shedding and subsequent convection occur as the flow develops in his computation.
Since the present work involves a lower-order model, apart from (2.1), a condition for
vortex separation is required. Here, Γsep is obtained by integrating (2.1) over one shedding
time period in the absence of external (acoustic) excitation (u = 0). In Clements (1973),
the unforced vortex shedding frequency is the output, while it serves as an input to the
current model. Matveev & Culick (2003) made a quasi-steady extension of the model
by including external excitation u in the steady-state velocity. Despite the simplicity,
the model reproduces qualitatively the lock-in boundary reported in experiments (refer
to figures 14 and 15 of Britto & Mariappan 2019). It also shows the asymmetry in the
boundary observed in experiments (Li & Juniper 2013a). Given the above, the lower model
(2.1)–(2.4) captures the essential physics of vortex formation/shedding and reproduces
qualitatively lock-in boundaries observed in experiments.

An additive Gaussian white noise (η) having autocorrelation
∫
η(t) η(t′) = δ(t − t′)

(where δ(t) is the Dirac delta function) is added to (2.1), where An is the noise amplitude.
Zare, Jovanović & Georgiou (2017) have shown the possibility of modelling turbulence
by an additive zero-mean coloured-noise in the Navier–Stokes equation to recover the
second-order turbulence statistics. This motivates us to choose the functional form of
stochastic forcing in (2.1). Alternatively, the effect of turbulence can be incorporated as
an additional stochastic term in the velocity fluctuations. This leads to the appearance
of stochastic terms in both vortex evolution (2.1) and the separation condition (2.2),
complicating the analysis significantly. Since the paper aims to describe the effects of
noise over lock-in and thermoacoustic instability qualitatively, we choose the former form
of modelling.

Although Gaussian white noise η does not represent the turbulent spectrum of
combustors, it is used as a simple representative model in this paper that explains many
noise-induced phenomena in thermoacoustic experiments (Noiray & Schuermans 2013b;
Gopalakrishnan & Sujith 2015). The above model (2.1)–(2.4) falls into the category of
stochastic integrate-and-fire models, studied extensively in the context of neuron firings
(Plesser & Tanaka 1997; Plesser & Geisel 1999; Tateno & Jimbo 2000).

The addition of noise in (2.1) renders Γ and shedding time instances to be stochastic
variables. Without loss of generality, consider that the zeroth vortex is shed at time t = 0
corresponding to the excitation phase φ0. The next (first) vortex shedding occurs at t = t1,
which corresponds to the stimulus phase φ1 = (ωt1 + φ0) modulo 2π. Therefore, in the
excitation signal u(t), sin(ω(t − t1)+ φ1) = sin(ωt + φ0) for t > t1. This implies that the
evolution process of the second vortex can be written using (2.1) with the elapsed time
t − t1, measured from the shedding of the first vortex at phase φ1. This shift of the origin of
time and phase allows us to consider the evolution and shedding of vortices as a dynamical
chain, where an explicit appearance of the time interval τm between successive vortex
shedding events arises. The statistics of τm, rather than tm, tm−1, characterizes directly the
dynamical features of this stochastic system.

Considering the elapsed time t′ = t − tm−1 since the shedding of the (m − 1)th vortex,
the initial and reset conditions become Γ (t′ = 0) = 0 and τm = inf[t′ > 0 : Γ (t′) =
Γsep(t′)], respectively. Further, successive values of τm and φm are connected through the
relations tm = tm−1 + τm and φm = (ωτm + φm−1) modulo 2π, respectively. These vortex
shedding events can be connected to obtain an output spike train f (t), where the spikes
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occur at the instants of vortex shedding, tm:

f (t) =
∞∑

m=0

δ(t − tm) =
∞∑

m=0

δ

(
t −

m∑
k=0

τk

)
. (2.5)

The statistics of f (t) in relation to the excitation signal u(t) allow us to study the stochastic
lock-in of the vortex shedding process. In f (t), τk is determined by the individual (kth)
vortex formation and shedding process. Note that circulation Γ is reset to zero after each
shedding event. Therefore, the evolution of the kth vortex does not remember the evolution
of the (k − 1)th or earlier vortices. However, the shedding of the kth vortex is dependent
only on the phase φk−1 of the (k − 1)th (previous) shedding instant, through Γsep(t).
Therefore, the spike train follows a Markov process and is in general non-stationary due to
the dependence of τk on φk−1.

Vortex shedding behind a bluff body is caused by a spatial pocket of absolute instability
(Pier 2002). Therefore, the shed vortices do induce perturbations at the (upstream)
separation location, affecting subsequent vortices’ shedding. The lower-order model (2.1)
does not consider this memory effect. However, experimental measurements (refer to last
three columns of Table VI in Fage & Johansen 1927) indicate that circulation accumulation
follows (2.1) closely, suggesting the validity of the model’s functional form. Since the shed
vortex alters the velocity outside the boundary layer at the separation location, a simple
way to include the memory effect of vortex shedding is by including a parameter b in (2.1),
such that dΓ/dt = b(1 + u)2/2 + Anη. This b can be extracted from experiments (e.g.
Fage & Johansen 1927). A passive constant b does not alter the qualitative conclusions of
the paper and is therefore chosen to be 1.

The above arguments allow us to study the stochastic vortex shedding process in two
steps. (1) Solve a Fokker–Planck equation corresponding to (2.1) in t′ to determine the
PDF of τm in an mth vortex shedding process, given the phase of the previous shedding
φm−1. (2) Assemble the shedding instants to obtain the spike train f (t) to determine its
statistics in relation to lock-in. This breakup procedure is similar to that performed by
Plesser & Geisel (1999).

2.1. Step 1: determination of conditional vortex shedding time period distribution
In step 1, we determine the PDF of the vortex shedding time period τ given that the
phase of the previous shedding is φ. Note that the subscript associated with the vortex
number is dropped for brevity. Time evolution of Γ is described by the time evolution of
its PDF 𝓅(Γ, t′ |Γ0, t0). It is read as the probability that the vortex circulation takes a value
between Γ and Γ + dΓ at a time t′, given the initial state of the circulation Γ0 = 0 at time
t′ = t′0 = 0. Corresponding to (2.1)–(2.4), the Fokker–Planck equation (2.6) governing the
time evolution of 𝓅, along with its initial and boundary conditions, is as follows:

∂𝓅
∂t′

+ (1 + u)2

2
∂𝓅
∂Γ

= A2
n

2
∂2𝓅
∂Γ 2 , (2.6)

𝓅(Γ, t′ = 0) = δ(Γ ), initial condition, (2.7)

𝓅(Γ = Γsep, t′) = 0, boundary condition, (2.8)

𝓅(Γ → −∞, t′) = 0, boundary condition, (2.9)

Γsep = 1 + u(t′)
2

= 1 + A sin(ωt′ + φ)

2
. (2.10)
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The above Fokker–Planck equation is first-order in t′ and second-order in Γ , requiring
one initial and two boundary conditions in t′ and Γ , respectively. Resetting Γ to zero just
after the previous shedding is a sure event. Therefore, the initial condition (2.7) for 𝓅 is a δ
function placed at the origin, i.e. Γ0 = 0. On the other hand, when Γ evolves and reaches
the threshold Γsep, the vortex is shed, completing the cycle, and the next cycle begins.
Therefore, Γ does not take a value equal to Γsep. This translates to 𝓅 = 0 at Γ = Γsep,
forming an absorbing boundary condition (2.8). Since 𝓅 is a PDF, it is bounded, which
constraints it to vanish at −∞ (see (2.9)).

