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Abstract

This paper studies the data-based polyhedronmodel and its application in uncertain linear optimization of engineering
structures, especially in the absence of information either on probabilistic properties or about membership functions
in the fussy sets-based approach, in which situation it is more appropriate to quantify the uncertainties by convex
polyhedra. Firstly, we introduce the uncertainty quantification method of the convex polyhedron approach and the
model modification method by Chebyshev inequality. Secondly, the characteristics of the optimal solution of convex
polyhedron linear programming are investigated. Then the vertex solution of convex polyhedron linear programming
is presented and proven. Next, the application of convex polyhedron linear programming in the static load-bearing
capacity problem is introduced. Finally, the effectiveness of the vertex solution is verified by an example of the plane
truss bearing problem, and the efficiency is verified by a load-bearing problem of stiffened composite plates.

Impact Statement

Uncertainty is everywhere in data of structural optimization and design. The goal of this paper is to help engineers
and researchers efficiently solve uncertain linear optimization problems of engineering structures, in absence of
information on probabilistic properties or membership functions. We quantify the uncertainties by convex
polyhedron model, the generalization of the widely used interval model, which overcomes some shortages of the
interval model. We present a model modification method and a vertex solution method. Our work demonstrates
that the vertex solutionmethod is effective and efficient in solving above uncertain linear optimizations. The idea
is to design more reliable aerospace, mechanical, or ocean engineering structures via evaluation of the worst
possible, maximum response due to uncertianties.

1. Introduction

There are many uncertainties in the design of engineering structures (Klir, 1994; Elishakoff, 1998a), such
as material properties, geometric parameters, external loads, boundary conditions, and so on. If the above
uncertainties are considered, the vectors and matrices in the optimization of engineering structures turn
out to be no longer deterministic. The stochastic or probabilistic method, set-theoretical method, and
fuzzy theory can be used to describe those uncertainties. If the uncertain parameter is the random variable
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with a known probability distribution, the probabilistic methodology is preferred to deal with it. If the
uncertainty parameters are complex and difficult to describe crisply, the fuzzy sets-based theory is adopted
to deal with them. In the absence of such information or when there is no sufficient data available, the
nonprobability convex set model is more practical and widely used in the analysis and design of
engineering structures (Elishakoff, 1995; Elishakoff, 1998b).

Natural question arises:Why is there no sufficient data available? The response is as follows (Ley et al.,
2020): “in 2012, IBM stated that 90% of the data available today have been generated over past 2 years,”
according to Sagiroglu and Sinanc (2013).When technical companies share the data, probably by creating
international data banks, sufficient datawill be available to utilize the proposedmethodology. This applies
to the case of both small data and big data. Why? This is since in both cases, in order to make structures
more reliable, information on best and worst possible performances is crucial. Indeed, if the predicted
worst response exceeds the allowable level, we can be convinced that the structure will fail.

With presence of uncertain parameters, the deterministic mathematical programming problems are
transformed into relevant uncertain mathematical programming problems depending on the adopted
modelling technique of uncertainty. There are many studies on uncertain linear programming. For
example, there are active methods and passive methods for stochastic linear programming (Sengupta
et al., 1963). The active approach solves the problem by introducing new design variables. The passive
method accurately or approximately estimates the characteristics of the optimal value of the objective
function. Evers (1967) proposed a newmodel to introduce the terms related to random constraints into the
objective function, and the comparison results showed that taking the average of the elements could lead
to considerable costs. For fuzzy linear programming, Zimmermann (1978) and Chanas (1989) used fuzzy
linear programming to solve the multi-objective linear programming problem Ramík (1986) generalized
the extension principle to set-to-set mappings to solve fuzzy optimization problems. Besides, multi-
objective fuzzy linear programming has been studied in Stanciulescu et al. (2003). Among various
nonprobabilistic convex models, the interval model is more widely used (Qiu et al., 2006). For interval
linear programming, Rohn (1980, 1981) presented a duality theorem and various forms of optimality
criteria, as well as proved the strong solvability. Chinneck and Ramadan (2000) proposed an algorithm of
interval linear programming.

However, as one of the most widely used nonprobabilistic convex models, the interval model has
obvious defects in quantifying variables. In the interval method, each uncertain variable or parameter is
quantified by a respective interval. In the situation of multiple variables, the whole region can be regarded
as a hypercube, with surfaces of the hypercube being parallel or perpendicular to all coordinate planes.
Therefore, the interval model fails to reflect the possible dependence between variables. As a conse-
quence, the design results are supposed to be too conservative.

This study argues that if the interval model is generalized, for example, using convex polyhedron to
quantify uncertainty, the results will not be as conservative as the interval model. It can also reflect the
dependence between variables, because all the variables or parameters can be described by convex
polyhedron as a whole, with each surface of the convex polyhedron not necessarily being parallel or
perpendicular to the coordinate plane. The comparison between the interval model and the convex
polyhedron model when quantifying uncertainty is shown in Figure 1. As is observed in Figure 1, the
points are samples, the cuboid representing the interval model. Figure 1 also shows the polyhedron that
includes all experimental points. Obviously, the interval model is anticipated to yield more conservative
results than the convex polyhedron model. This is simply because the cuboid contains a bigger volume.