In the pursuit of solving (2.6) numerically, the boundary condition (2.8) poses a
difficulty, as it is time-varying due to the presence of Γsep. This is dealt with by a
transformation Γ̂ = Γ/Γsep(t′), t̂ = t′. The transformation adds another time-dependent
convective term and makes the constant diffusion term of (2.6) time-dependent. The
transformed equation set becomes

∂𝓅
∂ t̂

+
(

1 + u − Γ̂

1 + u
du
dt̂

)
∂𝓅

∂Γ̂
= 2

(
An

1 + u

)2
∂2𝓅

∂Γ̂ 2
, u = A sin(ωt̂ + φ), (2.11)

𝓅(Γ̂, t̂ = 0) = 2
|1 + A sin(φ)| δ(Γ̂ ), initial condition, (2.12)

𝓅(Γ̂ = 1, t̂) = 0, boundary condition, (2.13)

𝓅(Γ̂ → −∞, t̂) = 0, boundary condition. (2.14)

The additional convective term (Γ̂ (1 + u))(du/dt̂) in (2.11) appears due to the
time-dependent variation of the size of Γ domain. For the same reason, the (effective)
diffusion coefficient (right-hand-side term) becomes time-varying. Solving (2.11) gives
the stochastic dynamics of the vortex growth process. However, we require a PDF for the
shedding time interval τ . In stochastic integrate-and-fire models, τ is termed the interspike
time interval, where the spike refers to the shedding instants (Plesser & Tanaka 1997). The
above is equivalent to finding the first passage conditional probability density distribution
(ρ) in τ for the shedding instance, such that Γ reaches Γsep for the first time, given
the initial value Γ = 0 at phase φ. Therefore, the conditional PDF ρ(τ |φ) reads as the
probability that shedding occurs in the time interval τ to τ + dτ , given that the previous
shedding occurred at the phase φ.

As said before, during the evolution process of the vortex, Γ takes a value in the interval
(−∞, Γsep). Therefore, the total probability – also termed the survival probability S – that

shedding of the vortex does not occur is given by S = ∫ Γsep
−∞ 𝓅 dΓ . Consequently, the total

probability (cumulative probability distribution) that shedding of the vortex occurs is 1 −
S. The corresponding time instance is t′ = τ . One can now relate ρ as the PDF associated
with the cumulative probability distribution 1 − S. Therefore, ρ equals the derivative of
1 − S with respect to t′ at the shedding time t′ = τ :

ρ(τ |φ) = d
dt′
(1 − S)|t′=τ = − d

dt′

(∫ Γsep(t′)

−∞
𝓅 dΓ

)
t′=τ

(2.15)

= − A2
n

1 + A sin(ωτ + φ)

∂𝓅

∂Γ̂

∣∣∣∣
Γ̂=1

. (2.16)
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Note that (2.16) is obtained by applying the Leibniz rule, followed by the application of
change of variables and boundary conditions to the right-hand-side term of (2.15). Since 𝓅
is a PDF, we assume it to be well-behaved. Therefore, not only does 𝓅 → 0 as Γ̂ → −∞,
but also ∂𝓅/∂Γ̂ , a condition used in obtaining (2.16).

Equation (2.11) is solved numerically by employing the finite difference technique in
the t̂ and Γ̂ domains. The second-order Crank–Nicolson scheme is used to march in time.
Second-order central difference and first-order up-winding schemes are used for diffusion
and convective terms, respectively. The lower limit of the Γ̂ domain is set at −15, while
the upper limit in t̂ is kept at 4. Equally spaced discretized points for the Γ̂ and t̂ domains
are chosen in the ranges 3001–6001 and 601–1201, respectively. Convergence in ρ with
less than 5 % variation is achieved by choosing the above numerical parameters.

Figure 2 shows the variation of ρ(τ |φ) for four initial stimulus phases, φ = 0, π/2,
π, 3π/2. Panels in each row (from the top) correspond to harmonic excitation amplitudes
A = 0.4, 0.2 and 0, while panels in each column (from the left) represent noise amplitudes
An = 0.05, 0.2 and 0.4. All the PDFs show a set of exponentially decaying functions.
The peaks are located away from the natural vortex shedding time period (τ = 1) at the
combination of the highest harmonic excitation amplitude and the lowest noise amplitude
(figure 2(a), A = 0.4, An = 0.05). The peaks deteriorate as one decreases A (along the
columns) or increases An (along the rows). The first row panels show a strong dependence
of ρ on the initial stimulus phase φ, showing the non-stationary behaviour of the shedding
process due to the harmonic excitation. As A is reduced, all ρ corresponding to various φ
approach each other. In fact, at A = 0 (last row), the dependency on φ vanishes completely,
making the process stationary. An analytical solution for ρ at A = 0 is available from
Molini et al. (2011):

ρ(τ) = 1√
8π Anτ 3/2

exp
[
−(τ − 1)2

8A2
nτ

]
. (2.17)

The above expression is plotted as grey points in figures 2(g–i). At the lowest noise
An = 0.05 (figure 2g), ρ is centred close to 1, indicating that vortex shedding occurs at
its deterministic natural frequency (1 in our case). As An increases (figures 2g–i), the peak
drops (as expected), and shifts to lower values of τ (less than 1). The physical reasoning
for the latter is as follows. The formal solution of (2.1) is

Γ (τ) =
∫ τ∗=τ

τ∗=0

[1 + u(τ ∗)]2

2
dτ ∗ + An

∫ τ∗=τ

τ∗=0
η(τ ∗) dτ ∗. (2.18)

This solution is used to construct an expression for the ensemble average (angular brackets)
of Γ 2:

〈Γ 2(τ )〉 =
(∫ τ∗=τ

τ∗=0

[1 + u(τ ∗)]2

2
dτ ∗

)2

+ A2
nτ. (2.19)

The first and second terms on the right-hand side represent the contributions of
deterministic (harmonic) and stochastic excitations, respectively. In particular, noise
strictly increases the value of 〈Γ 2〉, thereby allowing the condition Γ = Γsep for vortex
shedding to be reached more quickly (in the sense of ensemble average) than its
deterministic counterpart (when An = 0). Therefore, the noise tends to push the system
to take lower shedding periods. The above effect leads to the reasoning of asymmetric
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Figure 2. Variation of conditional PDF for vortex shedding time interval ρ(τ |φ) at four stimulus phases, φ =
0, π/2, π, 3π/2, excited by harmonic excitations of amplitudes (a–c) A = 0.4, (d–f ), A = 0.2, and (g–i), A = 0.
Three noise amplitudes are considered: (a,d,g) An = 0.05, (b,e,h) An = 0.2, and (c, f ,i) An = 0.4. Excitation
frequency is kept at f = 0.8. The grey lines in (g–i) show the analytical results from Molini et al. (2011), which
are valid for A = 0.

reduction in the lock-in region due to noise (see § 3.1). Expression (2.19) is valid and
therefore the reasoning for the Gaussian white noise only.

2.2. Step 2: assembly of the vortex shedding events
We now proceed to the next step, where we assemble the shedding events to obtain the
spike train f (t). As said before, ρ(τ |φ) gives the PDF of the vortex shedding time period,
given the phase of the last shedding φ. The phase of the current shedding is therefore
ψ = (ωτ + φ) modulo 2π. At this point, it is convenient to move the shedding period
distribution quantified in terms of time τ to phase ψ . This allows us to wrap the sample
space from [0,∞) to [0, 2π], a move performed in the deterministic case too (Britto &
Mariappan 2019, 2021). The PDF 𝒯(ψ |φ) in terms of ψ reads

𝒯(ψ |φ) =
∫ ∞

0
ρ(τ |φ) δ(ψ − (ωτ + φ) modulo 2π)

dτ
ω
, (2.20)

where 𝒯 is termed the transition probability of the shedding (spike) phase to occur at ψ
given that φ is the shedding phase of the last shedding. We now perform the assembly
of the shedding phase ψm. Consider an ensemble of experiments, where individual
realizations begin with a given initial phase φ. Let this have a PDF given by χ0(φ) (where
superscript 0 indicates the initial instant). The phase distribution χ1(ψ) at the end of the
first vortex shedding is therefore 𝒯(ψ |φ) χ0(φ), ensembled over the sample space of
φ, namely [0, 2π]. Consequently, the phase distribution PDFs of the (m + 1)th and mth
vortex sheddings are related as follows:

χm+1(ψ) =
∫ 2π

0
𝒯(ψ |φ) χm(φ) dφ. (2.21)
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S. Mariappan

Note that φ and ψ can be regarded as a stimulus and response phase, respectively, for the
(m + 1)th vortex shedding process. Since the (m + 1)th phase distribution depends only
on the previous (mth) distribution, the shedding process (spike train) quantified through
phase also follows a Markov process. Furthermore, the initial phase distribution χ0(φ)
determines completely the time evolution of the train. In order to remove the effect of
the initial condition and make predictions that can be verified through experiments, it is
imperative to analyse the asymptotic behaviour of the spike train f (t) (i.e. t → ∞). As
mentioned in the literature (Plesser & Geisel 1999; Tateno & Jimbo 2000), χm reaches
a unique stationary phase distribution χ s in the limit m → ∞, which is independent of
the initial condition χ0(φ). This is guaranteed when 𝒯(ψ |φ) > 0 for all ψ, φ (Tateno
& Jimbo 2000). Through numerical simulations in this work, we observe that the above
condition is satisfied.