The availability of data which will be enclosed by polyhedron is central to this investigation. In this
respect, two quotes appear to be pertinent; one belongs to Galileo Galilei: “Measure what is measurable,
andmakemeasurable what is not so.”Likewise, Lord Kelvin stated “When you canmeasure what you are
speaking about, and express it in numbers, you know something about it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarcely, in your thoughts advanced to the stage of science.”Here, we use the available data
without assumptions on probability density, or stationarity, or Gaussianity, or ergodicity which are
frequently postulated in numerous works. According to Ley et al. (2020), “One of the biggest
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misconceptions related to the Big Data phenomenon is that the sole fact of having massive data sets will
solve all problems. Nothing is less true, because data do not speak by themselves (though this sentence is
often incorrectly used).” In this paper, we suggest the data to be enclosed by a polyhedron and then the
region to be inflated in order to anticipate future data.

The pertinent question arises on how to obtain the minimum convex polyhedron envelope of the
sample points, that is, the convex hull. A variety of convex hull algorithms have been studied by present
authors, such as Graham’s Scan, Divide and Conquer, Jarvis’ March, Andrew’s Monotone Chain, and
Quick Hull Algorithm (Graham, 1972; Jarvis, 1973; Andrew, 1979; Preparata, 1979; Barber et al., 1996).
Therefore, there is no difficulty, in principle, in introducing convex polyhedron into engineering as a new
convex model to quantify uncertainty.

In addition, uncertainty problems often face the problem of solution efficiency. For the interval model
with uncertainty, the vertex method is an effective method to improve the calculation efficiency. For
example, Guo et al. (2009) found the bounds of structural response in the truss at the vertexes of the
interval set. Qiu et al. (2006) and Qiu and Wang (2009) presented a vertex solution to estimate the static
displacement bounds and dynamic response of structures with uncertain-but-bounded parameters. The
interested reader can consult also with papers by Dong andWong (1985) and Dong and Shah (1987). The
interval variation region can be regarded as a hyper-cuboid, which is a special case of the convex
polyhedron. However, there is no research conducted up to now on whether the vertex method is
applicable to the convex polyhedron model.

We must emphasize that there is little research on how to use convex polyhedron approach to quantify
uncertainty; likewise, there is no research on the uncertain linear programmingwith uncertain coefficients
quantified by convex polyhedron models. This paper studies the uncertain linear optimization of
engineering structure in the absence of detailed sample information and focuses on the characteristics

Figure 1. Comparison between interval model and convex polyhedron model.
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of the optimal solution set and the method of solving convex polyhedron linear programming. Section 2
introduces the uncertainty quantification method of the convex polyhedron models. Moreover, the model
modification approach is employed via Chebyshev inequality, as introduced by Elishakoff and Sarlin,
2016. Section 3 defines the convex polyhedron-based linear programming. In Section 4, a practical vertex
solution is discussed. Section 5 deals with the application of convex polyhedron linear programming in
the static load-bearing capacity problem. In Section 6, some numerical examples are provided to verify the
feasibility of the proposed vertex solution method.

2. Quantification of Sample Points by Convex Polyhedron Model

This section introduces the definition of a convex polyhedron and proposed the quantification method of
uncertainties by convex polyhedron model.

Convex polyhedrons are common convex sets in the n-dimensional spaces. For example, convex
polyhedrons in a two-dimensional space are polygons. In a three-dimensional space, a solid surrounded
by four ormore polygons is named a polyhedron, andwhen this polyhedron is on the same side of any face
of itself, it can be called a convex polyhedron.

Convex polyhedrons can be expressed by the convex combination of vertex or by the intersection of
appropriate half spaces (Rockafellar, 1970):

(a) If we know all the vertices xi of a convex polyhedron, where xi is a point in an n-dimensional space

xi ¼ x1,i,x2,i,…,xn,ið Þ, i¼ 1,2,…,m (1)

then any point x in this convex polyhedron satisfies the following equality:

x¼
Xm
i¼1

αixi,
Xm
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,…,m

 !
: (2)

The convex polyhedron can be expressed by the following set:

X ¼ x : x¼
Xm
i¼1

αixi,
Xm
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,…,m

( )
: (3)

Figure 2 gives the example of a convex polyhedron in a two-dimensional space, inside of which point x
can be represented as

x¼
X8
i¼1

αixi,
X8
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,…,8

 !
: (4)

Figure 2. Example 1 of a convex polyhedron (two-dimension).
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(b) On the other hand, any point in this convex polyhedron also satisfies the following inequality:

Ax ≤ b, (5)

where the faces of the convex polyhedron are given by

a1x¼ b1,

a2x¼ b2,

⋮
anx¼ bn,

(6)

then the vectors in Equations (5) and (6)

A¼

a1
a2
⋮
an

0
BBB@

1
CCCA, b¼

b1
b2
⋮
bn

0
BBB@

1
CCCA (7)

in the convex polyhedron can be expressed by the following set:

X ¼ x :Ax ≤ bf g: (8)

Figure 3 gives the example of a convex polyhedron in a two-dimensional space.

2.1. Quantification of sample points by convex polyhedrons

Now we can use a convex polyhedron to quantify a limited number of sample points. For the sake of
simplicity, the quantification of the following two-dimensional sample points by convex polyhedron
model is first considered (note that different dimensions of each sample point xi,yið Þmay be connected).
The data points are shown in Figure 4. As is stated in the introduction, the key to the quantification is to
find the convex hull of the sample points. By convex hull algorithms, we can easily find the minimum
convex polyhedron that envelops all data points, which is illustrated in Figure 5.

2.2. Modification of the quantification results

Figure 3 provides data from conducted experiments. But there is a possibility that sample points from
future experiments fall outside the existing geometric figures (Sarlin and Elishakoff, 2016). Figure 6
depicts some possible future experimental data, in which blue points fall inside the convex polyhedron
while red points fall outside. To forecast the future data, the convex hull calculated from available data

Figure 3. Example 2 of a convex polyhedron (two-dimension).
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needs to be enlarged. A probability approach has been proposed to inflating the bounding figures by
Chebyshev Inequality via suggestion by Elishakoff and Sarlin (2016):

(a) Produce the initial convex hull enclosing the set of points:

X ¼ x : x¼
Xm
i¼1

αixi,
Xm
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,…,m

( )
(9)

or

X ¼ x :Ax ≤ bf g, (10)

where x denotes all the set of points.
(b) Use Chebyshev inequality to decide the magnitude of the inflation coefficient of the initial convex

hull:

∀ε> 0, P S�E S½ �ð ÞTΣ�1 S�E S½ �ð Þ ≥ ε
� �

≤
n
ε
, (11)

where ε is the inflation coefficient, S denotes the set of points, E[S] represents the mean value of S, Σ is the
variance–covariance matrix, and n is the dimension of this problem. If ε has been chosen, we get an ellipse
(or an n-dimensional ellipsoid) Ech as follows

x�E S½ �ð ÞTΣ�1 x�E S½ �ð Þ¼ ε (12)

(c) With the mean value of data as the center, enlarge the initial convex hull until inscribed to the ellipse
Ech. The probability of future points falling outside the new convex polyhedron should be less than n

ε
according to Equation (11).

5 6 7 8 9 10 11 12 13 14 15
x

5

6

7

8

9

10

11

12

13

14

15

y

Figure 4. The set of sample points.
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Notice that it is not straightforward to find the exact enlarging coefficient especially for n-dimension
conditions. If we denote the enlarging coefficient as k, the volume of the n-dimensional convex
polyhedron as Vp, the volume of the n-dimensional ellipsoid as VE, then the coefficient can be
approximately computed by

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VE=Vp

n
q

: (13)

Although the enlarged convex polyhedron is not inscribed to the ellipse in this condition, it is a practical
method to obtain k in engineering practice.

Now we apply this method to modify the original convex hull in Figure 5 and check the anticipated
future data in Figure 6. The actions to be undertaken are as follows:

(a) Produce an initial convex hull.
This convex hull has been produced in Figure 5.
(b) Choose the magnitude of the inflation coefficient.
E[S] and Σ can be obtained from the initial data in Figure 4:

E S½ � ¼ 4:9395,4:7144ð ÞT , (14)

Σ¼ 0:62194 �0:12696

�0:12696 1:10190

� �
: (15)

If we let ε¼ 8, the ellipse Ech is as follows

x�E S½ �ð ÞTΣ�1 x�E S½ �ð Þ¼ 8 (16)

5 6 7 8 9 10 11 12 13 14 15
x
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8
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11

12

13

14

15

y

Figure 5. The quantification of sample points by convex polyhedron model.
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and the probability of future points outside of the ellipse will be P ≤ 2=8¼ 0:25. Figure 7 shows the
ellipse.

(c) Enlarge the initial convex polyhedron.
Use the approximate method to calculate the enlarging coefficient:

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VE=Vp

n
q

≈ 1:538: (17)

With the enlarging coefficient k, every new point x0 of the enlarged convex polyhedron can be expressed
as

x0 ¼E S½ �þ k x�E S½ �ð Þ: (18)

The equations of convex polyhedron will be the following, according to Equations (9) and (10)

X 0 ¼ x0 : x0 ¼
Xm
i¼1

αix
0
i,
Xm
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,⋯,m

( )
(19)

or

X 0 ¼ x0 :A k�1 x0 �E S½ �ð ÞþE S½ �� �
≤ b

� �
: (20)

The result shows in Figure 8: All the future points, with certain probability, associatedwith theChebyshev
inequality, fall into the new convex polyhedron, as is depicted in Figure 9.