The stationary phase distribution can be obtained by replacing both χm and
χm+1 with χ s in (2.21), and solving the integral equation for χ s. Since ρ

and therefore 𝒯 are obtained numerically, (2.21) is also solved numerically by
discretizing the integral and φ,ψ into L + 1 bins (in this paper L = 100) having
width�φ = �ψ = 2π/L. In the discretized form, φ = (φ1, φ2, . . . , φL+1)

T,ψ = (ψ1, ψ2,

. . . , ψL+1)
T and χ = (χ1 = χ(ψ1), χ2 = χ(ψ2), . . . , χL+1 = χ(ψL+1))

T, with φj = ψj
= �φ (j − 1). Since by construction χ is 2π periodic, χ1 = χL+1. Equation (2.21) thus
becomes the following, after applying the trapezoidal rule to the integral and enforcing the
periodic boundary condition:

χm+1
k = �φ

L∑
j=1

𝒯(ψk |φj) χ
m
j , k = 1, 2, . . . L, (2.22)

or in matrix form,

χm+1 = Tχm, T = [T]kj = 𝒯(ψk |φj)�φ. (2.23)

The discretized stationary distribution χ s therefore becomes the eigenvector of the
matrix T having eigenvalue 1. The other eigenvalues are, in general, complex, having
absolute value less than 1. They are used to characterize stochastic bifurcation occurring
in this system (detailed in § 3). The last step is to calculate the PDF of the vortex shedding
time interval ρs, corresponding to the stationary stimulus phase distribution χ s:

ρs(τ ) =
∫ 2π

0
ρ(τ |φ) χ s(φ) dφ. (2.24)

The results of the above assembly process are illustrated through figures 3 and 4.
We begin with the former figure, where plots of the discretized transition probability
matrix T (figures 3a,d), its eigenvalues κ (figures 3b,e) and the evolution of χm from
a random initial distribution χ0 (figures 3c, f ) for two harmonic excitation amplitudes
A = 0.2 (figures 3a–c) and A = 0 (figures 3d–f ) are shown. Excitation frequency and noise
amplitude are kept at f = 0.9 and An = 0.02, respectively. As interpreted from (2.23), T
acts as a propagator matrix to map the system from the mth to the (m + 1)th shedding
events. Therefore, the columns and rows of T can be associated with χm (stimulus phase φ)
and the response χm+1 (response phase ψ). At A = 0.2 (figure 3a), the entries of T show
dominant values near ψ/π = 1. This indicates that for most of the values of the present
shedding phase χm, the next shedding occurs mostly around χm+1/π = 1. Therefore, after
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Figure 3. (a,d) Contour plot of the discretized transition probability matrix T . The dashed white line
represents the main diagonal. Blue and red colours indicate minimum and maximum values respectively. (b,e)
Eigenvalues κ of T . The black curve indicates the unit circle. (c, f ) Fifteen iterates of χm starting from χ0,
having a random distribution; χ0 and χ15 are marked in blue and red, respectively. The intermediate states χm

(0 < m < 15) are also shown, with the arrow direction marking the evolution in m. Panels (a–c) correspond to
A = 0.2, and (d–f ) to A = 0. Other parameter values are fixed at f = 0.9 and An = 0.02.
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Figure 4. (a) Stationary phase distribution χ s, and (b) stationary vortex shedding time interval ρs, for three
harmonic excitation amplitudes A = 0, 0.045, 0.2, with f = 0.9 and An = 0.02.

applying T multiple times, the obtained stationary distribution χ s is expected to have a
peak in its distribution around π, which is found to occur as shown in figure 3(c) (red
curve). The spectrum of κ (figure 3b) shows that the largest eigenvalue is indeed 1, with
the other eigenvalues lying inside the unit circle (black curve). Figure 3(c) shows that
within a few iterations (m = 15), χm from a random distribution ends up as χ s.

Figures 3(d–f ) show the same plots corresponding to A = 0. Dominant entries of T
(figure 3d) are along its main diagonal (dashed white line). By shifting suitably the
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φ-axis, it is possible to make these dominant entries align exactly with the main diagonal.
Therefore, unlike the previous case (A = 0.2), for every current shedding phase χm, the
next shedding phase χm+1 occurs with equal probability in the sample space [0, 2π].
Thus the stationary distribution χ s is a uniform distribution. The iterates χm indeed
converge to a uniform distribution (figure 3f ). At zero harmonic excitation, the presence
of noise (An /= 0) does not alter the asymmetry associated with the shedding phase. All
the shedding phases are equally probable and lead to uniform χ s.

Corresponding to the stationary phase distribution, the PDF of the vortex shedding
interval is shown in figure 4. Once again, χ s is plotted in figure 4(a) for clarity (A = 0,
0.045 and 0.02, and other parameters are the same as in figure 3) and the corresponding
ρs in the adjacent panel (figure 4b). In the absence of harmonic excitation (A = 0), one
expects vortex shedding to occur mostly at the natural shedding frequency 1 with a spread
determined by An (red curve in figure 4b). As A increases, the peak shifts to the right
(refer to the blue curve corresponding to A = 0.045). At A = 0.2, the peak occurs at
τ = 1.11 = 1/f , indicating that it has locked to the stimulation frequency. We now observe
a 1 : 1 phase lock-in, but in the stochastic sense. As a counterpart of the deterministic case
(An = 0), a stochastic bifurcation occurs, leading to lock-in. The occurrence of stochastic
bifurcation is identified by a qualitative change in the spectrum of T (Doi, Inoue &
Kumagai 1998). The details are presented in the next section.

3. Stochastic bifurcation

Stochastic bifurcation analysis is conducted at three excitation frequencies, f = 0.9,
3.2 and 0.6, which are close to the fundamental, superharmonic and subharmonic of
the natural vortex shedding frequency, respectively. A detailed deterministic bifurcation
analysis was performed for f = 0.9 and 3.2 in our earlier paper (Britto & Mariappan
2019), which motivated us to choose the above frequencies for the present investigation.
Furthermore, the results discussed are qualitatively the same, between the excitations
on either side of the fundamental/subharmonic/superharmonic of the natural vortex
shedding frequency. Hence we choose f = 0.6 to describe the dynamics associated with
subharmonic excitation.