3. Problem Statement

The standard form of the linear programming model is as follows:

5 6 7 8 9 10 11 12 13 14 15
x

5

6

7

8

9

10

11

12

13

14

15

y

Figure 6. The position between hypothesized future sample points and the convex polyhedron.
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min cTx
� �

s:t: Ax¼ b

x ≥ 0

, (21)

where A is a deterministic matrix, while b and c are deterministic vectors. In engineering applications,
when the uncertainty of material properties, external load, and so on, cannot be neglected, uncertain
parameters A, b and c should be used instead of deterministic ones.

In this study, for parameters with unknown but bounded uncertainties, the convex polyhedronmodel is
introduced for quantification:

A¼ A :A¼
XnA
i¼1

αiAi,
XnA
i¼1

αi ¼ 1, αi ≥ 0, i¼ 1,2,⋯,nA

( )
,

B¼ b : b¼
Xnb
j¼1

β jb j,
Xnb
j¼1

β j ¼ 1, β j ≥ 0, j¼ 1,2,⋯,nb

( )
,

C¼ c : c¼
Xnc
k¼1

γkck,
Xnc
k¼1

γk ¼ 1, γk ≥ 0, k¼ 1,2,⋯,nc

( )
,

(22)

where Ai, b j , and ck denote vertexes of the polyhedronsA, B, and C, respectively. For example, if Ai is a
m�nmatrix, it can be regarded as a point in Rm�n, thereforeA represented byAi is a polyhedron in space
Rm�n.

Then, the convex polyhedron model of linear programming problem is given by

5 6 7 8 9 10 11 12 13 14 15
x
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13

14

15

y

Figure 7. The ellipse enclosing the convex hull.
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min cTx
� �

s:t: Ax¼ b

c∈C,A∈A,b∈B

x ≥ 0

: (23)

In whichA, B, and C are quantified through Equation (22). The optimal solutions of convex polyhedron
linear programming (23) should be a set denoted as X , which contains optimal solutions of determining
linear programming for every A, b, and c of A, B, and C, respectively:

X ¼ x∗ : x∗ is an optimal solution of 1ð Þ, c ∈ C,A ∈ A,b ∈ Bf g: (24)

4. Vertex Solution Method of Convex Polyhedron Linear Programming

In this section, the vertex solution for efficiently solving convex polyhedron linear programming (23) is
discussed.

4.1. Notes about optimal solutions

For any A, b, and c in Equation (23), they can be expressed by the linear combination vertexes of
polyhedrons A, B, and C:

A¼
XnA
i¼1

αiAi, b¼
Xnb
j¼1

β jb j, c¼
Xnc
k¼1

γkck: (25)

According to the fundamentals of the linear programming problem, the optimal solution is obtained at the
vertices of the convex set of its feasible region. As the coefficient αi, β j, and γk change,A, b, and c as well

5 6 7 8 9 10 11 12 13 14 15
x
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6

7

8
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10

11

12

13

14

15

y

Figure 8. The enlarged convex polyhedron.
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as the optimal solution change, but the optimal solution is still obtained at the vertices of the new feasible
region.

Therefore, if we choose one vertex ofA, B, and C denoted as Ai,b j, and ck respectively, the following
single linear programming model is obtained:

min cTk x
� �

s:t: Aix¼ b j

x ≥ 0

: (26)

One then represents the optimal solution of Equation (26) as x∗ijk , and solves the above linear programming
problem for any combination of Ai,b j,ck. A set of those optimal solutions is as follows:

X v ¼ x∗ijk : i¼ 1,2,…,nA, j¼ 1,2,…,nb, k¼ 1,2,…,nc
n o

: (27)

Since the programming problem (23) is linear, it is natural to conjecture that the set of linear combinations
of x∗ijk(denoted by X 0) may be used to approximately quantify the solution set X :

X 0 ¼ x∗ :
X
i, j,k

μiν jυkx
∗
ijk ,
X
i

μi ¼ 1,
X
j

ν j ¼ 1,
X
k

υk ¼ 1, μi, ν j,υk ≥ 0,

(

i¼ 1,…,nA, j¼ 1,…,nb, k¼ 1,…,ncg:
(28)

However, the correctness of this conjecture should be rigorously established. In Section 4.2, this
conjecture is proved. In Section 4.3, a vertex solution method of convex polyhedron linear programming
problem is presented.

5 6 7 8 9 10 11 12 13 14 15
x

5

6

7

8

9

10

11

12

13

14

15

y

Figure 9. The position relationship between future sample points and the inflated convex polyhedron.
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4.2. Properties of the optimal solution set

First of all, the necessary condition for every optimal solution is proved. In Appendix A, the relation
between the optimal solution set X and the set X 0 is studied.

This section studies the properties of the optimal solution and gives a necessary condition that every
optimal solution of (23) should satisfy. To simplify the discussion, the following assumption is made:
Small variations ΔA, Δb, and Δc will change the position of the optimal solution without altering the
numbers of vertices and the corresponding vertices of the optimal solution.

First of all, A,b,c can be expressed by the sum of nominal value and variation:

A¼A0þΔA, b¼ b0þΔb, c¼ c0þΔc (29)

then vertices of polyhedrons A, B, and C can be written as

Ai ¼A0þΔAi, b j ¼ b0þΔb j, ck ¼ c0þΔck: (30)

By substitution of (30) into (22), every A, b, and c will be represented as follows

A¼
X
i

Ai ¼
X
i

αi A0þΔAið Þ,

b¼
X
j

b j ¼
X
j

β j b0þΔb j
	 


,

c¼
X
k

ck ¼
X
k

γk c0þΔckð Þ:

(31)

A linear programming problem for A0, b0, and c0 is

min cT0x
� �

s:t: A0x¼ b0
x ≥ 0

: (32)

The optimal solution of (32) is denoted as x∗0. According to Equation (31), a linear programming problem
concerning A, b, and c can be converted to

min
X
k

γk c0þΔckð Þ
" #T

x

( )

s:t:
X
i

αi A0þΔAið Þ
" #

x¼
X
j

β j b0þΔb j
	 


x ≥ 0

: (33)

On the one hand, denote the optimal solution of (33) as x∗. The variation between x∗ and x∗0 is Δx∗

x∗ ¼ x∗0þΔx∗: (34)

Substitution of (34) into the constraint condition of (33), and using the constraint condition of (32), the
following equation is obtained X

i

αiAix
∗ ¼
X
j

β jb j: (35)

On the other hand, according to the assumption in the second paragraph of this section, ck does not affect
the optimal solution. For any combination of Ai,b j,ck, the vertex solution of the corresponding linear
programming problem is expressed as x∗ij ¼ x∗0,ijþΔx∗ij. The set of x

∗
ij is denoted by

X v¼ x∗ij : i¼ 1,2,…,nA, j¼ 1,2,…,nb
n o

: (36)

The linear combination of x∗ij is represented by
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X 0 ¼ x :
X
i, j

μiν jx
∗
ij,
X
i

μi ¼ 1,
X
j

ν j ¼ 1, μi ≥ 0, ν j ≥ 0, i¼ 1,2,…,nA, j¼ 1,2,…,nb

( )
: (37)

The solution x∗ij should satisfy the constraint condition:

Aix
∗
ij ¼ b j: (38)

It can be shown that every optimal solution x∗ can be expressed by the linear combination of vertex
optimal solutions x∗ij. The detailed demonstration is given in Appendix A. The following conclusions are
drawn:

The optimal solution set X of convex polyhedron linear programming (23) is contained in set X 0:

X ⊆ X 0 (39)

which means that for any A ∈ A,b ∈ B, and c ∈ C, the optimal solution of the corresponding linear
programming can be regarded as the linear combination of x∗ij. Therefore, we can use X

0 to approximate
the optimal solution set X . Furthermore, notice that x∗ij is not necessarily the vertex of X

0, but the convex
hull of X v can be easily calculated to express X 0 in practical application:

X 0 ¼ co X vð Þ: (40)

Determining X by Equation (40) is more efficient with the help of various convex hull algorithms.

4.3. Vertex solution method

In short, the following vertex solution can be formulated for convex polyhedron linear programming:
Vertex Solution Statement: For a convex polyhedron linear programming problem (23), the optimal

solution set of is approximately a polyhedronX , the vertices ofX are elements of the setX v, andX can be
expressed by the convex hull of X v.

Note that we use “approximately” in the vertex solution statement, because the proof in Appendix A
is based on Equation (A.4), which is a “necessary condition” of optimal solutions. Although the
vertex solution statement holds approximately, the proof in Appendix A indicates that all the optimal
solutions should be contained in set X 0, which means no optimal solutions will be missed when using this
statement.

When using the vertex solution, first we need to solve linear programming for any combination of
Ai,b j,ck and obtain optimal solution x∗ijk :

min cTk x
� �

s:t: Aix¼ b j

x ≥ 0

: (41)

Then set X v can be expressed as:

X v ¼ x∗ijk : i¼ 1,2,…,nA, j¼ 1,2,…,nb, k¼ 1,2,…,nc
n o

: (42)

Finally, the optimal solution set of Equation (23) can be calculated by any convex hull algorithm:

X ≈ co X vð Þ: (43)

Figure 10 gives the flow chart of the vertex solution algorithm.
Note that the material in Section 4 is based on the standard form of convex polyhedron linear

programming problem, which means the constraint conditions should be linear equations instead of
linear inequalities. Therefore, in the subsequent numerical examples, each established convex polyhedron
linear programming will be converted into the standard form.
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5. Application of Convex Polyhedron Linear Programming: Static Load-Bearing Capacity
Problem

In this section, the static load-bearing capacity problem of a structure is taken as an example to show how
to construct a model of convex polyhedron linear programming.