3.1. Fundamental excitation
Panels in figure 5 describe the stochastic bifurcation dynamics with the harmonic
excitation amplitude A as the bifurcation parameter, excited with harmonic frequency
f = 0.9 and noise amplitude An = 0.02. Figure 5(a) shows the deterministic (An = 0)
bifurcation diagram, which serves as our reference. Time intervals (τ ) between successive
sheddings for a total of 1000 iterates (after discarding the transients) are plotted. At A = 0,
vortices are shed at their natural shedding frequency. As A increases, the shedding becomes
quasi-periodic, marked by the iterates filling a finite τ region densely. At A = 0.12,
saddle-node bifurcation occurs, leading to 1 : 1 phase lock-in (deterministic). Vortices
are now shed at the forcing time period (τ = 1/f = 1.11). This lock-in continues up to
A = 0.75, where a transition to a higher periodic solution occurs. For A ≥ 0.83, a period-2
orbit forms, where vortex shedding time instances occur between the values τ ∼ 0.8 and
τ ∼ 0.3 alternately. The mean shedding time period (μτ ) at each amplitude is plotted as a
blue curve in figure 5(b). In the region of the period-2 orbit, μτ = 1/2f . This indicates that
for completing one period-2 orbit (two vortex sheddings), a total time of 1/f is required,
which equals the time period of harmonic excitation. Two cycles of vortex shedding
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Stochastic bifurcation and resonance

(response) correspond to one harmonic excitation cycle. Therefore, shedding exhibits 1 : 2
phase lock-in with the excitation. Furthermore, abrupt changes in μτ are observed at the
ends of lock-in and higher periodic orbit regimes. The above are the characteristics of
deterministic bifurcations.

In the presence of noise (An = 0.02), the mean (μτ ) and standard deviation (στ ) of
the shedding time interval, calculated from the stationary distribution ρs, are plotted
(figure 5b). Similar to the deterministic case, μτ becomes flat, with values 1/f and 1/2f
in 1 : 1 and 1 : 2 phase lock-in regions, but the transition is more gradual than in the
deterministic case. This feature indicates that the system exhibits lock-in behaviour, albeit
in the stochastic sense. Moreover, in the regions where μτ stays flat, the corresponding
στ shows a local dip, further emphasizing the increased repeatability of the shedding
occurrences during s-lock-in.

In the deterministic case, the occurrence of lock-in is identified by a saddle-node
bifurcation (Britto & Mariappan 2019), where two new solutions (one stable and the
other unstable) emerge. The stable solution corresponds to lock-in. In the stochastic
analogue, the bifurcation (p-bifurcation as referred to in Arnold 1995) is characterized
by a qualitative change in the stationary PDF of an appropriate random variable, in this
case ρs for τ .

Figure 5(c) shows the stationary time interval distribution ρs for various A. The
distribution peaking at τ = 1 for A = 0 transitions its peak to τ = 1/f for A > 0.21.
Also, for large A (A > 0.6), two more peaks emerge, having crests at τ ∼ 0.8 and τ ∼ 0.3
(similar to the deterministic case). A qualitative change in ρs is observed: a unimodal
distribution changes to a trimodal distribution at A = 0.6, which hints at the occurrence
of (stochastic) bifurcation. Further, at A = 0.75, the trimodal distribution switches to
a bimodal one. These changes are gradual. Although qualitative changes occur in ρs,
they do not corroborate the occurrence of a flat mean vortex shedding period (μτ ) (see
figure 5b). A similar conclusion appears while analysing the stationary phase distribution
χ s (figure 5d). Therefore, in the present system, the occurrence of lock-in (stochastic
bifurcations) cannot be identified solely by the stationary probability distributions, which
describe the asymptotic state of the system.

Alternatively, qualitative changes in the dynamics of the system on its route to the
stationary distribution can identify stochastic bifurcations. As we said in § 2.2, (2.23)
describes the evolution of the system, where the propagator matrix T contains all the
information of the dynamics. Writing (2.23) in the eigenvector basis of T leads to

χm+1 = T mχ0 =
L∑

q=1

cqκ
m
q vq, (3.1)

initial condition, χ0 =
L∑

q=1

cqvq, (3.2)

where κq and vq represent the qth eigenvalue and its eigenvector of T , respectively.
Eigenvalues are arranged in descending order of their absolute values. The initial condition
χ0 is expressed in the eigenbasis of T , where cq are the associated projection coefficients.
Equation (3.1) shows that the contribution of an eigenvector to the evolution of χm+1

depends on the absolute value of its eigenvalue. We know that the first (largest) eigenvalue
is 1 and the corresponding eigenvector is the stationary phase distribution χ s to which
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Figure 5. (a) Plot showing 1000 iterates of the instantaneous vortex shedding time period τ for the
deterministic case (An = 0). Iterates forming the horizontal line represent the extent of deterministic 1 : 1 phase
lock-in. (b) Variation of mean (μτ ) and standard deviation (στ ) of τ with harmonic excitation amplitude A. The
blue curve represents the mean τ of the deterministic case. Grey portions indicate the stochastic 1 : 1 and 1 : 2
phase lock-in regions (labelled as s-lock-in). Variations of stationary PDFs correspond to (c) vortex shedding
time period ρs, and (d) phase distributions χ s, with A. Vertical white and red lines indicate the extents of
the stochastic 1 : 1 and 1 : 2 phase lock-ins, respectively. Variation of the first three eigenvalues κq with A:
(e) absolute value, and ( f ) phase. Variation of the second (g,h) and third (i,j) eigenvectors (vq) of T with A:
imaginary part (g,i), and real part (h,j). Black and red vertical lines represent the extents of the 1 : 1 and 1 : 2
stochastic lock-ins, respectively. The other parameters are f = 0.9, An = 0.02.
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the system evolves as m → ∞. The next eigenvalues (second and third) determine the
evolution path taken by the system on its journey to reach χ s.

Stochastic bifurcation is identified by tracking the spectrum of T (Doi et al. 1998).
The absolute value and phase of the first three eigenvalues (κ1, κ2, κ3) are plotted in
figures 5(e, f ), respectively. As A increases, at A = 0.21, the second (κ2) and third (κ3)
eigenvalues transition from being complex conjugates to real. They remain real until A =
0.42. Since θκq = 0 for q = 2, 3, Tvq = κqvq = |κq|vq which indicates that vq is invariant
under the action of T with an amplitude decay |κq|. The corresponding eigenvectors v2, v3
do become real in the amplitude range 0.21 ≤ A ≤ 0.42 (figures 5g,i). Therefore, the
system is said to exist in a 1 : 1 phase lock-in (stochastic sense) state with the harmonic
excitation. The extent of this lock-in is shown as grey regions in figures 5(b), and white
and black vertical lines in figures 5(c,d,g–j). Since the second and third eigenvalues are
the dominant eigenvalues next to the largest (first) eigenvalue, their change in behaviour
manifests as 1 : 1 lock-in in μτ (figure 5b).

The occurrence of 1 : 2 lock-in between A = 0.79 and A = 0.96 can also be explained
through the spectrum. In the above range, the absolute value of the second eigenvalue
approaches the first eigenvalue (|κ2| → |κ1| = 1; figure 5e). Furthermore, its phase
becomes θ2 = π (figure 5f ). Therefore, T 2v2 = κ2v2 = |κ2|2v2, indicating that the
dynamics (up to second eigenvalue) remains invariant after propagating two vortex
shedding cycles. This time there is an insignificant amplitude decay since |κ2| is close
to 1. Therefore, the stationary stochastic state ρs alternates (mostly) between two states
(period-2 orbit). The corresponding stationary distribution is therefore bimodal. Note
that the second eigenvector in this amplitude range becomes real (figures 5g,i). A linear
combination of the first two eigenvectors determines the stationary distribution. The extent
of 1 : 2 lock-in is marked by red vertical lines in figures 5(c,d,g–j).

Noise in (2.1) is additive. Therefore, the underlying dynamical features such as
period-1, period-2 and higher-period solutions remain the same as for their deterministic
counterparts. Since noise is disruptive, its presence reduces the extent of 1 : 1 lock-in. The
reduction on either side is asymmetric. In 1 : 1 lock-in, the reduction is more on the higher
amplitude (A) side than on the lower side, which can be explained as follows. Along with
the disruptive nature, the presence of noise is to reduce the mean shedding time period
τ (as evident from A = 0 simulations shown in figure 2g–i). Therefore, noise pushes the
system frequently towards the dynamics containing smaller τ . Near the lower threshold of
1 : 1 deterministic lock-in (A = 0.12), the mean τ increases as the system moves from
quasi-periodic to lock-in region (figure 5b). Both the disruptive and lowering mean τ
nature of noise work in opposition, leading to a smaller reduction in the extent of the
lower 1 : 1 lock-in region. Near the upper threshold side (A = 0.75), the mean τ of the
system decreases sharply (figure 5b). Therefore, both the above effects are favourable for
a quick end to the lock-in region. The presence of the higher-periodic solution is felt as a
multimodal PDF in τ as early as A = 0.65 (figure 5c).

To summarize, a qualitative change in the stationary PDF is not observed to identify
the onset and end of s-lock-in. The first three eigenvalues of the discretized transition
probability matrix determine the system evolution and hence the stochastic bifurcations.
In particular, the phase of the eigenvalue determines the order and extent of s-lock-in. The
closeness of its amplitude to 1 dictates the coincidence of the mean shedding period with
the excitation time period. The above bifurcation scenario is valid on the other frequency
side, f > 1, too. During combustion instability, several investigations indicated that apart
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from the fundamental acoustic mode, higher modes or combinations are excited (Lieuwen
2003; Kabiraj & Sujith 2012). Therefore, it is imperative to study lock-in when the
excitation is close to the superharmonic and subharmonic of the natural vortex shedding
frequency.

3.2. Superharmonic excitation
We consider the excitation frequency f = 3.2 near the (third) superharmonic of the
natural vortex shedding frequency. The results are shown in figure 6. Going through the
deterministic scenario (figure 6a), as A is increased (A > 0.065), vortex shedding first
locks to the closest (third) subharmonic of the excitation frequency, establishing 3 : 1
lock-in (ratio of forcing to response frequency is 3). At higher amplitudes (A > 0.30),
shedding locks out of the excitation frequency and cascades to lock-in (A > 0.34) with the
second subharmonic of the excitation frequency (2 : 1 lock-in). A third cascade occurs for
A > 0.63 to establish 1 : 1 lock-in. Details of the mechanism causing this cascade from
3 : 1 to 1 : 1 lock-in are discussed in Britto & Mariappan (2019). The average of the iterates
(blue curve in figure 6b) shows sudden variation at the onset and end of lock-in regions. In
the transition between 3 : 1 and 2 : 1 lock-in, period-2 solution occurs for 0.30 ≤ A ≤ 0.33
(figure 6a). Their average time period is 5/2f (figure 6b), indicating the occurrence of 5 : 2
lock-in. Similarly, 3 : 2 lock-in is observed for 0.61 ≤ A ≤ 0.63 in the transition between
2 : 1 and 1 : 1 lock-in regions.

As before, mean μτ and standard deviation στ corresponding to the stationary shedding
time period (with noise An = 0.02, as in § 3.1) are plotted in figure 6(b). The curve of
μτ does not flatten near the deterministic 3 : 1 and 2 : 1 lock-in regions, indicating the
(apparent) absence of their stochastic counterparts. Flattening of μτ at 1/f is observed,
showing the possibility of stochastic 1 : 1 phase lock-in. Furthermore, the standard
deviation στ also hits a trough in this region.

Figures 6(c) (absolute) and 6(d) (phase) show the variation of the first three eigenvalues
with A. The phase of the second eigenvalue becomes θ2 = 0 in the amplitude regions
0.1 < A < 0.13, 0.38 < A < 0.46 and 0.69 < A < 0.92, showing the occurrence of a
general p : 1 (p integer) s-lock-in. This p is identified from the peak location in the PDF
of τ (figure 6e). Out of the three lock-in regions (3 : 1, 2 : 1 and 1 : 1), the last one has the
largest amplitude range, marking the extent of 1 : 1 s-lock-in. In the initial portion of this
lock-in region, μτ is not yet flat (0.69 < A < 0.76). The reason is that the absolute value
of κq of the second (and higher) eigenvalue is much smaller than the first eigenvalue (note
the log scale for |κq| in figure 6c). Therefore, though a qualitative change in the second
eigenvalue occurs, its influence on the dynamics is weak. Similarly, stochastic 3 : 1 and
2 : 1 lock-ins do occur in the amplitude regions 0.1 < A < 0.13 and 0.38 < A < 0.46,
respectively. However, a corresponding flatness in μτ is not observed, which poses a
difficulty in experimental measurements to identify lock-in regions in the presence of
background noise. Therefore, apart from μτ , the PDF of τ should be obtained, which
shows local peaks at 1/pf , marking the existence of p : 1 s-lock-in (figure 6e). Similar to
§ 3.1, a qualitative change in ρs (number and location of peaks) is observed in the cascade
from 3 : 1 to 1 : 1 lock-in (panel c). Multiple peaks indicate that the system spends time
partly in two different lock-in regions (for example, at A = 0.25, shedding occurs mostly
at 1/3f and 1/2f time periods), which poses difficulty in the classification of lock-in order.
The above point emphasizes further the use of the spectrum of T in the identification of the
occurrence and order of s-lock-in. Since the stationary phase distribution (χ s, figure 6f ) is
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Figure 6. (a) Plot showing 1000 iterates of the instantaneous vortex shedding time period τ for the
deterministic case (An = 0). Iterates forming the horizontal line represent the extent of deterministic phase
lock-in. (b) Variation of mean (μτ ) and standard deviation (στ ) of τ with harmonic excitation amplitude A. The
blue curve represents the mean τ of the deterministic case. Variation of the first three eigenvalues κq with A:
(c) absolute, and (d) phase. Variation of stationary PDFs corresponding to: (e) vortex shedding time period ρs,
and ( f ) phase distributions χ s with A. Vertical red, green, yellow, magenta and white lines indicate the extent
of stochastic 3 : 1, 5 : 2, 2 : 1, 3 : 2 and 1 : 1 s-lock-ins, respectively. Other parameters are f = 3.2, An = 0.02.

wrapped in [0, 2π], the qualitative change during the cascade is more subtle. It shares the
same disadvantage as ρs in the identification of s-lock-in.

Apart from the p : 1 s-lock-in, stochastic counterparts of 5 : 2 and 3 : 2 lock-in are
observed (θ2 = π) in figure 6(d). These s-lock-in regions occur for 0.24 ≤ A ≤ 0.29 and
0.52 ≤ A ≤ 0.60, respectively. They serve as smooth transition zones from 3 : 1 to 2 : 1,
and from 2 : 1 to 1 : 1 s-lock-in regions, respectively.

3.3. Subharmonic excitation
Similarly to the previous case, the dynamics of vortex shedding excited at a frequency close
to the first subharmonic of the natural shedding frequency is illustrated through figure 7.
Deterministic 1 : 2 lock-in occurs in 0.49 < A < 0.97. In the amplitude range 0.48 < A <
0.85, (i) the absolute value of the second eigenvalue, |k2|, approaches 1 (figure 7c), and (ii)
its phase angle becomes π (figure 7d). These two points indicate the occurrence of 1 : 2
s-lock-in. The corresponding PDF of τ (figure 7b) shows bimodal distribution. Beyond the
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Figure 7. (a) Plot showing 1000 iterates of the instantaneous vortex shedding time period τ for the
deterministic case (An = 0). (b) Variation of PDF of τ with harmonic excitation A. Vertical white lines
indicate the extent of 1 : 2 s-lock-in. Variation of the first three eigenvalues κq with amplitude: (c) absolute, and
(d) phase. Other parameters are f = 0.6, An = 0.02.

1 : 2 s-lock-in region, |k2| and |k3| become close to 1 at A = 0.97. Their corresponding
phases become ±2π/3, marking the presence of 1 : 3 s-lock-in. It is reflected as a trimodal
distribution for τ at A = 0.97. Immediately beyond A = 0.97, the phase drops suddenly,
showing the narrow region of 1 : 3 s-lock-in.