Figure 10. Flow chart of vertex solution.
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The static response equation of structure is given in the standard form:

Ku¼ f , (44)

where K is a n�n matrix and u, f are n�1 vectors. Considering the uncertainties in material and
geometry, the stiffness matrix and load vector can be quantified as belonging to the convex polyhedra (the
dimension should be smaller than n2 and n, respectively). Moreover, for linear elastic structures, if only
elastic modulus belongs to a convex polyhedron E, the convex polyhedral dimensions of the stiffness
matrix also belong to a convex polyhedronK, and the dimension ofK is the same asE, since the stiffness
matrix is linear with respect to the elastic modulus. Therefore, in the problem where only the elastic
modulus is uncertain, the convex polyhedron of stiffness matrices can be converted to the convex
polyhedron of the elastic modulus to improve efficiency.

Assume that the strength requirement of the structure is satisfied, and the displacements are constrained
by inequality u ≤ u0. The load-bearing capacity problem can be modeled as following uncertain linear
programming:

min cT f
� �

s:t: Df ≤ u0
D ∈ D

f ≥ 0

, (45)

whereD is the flexibility matrix. It can be proved thatD can also be regarded as a convex polyhedron. A
detailed demonstration is given in Appendix B. Therefore, the flexibility matrix can be approximated as
a convex polyhedron, and (45) then constitutes a convex polyhedron linear programming problem. In
addition, Equation (B.7) indicates that D is approximately linear with respect to elastic modulus since
Δksjs is linear concerning the elastic modulus. This reminds us of using the convex polyhedron of the
elastic modulus instead of that of a flexibility matrix in practice when only the elastic modulus is
uncertain.

Furthermore, (45) can be converted to a standard form of convex polyhedron linear programming:

min cT f 0
� �

s:t: Gf 0 ¼ u0
G ∈ G

f 0 ≥ 0

, (46)

G¼ D Ið Þ, f 0 ¼ f

f 0

� �
, c0 ¼ c

c0

� �
, (47)

where G is also a convex polyhedron because I is an identity matrix.
In the subsequent section, two static load-bearing capacity problems of plane truss and stiffened

composite plate, are provided as numerical examples.

6. Numerical Examples

Two examples will be presented to illustrate the structural optimization method through the
convex polyhedron model in Section 6. The first example focuses on the modeling approach by
studying the load-bearing capacity of a plane truss. The second case provides an uncertain optimi-
zation of a more complex engineering structure to show the feasibility of the proposed convex
polyhedron model.
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6.1. The load-bearing capacity of plane truss

The first example considers the load-bearing capacity of plane truss with displacement constraint, as
shown in Figure 11. Nodes 4, 5, 8, and 9 are fixed. The y-direction load is applied at node 1. The nominal
elastic modulus and cross-sectional area of each rod are 210 GPa and 1 � 10�4 m2, respectively.

Due to the scatter in the material properties and manufacturing errors, the elastic modulus and cross-
sectional area are uncertain. The sample points of elastic modulus and cross-sectional area are plotted in
Figure 12, where the blue convex polyhedron is an inflated model by the method of 2.2 with the inflation
coefficient ε¼ 15. To facilitate comparison with another method, the data in Figure 12 comes from two
normal distribution:

E�N 210 GPa, 102 GPa2
	 


, A�N 1�10�4m2, 1�10�14 m4
	 


: (48)

The elastic moduli and cross-sectional areas can be different for each rod in this simple example.
Assume that the truss structuremeets strength requirements, and the displacements of node 1 in x and y-

directions are constrained. The displacement vector, load vector, and the corresponding stiffness matrix
are u¼ ux,uy

	 
T
, f ¼ 0, f y

	 
T
and K ¼ K11,K12;K21,K22f g, respectively, then we have:

Ku¼ f (49)

Using flexibility matrix:

D¼ D11 D12

D21 D22

� �
¼K�1 ¼ K22 �K12

�K21 K11

� �

det Kð Þ (50)

then Equation (49) can be transformed into:

Df ¼u (51)

As is shown in Section 5, the flexibility matrix can be approximated as a convex polyhedron. Let the
displacement constraint be u ≤ u0, and the convex polyhedron model of the linear programming problem
is as follows:

min f y
s:t: Df ≤ u0

D ∈ D

f y ≥ 0

: (52)

Let c¼ �1,0,0ð ÞT and transform (52) into the form of (23), then we have

Figure 11. Plane truss.
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min cT f y,x1,x2
	 
T

s:t: G f y,x1,x2
	 
T ¼u0

G ∈ G

f y,x1,x2
	 


≥ 0

: (53)

In which G¼ G1 G2½ �, G1 ¼
D12

D22

� �
, G2 ¼ 1�10�6 0

0 1�10�6

" #
m=N.