4. Noise-induced dynamics

The previous section discussed identifying s-lock-in using the spectrum of the transition
probability matrix. The amplitude of the harmonic excitation A was the bifurcation
parameter. In this section, the noise amplitude An is set as the bifurcation parameter at
various A. We observe the following. (1) Addition of noise disrupts lock-in. (2) An increase
in noise amplitude An promotes the system towards the states having lower shedding
periods. (3) There is stochastic resonance where there is an occurrence of non-monotonic
amplification of the input harmonic signal by the noise. The results are illustrated in
figure 8. Here, An is varied between 5 × 10−3 and 0.2. The excitation frequency
is set to f = 0.9. Each row corresponds to a particular harmonic amplitude
A ∈ {0.1, 0.25, 0.6, 0.75, 0.8}, associated with different dynamical behaviour of the
deterministic case (figure 5a). Each row contains three columns: (i) left, stationary PDF
(ρs) of τ ; (ii) middle, mean (μτ ) and standard deviation (στ ) of τ , along with the horizontal
lines at 1/f (red) and 1/2f (green); and (iii) right, absolute value (blue) and phase (red) of
the second eigenvalue κ2, which decides the occurrence and order of s-lock-in.

The first and expected observation to make is that the increase of noise An leads to smear
in the PDF ρs (figures 8a,d,g,j,m), which manifests as an inflation in στ . At A = 0.1, the
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Figure 8. Illustration of noise induced dynamics. Noise amplitude is varied from 5 × 10−3 to 0.2 at various
harmonic amplitudes A = 0.1 (a–c), A = 0.25 (d–f ), A = 0.6 (g–i), A = 0.75 (j–l), and A = 0.8 (m–o). Each
row contains three columns: (i) left, stationary PDF (ρs) of τ ; (ii) middle, mean and standard deviation of τ ,
along with the horizontal lines at 1/f (red) and 1/2f (green); and (iii) right, absolute value (blue) and phase
(red) of the second eigenvalue κ2. The excitation frequency is set at f = 0.9.
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deterministic system exhibits quasi-periodic shedding. The corresponding shedding time
period PDF shows a unimodal distribution with the peak occurring at τ close at the natural
shedding period (τ = 1). At the next higher excitation amplitude A = 0.25, 1 : 1 lock-in
occurs in the deterministic case. Stochastic 1 : 1 lock-in also takes place, which is evident
from (i) the peak in ρs occurring at τ = 1/f (figure 8d), (ii) the mean shedding period
μτ coinciding with 1/f (figure 8e), and (iii) the phase θκ2 becoming zero (figure 8f ), all
occurring at An = 5 × 10−3. Increase in An disrupts lock-in.

At A = 0.6, while deterministic 1 : 1 lock-in prevails, s-lock-in ceases to exist even at
the lowest considered noise amplitude (θκ2 starts and drifts away from zero). Apart from
non-zero probability concentrated near τ = 1/f , two more regions (τ ∼ 0.8, 0.3) sprout
and become stronger at large An (figure 8g). These two regions correspond to the iterates
of 1 : 2 lock-in, observed at A ≥ 0.83 of the deterministic case. As said earlier, the increase
in An pushes the system to take states having lower values of τ . In the present case, these
states occur at higher amplitudes A (see figure 5b). Thus noise prepones the dynamics
(observed at higher amplitudes in the deterministic case) to lower harmonic amplitudes A.
The amount of preponement increases with an increase in An. In fact, θκ2 becomes π for
An > 0.18 (figure 8i) indicating the occurrence of 1 : 2 s-lock-in. Since |κ2| is much lesser
than 1, this s-lock-in is not reflected in μτ . However, μτ approaches 1/2f (figure 8h) with
increase in An.

At A = 0.75 (marking the end of deterministic 1 : 1 lock-in), the distribution near
τ = 1/f becomes weaker, while that near the period-2 solution grow stronger (figure 8j).
There is a rise in the extent of 1 : 2 lock-in, with values of |κ2| closer to 1 (figure 8l).
Then μτ hovers in the neighbourhood of 1/2f (figure 8k). Something non-trivial occurs
at the largest considered amplitude, A = 0.8. The PDF near τ = 1 vanishes for low
and high An, while having an island peak for intermediate values An = 0.05–0.14. This
indicates an increased probability for the vortices to shed at the excitation frequency on
this island. The corresponding μτ also shows a bulge owing to the large shedding time
period associated with the island (figure 8n). Therefore, the response of the system at
the excitation frequency elevates at these intermediate noise amplitudes, suggesting the
occurrence of stochastic resonance.

4.1. Stochastic resonance
Stochastic resonance (SR) is a phenomenon where the presence of noise amplifies the
response of the system to an input signal. In this paper, harmonic velocity excitation u is
the input signal. The response is the circulation of the shed vortex Γv at the input signal
frequency. This variable is relevant, as heat energy transported by the vortex is proportional
to its circulation, a relation used in the original model (Matveev & Culick 2003) and later
investigations (Tulsyan, Balasubramanian & Sujith 2009). An expression for Γv is

Γv(t) =
∞∑

m=0

δ(t − tm) Γsep(t). (4.1)

As before, tm represents the vortex shedding instant. A spike in circulation is observed as
and when a vortex is shed; Γv is also a random variable. Stochastic resonance is identified
by tracking the quantity signal-to-noise ratio (SNR). It is defined as the ratio of power in
the response to noise at the forcing frequency ω. The one-sided power spectral density
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(PSD) of Γv at ω in the observation time T0 is defined as (Priestley 1981)

SΓ (ω) = 1
πT0

〈∣∣∣∣
∫ T0

0
Γv eiωt dt

∣∣∣∣
2〉

= 1
πT0

〈∣∣∣∣∣∣
M0∑

m=1

Γsep(tm) eiωtm

∣∣∣∣∣∣
2〉

= 1
πT0

〈 M0∑
n=1

M0∑
m=1

Γsep(tm) Γsep(tn) eiω[tm−tn]

〉
(4.2)

= 1
πT0

M0∑
n=1

M0∑
m=1

〈
Γsep(tm) Γsep(tn) eiω[tm−tn]

〉
, (4.3)

where M0 is the total number of vortices shed during T0. It is calculated as M0 = 
T0/μτ �.
Angular 〈 〉, circular ( ) and vertical | | brackets indicate ensemble average, function of
a variable and absolute value, respectively; 
 � represent the greatest integer equal to or
less than the argument. In the above expressions, shedding time instant tm is replaced
by the phase instant, ψm = (ωtm + φ0) modulo 2π. This allows us to evaluate ensemble
averages, where PDFs of the random variable are in terms of its phase. The terms inside
the ensemble average simplify to

〈Γsep(tm) Γsep(tn) eiω[tm−tn]〉 = 1
4

〈
[1 + A sinψm][1 + A sinψn] ei[ψm−ψn]

〉

= C(m, n)
4

, (4.4)

where C is an M0 × M0 square matrix whose (m, n) elements depend on the mth and
nth vortex sheddings. We evaluate the ensemble average when the system reaches the
stationary state. In this state, both the random variables ψm and ψn are identically
distributed from χ s. Performing the ensemble in the discretized ψm, ψn space, the
following expression for C is obtained (details are in Appendix A):

C(m, n) = αT m−nβ, (4.5)

where α and β are row and column matrices, respectively. The PSD of Γv at ω becomes
SΓ = ∑M0

n=1
∑M0

m=1 C/(4πT0). It contains the contributions from both signal and noise.
The PSD of the noise (SΓ,N) is evaluated as the PSD in the absence of input harmonic
signal: A = 0. Then SΓ,N is subtracted from SΓ to obtain the PSD of the signal. The ratio
SNR is then evaluated as SNR = SΓ /SΓ,N − 1.

Figure 9 shows the variation of SNR and the stationary PDF of ρs at τ = 1/f with the
noise amplitude An. The panels correspond to different harmonic excitation amplitudes.
Amplitudes A = 0.8 and 0.75 show SR with SNR peaking at An = 0.065 and 0.050,
respectively. The corresponding ρs at τ = 1/f shows a peak near these amplitudes. The
reason for the occurrence of SR can be explained as follows. In the deterministic case
for A = 0.8 (figure 5a), three periodic solutions occur with periods 1.08, 0.81 and 0.33.
The first period is close to the excitation time period (1/f = 1/0.9 = 1.11). The presence
of noise effectively changes (increases or decreases) the excitation amplitude (randomly)
at each time instant and realization. In the neighbourhood of A < 0.8 (called the 0.8−
neighbourhood), four periodic solutions occur with periods 1.1, 1.08, 0.70 and 0.37
(A = 0.78). Since two of the periods are close to the excitation time period, the probability
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Figure 9. Variation of signal-to-noise ratio (SNR) and ρs evaluated at τ = 1/f with noise amplitude An at
excitation amplitudes (a) A = 0.8, (b) A = 0.75, (c) A = 0.6, and (d) A = 0.25. Inset in (a) shows ρs for
three noise amplitudes. Their locations are marked as colour-coded cross symbols in the panel. Excitation
frequency and observation time are set at f = 0.9 and T0 = 200, respectively. Panels (a,b) show the occurrence
of stochastic resonance (SR).

of the vortex shedding occurring at the excitation frequency is high. On the other hand,
in the 0.8+ neighbourhood (A > 0.8), two periodic solutions exist with periods 0.77 and
0.34 (A = 0.82).

At low noise amplitudes (say An = 0.0075), the dynamics of the system evolves closely
around A = 0.8. Here, ρs has a trimodal distribution (see the inset of figure 9a, brown
curve) peaking at the period-3 solution of the deterministic case. At an intermediate
amplitude, An = 0.065, the fluctuations in the system grow, and the system evolves around
the neighbourhood 0.8− and 0.8+. Since a period-4 solution with two periods close to
1/f occurs in 0.8−, there is an increased shedding probability at τ = 1/f . The green
curve shows this feature in the inset. There is a reduction in the peak associated with the
other two periods. Therefore, the shedding response is elevated. At high noise amplitudes
(e.g. An = 0.2), the system fluctuates wildly such that it spends much time away from
0.8−. Therefore the response at τ = 1/f decreases, and ρs smears out (pink curve in the
inset). Thus we observe a non-monotonic variation in ρs at the excitation time period 1/f ,
which is responsible for the occurrence of SR. The same phenomenon occurs for the lower
amplitude A = 0.75 (figure 9b), although the increase in SNR is relatively less.

The above discussion indicates that the following ingredients are required in the
deterministic dynamics for SR to occur. (1) A higher-period solution must be present.
(2) The characteristic of the solution, namely the number or the value of the periods
near the excitation frequency, should change significantly around the operating point.
With the addition of noise, the first point ensures multimodal distribution in ρs. The
second statement warrants the change in the multimodal PDF such that the response at
the excitation frequency is increased.

Inside the (deterministic) 1 : 1 lock-in region (A = 0.25, 0.6), a period-1 solution occurs,
which leads to a unimodal PDF with the inclusion of noise (figures 9c,d). Therefore, SR
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is absent. In the quasi-periodic region, we once again land in unimodal PDF, and therefore
SR at A = 0.1 is also absent. In both cases, ρs at τ = 1/f decrease monotonically.

5. Relevance to thermoacoustic interactions

Among cases discussed in figure 8, 1 : 1 s-lock-in occurs only for A = 0.25 at An =
5 × 10−3 (figure 8f ). The corresponding standard deviation is the lowest among all the
parameters explored (figure 8e). Even στ continues to remain the lowest at A = 0.25
among all other A at the same An. Therefore, the presence of 1 : 1 s-lock-in indicates the
highest repeatability with which vortex shedding occurs at the excitation frequency.

In our numerical simulations, harmonic excitation and noise amplitudes are varied
in the range A = 0–1 and An = 5 × 10−3–0.2, respectively, for frequencies close to the
fundamental (f = 0.9), harmonic (f = 3.2) and subharmonic (f = 0.6) of the natural
vortex shedding frequency. During combustion instability, velocity fluctuations are
comparable to their steady-state value A ∼ 1 (Lieuwen & Yang 2005). Furthermore,
typical turbulence amplitude measured as the root-mean-square of the velocity fluctuations
with respect to the mean value in practical and lab-scale gas turbine combustors ranges
between 15-50 % (Goldstein, Lau & Leung 1983) and 0–20 % (Hosseinalipour et al.
2020), respectively. Therefore, the ranges of A and An covered in this paper are relevant
to practical and lab-scale systems. The conclusion from the simulations concerning
thermoacoustic interactions is discussed under two categories: stochastic lock-in and
stochastic resonance.

5.1. Stochastic lock-in
The feedback of the unsteady heat release rate due to vortex shedding to the acoustic field
depends on (i) the circulation of the shed vortex Γsep, and (ii) the (average and spread)
time period τ with which the shedding occurs. Considering point (i), Γsep of an mth
vortex equals (1 + A sin(ωtm + φ0))/2 = (1 + sinψm)/2. Dropping the index m, Γsep is a
function of excitation amplitude A and the shedding phase ψ . The functional form dictates
that Γsep is bounded between (1 − A)/2 and (1 + A)/2. As ψ is a random variable, so
is Γsep. When ψ lies in (0,π), Γsep is larger than the unperturbed (A = 0) shedding
circulation (= 1/2), and vice versa. The former condition promotes instability, while
the latter aids amplitude suppression. Considering point (ii), for efficient thermoacoustic
coupling, (average) τ should occur close to the frequency of the acoustic field (excitation
frequency f in this paper) with minimum standard deviation possible.

Figure 10 shows the PDF (ρΓsep) of Γsep for various harmonic amplitudes A at
excitation frequencies close to fundamental (f = 0.9, figure 10a), superharmonic (f =
3.2, figure 10b) and subharmonic (f = 0.6, figure 10c) of the natural vortex shedding
frequency. Note that ρΓsep is normalized so that the maximum value equals 1 at a
given A, as the sample space of Γsep is a function of A. In the 1 : 1 s-lock-in range
(0.21 ≤ A ≤ 0.42, figure 10a), ρΓsep peaks in the region of Γsep > 1/2, because the
stationary phase distribution χ s peaks around ψ = 0.8π (figure 5d). Furthermore, the
standard deviation in Γsep is also the least in the 1 : 1 lock-in region (figure 10d). Added
to this, the ρs of the shedding time period peaks at τ = 1/f with a minimum spread.
Therefore, both Γsep and τ factors are favourable for the occurrence of instability. In
the 1 : 2 s-lock-in region occurring at high amplitudes (0.79 ≤ A ≤ 0.96), Γsep becomes
bimodal with dominant contribution occurring from the peak around Γsep = 0.08, caused
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Figure 10. Variation of PDF of Γsep with harmonic excitation amplitude A for different excitation frequencies:
(a) f = 0.9, (b) f = 3.2, and (c) f = 0.6. Vertical lines in white, red, pink and yellow represent the extent of
1 : 1, 1 : 2, 2 : 1 and 3 : 1 s-lock-in regions, respectively. (d) Plot showing the variation of mean μΓsep , along
with the standard deviation (shaded region) of Γsep for the above three frequencies. Noise amplitude is kept at
An = 0.02.

due to the peak around ψ = 1.35π (figure 5d). Further τ values (on average) oscillate
between 0.8 and 0.3, which does not match with the excitation frequency. Both the factors
are therefore unfavourable for the occurrence of instability.

Moving to the superharmonic excitation (figure 10b), the PDF of Γsep shows a unimodal
distribution for all A, with the distribution peaking at values Γsep < 1/2. The peak location
Γsep decreases with A. From the τ perspective, the three s-lock-in regions 3 : 1, 2 : 1
and 1 : 1 can excite the third, second and first acoustic modes, respectively. Since higher
acoustic modes are highly damped and lower s-lock-in regions occur at low Γsep < 1/2
values (figure 10d), the system is prone to amplitude suppression.