Next, we solve convex polyhedron linear programming (53) by vertex solution. First of all, using the
data in Figure 11 to evaluate the convex hull ofG1. Then use the vertex solution to obtain the vertexes of
the optimal solutions and the objective function values, which are listed in Table 1.

As is shown in Table 2, the lower bound of objective function value is f ∗min ¼�117:74 kN and the best
optimal solution is x∗ ¼ 1:17743,1:09E�14,0:001381ð ÞTkN , therefore the maximum load-bearing
capacity is 117:74 kN ; the upper bound of objective function value is f ∗max ¼�79:29 kN and the worse
optimal value is x∗ ¼ 0:792884,3:39E�10,0:065673ð ÞTkN , therefore the minimum load-bearing capac-
ity is 79.29 kN. Figure 13 plots the convex hull of the optimal solution set. In conclusion, to meet the
design requirements, the maximum load should not be higher than 79.29 kN.

To verify the effectiveness of our method, the Monte-Carlo simulation method was used for compar-
ison. The elastic modulus and cross-sectional area are normally distributed in Equation (48). The load fy is
chosen as the random variable, and the distribution function is obtained after 10,000 simulations as shown
in Figure 14.

Table 2 gives a comparison between convex polyhedron vertex solution method (CPVSM), interval
method (IM), and Monte-Carlo method (MCM). In the CPVSM method, the geometric gravity center is

0.995 0.996 0.997 0.998 0.999 1 1.001 1.002 1.003 1.004 1.005

A(×10-4m2)

170

180

190

200

210

220

230

240

250

E
(G

Pa
)

Figure 12. Elastic modulus and cross-sectional area sample points.
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regarded as the nominal value of the optimal solution. In the interval method, the midpoint of the optimal
solution interval is regarded as the nominal value. It is obvious that the optimal solution set of CPVSM is
included in the result of the MCM from Table 2, and there is a difference between the nominal values of
CPVSM and IM. Table 3 provided the quantiles of the Monte-Carlo method. It is found that the lower
bound 79.29 kN and nominal value 92.27 kN obtained by the convex polyhedron method are both
conservative for truss design.

6.2. The load-bearing capacity of stiffened composite plate

The stiffened composite plates composed of laminated plates and stiffeners have been widely used in
aircraft structures, which not only ensures the structural strength, but also reduces the manufacturing cost.
The stiffened composite plate considered in this paper is shown in Figure 15. The plate consists of one

Table 1. Vertexes of optimal solutions and objective function values (�105 N).

x f min

f y x1 x2

1.176636 1.21E-14 0.001637 �1.17664
1.100991 3.23E-15 0.021255 �1.10099
1.069615 4.66E-17 0.028607 �1.06961
0.866496 1.52E-12 0.079934 �0.8665
0.796667 1.41E-15 0.075442 �0.79667
0.792884 1.6E-14 0.072516 �0.79288
0.792884 5.73E-13 0.08144 �0.79288
0.792884 3.39E-10 0.065673 �0.79288
0.792884 2.38E-17 0.027569 �0.79288
0.803715 3.69E-15 0.016411 �0.80371
0.825314 2.29E-14 0.001878 �0.82531
0.825872 1.61E-14 0.001633 �0.82587
0.833115 0.001022 2.35E-14 �0.83311
0.837404 0.002552 2.34E-14 �0.8374
0.874386 0.011795 2.29E-14 �0.87439
0.898555 0.015576 2.27E-14 �0.89855
0.903728 0.015592 2.27E-14 �0.90373
1.131539 0.004654 2.57E-14 �1.13154
1.161805 0.002164 2.61E-14 �1.1618
1.17743 1.09E-14 0.001381 �1.17743

Table 2. Comparison between convex polyhedron vertex solution method, interval method, and Monte-
Carlo method.

Nominal value Lower bound Upper bound

(kN) (kN) (kN)

CPVSM 92.27 79.29 117.74
IM 99.62 85.28 113.95
MCM 102.17 84.73 120.97
Relative error (%) �7.53 0.65 �6.18

Abbreviations: CPVSM, convex polyhedron vertex solution method; IM, interval method; MCM, Monte-Carlo method.
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Figure 13. Convex hull of optimal solutions (�105 N).
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Figure 14. Distribution function of fy.
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panel, two stringers, and eight stiffeners, of which two stiffeners are lower and upper ends. The lower end
of the stiffened plate is fixed, and the rotational degrees of freedom and displacement perpendicular to the
panel of the upper end is constrained. Uniform load acts on the upper end along the long side of the panel.
The stringers and the panel are laminated plates, the sequence of laying is shown in Table 4. The stiffener
material is aluminum alloy.