The last case of subharmonic excitation (figure 10c) shows that the PDF of Γsep peaks at
Γsep > 1/2, while the two most probable values of τ do not relate commensurately with the
excitation. Therefore, this case is also expected to be stable. Given the above scenario, we
observe that 1 : 1 lock-in with the excitation frequency close to the natural vortex shedding
frequency is the most favourable scenario for instability. The above discussion conveys
that lock-in can be accompanied by both instability and amplitude suppression, depending
on the phase of the velocity excitation at the vortex shedding instant. Therefore, altering
the shedding phase is a possible way to control instability.

The 1 : 2 lock-in region associated with f = 0.9 (figure 10a) and f = 0.6 (figure 10c)
show the PDF of Γsep peaking at values greater and less than 1/2, respectively. Therefore,
Γsep promotes and suppresses instability leading to large- and small-amplitude oscillations,
respectively, in a thermoacoustic system during a realization. Such switching (large- and
small-amplitude oscillations) leads to intermittent oscillations and is expected during 1 : 2
lock-in. The above description for the occurrence of intermittent oscillations is similar to
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Figure 11. Variation of PDF of Γsep with the noise amplitude An for harmonic excitation amplitudes (a) A =
0.8, and (b) A = 0.75, exhibiting SR. Excitation frequency and observation time are set at f = 0.9 and T0 =
200, respectively.

the explanation by Bonciolini et al. (2021). In their work, the spread in the flame response
time delay causes the effective growth rate to take positive and negative values randomly,
leading to intermittency. However, the origins of the bimodal PDF in Γsep (present work)
and time delay (Bonciolini et al. 2021) are different. In the present case, the peak in the
PDF of Γsep is associated with the deterministic shedding phases of the period-2 orbit
(figures 5a,d and 7a,b). On the other hand, positive and negative growth rates in Bonciolini
et al. (2021) occur due to the cosine relation between the time delay and growth rate.

5.2. Stochastic resonance
From § 4.1, we find that stochastic resonance occurs near the upper boundary (A ∼ 0.8)
of 1 : 1 deterministic lock-in, when the system is excited at f = 0.9 (close to the natural
vortex shedding frequency). The previous subsection (§ 5.1) indicated that at these high
amplitudes, Γsep mostly takes values closer to the minimum (1 − A)/2. Figures 11(a,b)
reiterate the same feature. Due to SR, there is a patch of locally elevated ρΓsep , at Γsep >

1/2. Also, one of the trimodal peaks in τ (inset of figure 9a) occurs at the excitation
frequency. All these factors promote instability. However, the rise in Γsep during SR is
fairly weak, and further, the peak in τ at 1/f is the smallest among the three peaks. From
the above, we conclude that SR, although present, may not be a primary concern for the
occurrence of instability.

The conclusions made in the paper are valid when the noise is Gaussian white
and additive. Both the assumptions are restrictive for practical thermoacoustic systems,
dominated by turbulence (Clavin, Kim & Williams 1994). Considering the relaxation
of the former assumption, a study by Nozaki, Collins & Yamamoto (1999) shows a
fourfold enhancement of SR in a neuron model when excited by pink noise (power spectral
density varies inversely with frequency). Furthermore, large-scale coherent structures
in turbulent flows result in non-zero correlation time. Their effects on thermoacoustic
interaction are modelled through a noise produced from the Ornstein–Uhlenbeck process.
Although the dynamics and statistics remain the same (Bonciolini, Boujo & Noiray
2017), the introduction of coloured noise in flame response time delay reproduces
intermittent oscillations observed in experiments (Bonciolini et al. 2021). Regarding the
latter, Waugh & Juniper (2011a) observed that the effects of additive and multiplicative
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noise in their prototypical thermoacoustic system are qualitatively similar. It is unclear
whether the same conclusion holds for lock-in. Since multiplicative noise disrupts the
deterministic dynamical features (for example, fixed points), the presence of it not
only alters s-lock-in and SR characteristics but also generates new phenomena such as
noise-induced transitions (Horsthemke & Lefever 1984). It is therefore an intriguing topic
for future work to study the effects of multiplicative noise and its colour on lock-in.

6. Conclusion

The present work performs a theoretical study of vortex-acoustic lock-in under external
harmonic excitation and additive Gaussian white noise. Harmonic excitation realizes
the acoustic field. Excitation is presented at frequencies close to the fundamental,
superharmonics and subharmonics of the natural vortex shedding frequency. The studied
range of harmonic and noise excitation amplitudes covers the conditions of practical
and laboratory gas turbine combustors. The lower-order model from Matveev & Culick
(2003) is used to describe the shedding dynamics. The model is an example of a
kicked-oscillator, with the kicks corresponding to sheddings. A time evolution equation
for the probability density function (PDF) of the vortex circulation is obtained in the
Fokker–Planck framework. PDFs of the shedding time period (τ ) and phase instant (ψ)
are extracted by posing a first passage time problem of the circulation reaching a critical
value. The shedding time period is non-stationary and strongly dependent on the previous
shedding phase, especially at higher harmonic excitation amplitudes. The shedding process
is Markovian. In the limit of an infinite number of vortex sheddings, stationary PDFs
associated with shedding time period (ρs) and phase instant (χ s) are obtained. Phase
distributions between successive sheddings are related through a transition probability
matrix (T ). The matrix is used to determine the occurrence and order of lock-in.

Unlike a generic stochastic system, the stationary PDFs of τ and ψ do not show a
sudden qualitative variation during the occurrence of lock-in. Stochastic lock-in (s-lock-in)
is identified by a sudden qualitative change in the behaviour of the second and third
eigenvalues of T . In the region of p : 1 lock-in (p an integer), the phase of the second
eigenvalue becomes zero. For the p : 2 and p : 3 lock-ins, the second and second/third
eigenvalue phases should become π and ±2π/3, respectively. Since the added noise is
additive, the underlying system dynamical features remain the same as in the deterministic
case. The presence of noise reduces the extent of lock-in. The effect of noise promotes
the dynamical states with low mean shedding period. Out of the various lock-in orders
observed, the 1 : 1 lock-in occurring due to the excitation close to the natural vortex
shedding frequency provides the most favourable situation for instability. Both instability
and amplitude suppression can occur during lock-in; it depends on the phase of the velocity
excitation at the vortex shedding instance. A weak stochastic resonance is observed near
the 1 : 1 deterministic lock-in boundary. The occurrence of the resonance is related to the
presence of a patch of a higher periodic solution, with one or more of the solutions lying
close to the harmonic excitation time period. Stochastic resonance has only a marginal
contribution in making the system unstable.
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Appendix A. Power spectral density of Γv
Rewriting (4.4), we have the following from the definition of ensemble average:

C(m, n) =
〈
[1 + A sinψm][1 + A sinψn] ei[ψm−ψn]

〉
=

∑
ψm,ψn=[ψ1,ψ2,...,ψL+1]

[1 + A sinψm][1 + A sinψn]

× ei[ψm−ψn][T m−n]m,n χ
s(ψn), (A1)

where the sample space of ψm, ψn is [ψ1, ψ2, . . . , ψL+1], over which the ensemble (sum)
is performed. Further, [T m−n]m,n is the (m, n)th element of the (discretized) transition
probability matrix T , raised to the power m − n. The double summation in (A1) can be
written as a product of two summations, which in turn can be written compactly as a
product of matrices α, T , β:

C(m, n) =
∑
ψm

[1 + A sinψm] eiψm
∑
ψn

[T m−n]m,n χ
s(ψn) [1 + A sinψn] e−iψn

= αT m−nβ, (A2)

where α(n) = [1 + A sinψn] eiψn and β(n) = χ s
n[1 + A sinψn] e−iψn . Here, α and β are

1 × (L + 1) (row) and (L + 1)× 1 (column) matrices, respectively. Note that C depends
only on (m − n) as the ensemble is applied in the stationary state.
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