Considering the scatter of properties of laminated plates, the elastic modulus of 0° and 90° were
obtained by testing a batch of standard parts, as shown in Figure 16, whose nominal values are 128 GPa
and 10GPa, respectively. In addition, suppose other properties areG12=G13= 5.50GPa, G23= 3.77GPa,
ν12 = ν13 = 0.316, ν23 = 0.3. At the same time, considering the scatter of aluminum alloy material, the
elastic modulus interval is [70,75] GPa and the Poisson’s ratio is 0.33. The initial (red) convex polyhedron
and the inflating ellipsoid of uncertain elastic moduli with 18 vertexes are plotted in Figure 17, and the
inflation coefficient is ε¼ 5. The initial (red) and enlarging (blue) convex polyhedron are plotted in
Figure 18. Parts of the same material have the same elastic moduli in this example.

Assuming that the strength of the stiffened wall meets the requirements, but the compression along the
long side of the panel should be limited. The plate is divided into 7,160 shell elements and the finite

Table 3. Quantiles of the Monte-Carlo method (�105 N).

0.001 0.005 0.01 0.1
fy (�105 N) 0.8813 0.9070 0.9162 0.9632

Figure 15. Stiffened composite plate.

Table 4. Laminated plate.

Orientations Single layer thickness/mm

Stringers 45°=0°ð Þ2=45°=45°=0°
� �

S
0.2

Panel 45°=0°ð Þ2=45°=45°=0°=45°
� �

S
0.2
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Figure 16. Elastic modulus test results of laminated plates.

Figure 17. Initial convex polyhedron and the inflating ellipsoid of uncertain elastic moduli.
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element model mesh is plotted in Figure 19. Figure 20 shows the displacement contour image of this
stiffened composite plate with nominal parameters and the uniform load on the upper end is 100 MPa.

Now concentrate on the load-bearing capacity of this plate. Taking the degrees of freedom of the upper
end along the long side of the panel into consideration. Let D be the flexibility matrix, after the
displacement constraints are considered, f and u0 be the column vectors of equivalent load and
permissible displacement respectively. D, f , and u0 only consist of components at the above degrees
of freedom.

According to the finite element modal, D is a 287-by-287 matrix, and f and u0 are 287-dimensional
column vectors. With the finite element method, the relationship of the uniform load P and the column
vector of equivalent load f is established with a 287-dimensional column vector l or c as

f ¼Pl orP¼ cT f (54)

Similar to example 1, the load-bearing capacity of this stiffened composite plate can be determined by the
convex polyhedron linear programming problem:

min cT f

s:t: Df ≤ u0
D ∈ D

f ≥ 0

: (55)

And (55) can be transformed into the following problem by applying formula (54):

Figure 18. Initial and enlarging convex polyhedron of uncertain elastic moduli.
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min P

s:t: DlP ≤ u0
Dl ∈ D0

P ≥ 0

, (56)

whereD0 is the convex hull ofDl. Furthermore, by introducing new variables P0, (55) can be transformed
into the following equivalent form:

min c0Tp0

s:t: Gp0 ¼ u0
G∈G

p0 ≥ 0

, (57)

where

G¼ Dl Ið Þ, p0 ¼ P

P0

� �
; c0 ¼ 1

0

� �
: (58)

Figure 19. Finite element model mesh.
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In which I is a 287-dimensional identity matrix and P0 is a 287-dimensional column vector. Similar to
example 1, it is easy to prove that G is a convex polyhedron. Therefore (57) is a standard form of a convex
polyhedron linear programming problem.

Assuming that thepermissible displacement of theplate is 10mm, the components ofu0 canbe set to 10mm.
By applying the vertex solution, only 18 linear programming procedures need to be solved. Notice that the
uniform load is the target functionof (57), so the convexpolyhedron of optimal solutions need not be calculated.

Figure 20.Displacement contour image of this stiffened composite plate with nominal parameters (mm).

Table 5. Uniform loads.

E11 (GPa) E22 (GPa) EAl_alloy (GPa) P (MPa)

93.41 10.16 68.72 92.40
83.06 9.95 68.72 88.87
100.43 9.68 68.72 93.56
116.15 9.57 68.72 97.53
132.86 9.65 68.72 101.72
171.54 9.87 68.72 110.42
181.67 10.00 68.72 112.65
173.46 10.28 68.72 111.63
106.98 10.39 68.72 96.63
93.41 10.16 76.28 95.72
83.06 9.95 76.28 92.01
100.43 9.68 76.28 96.92
116.15 9.57 76.28 101.07
132.86 9.65 76.28 105.47
171.54 9.87 76.28 114.57
181.67 10.00 76.28 116.91
173.46 10.28 76.28 115.86
106.98 10.39 76.28 100.17
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The 18 results are listed in Table 5. The nominal value of P is calculated from the geometric gravity center. The
nominal value and bounds of P are listed in Table 6. From Tables 5 and 6, the upper bound of loading bearing
capacity is 116.91MPa, and the lower bound of loading bearing capacity is 88.87MPa. Therefore, to meet the
design requirements in most cases, the maximum load should not be higher than 88.87 MPa.

7. Conclusion

As is explained in Section 1, there is usually no sufficient data available in engineering. Among the models
quantifying insufficient data, the interval model—one of the most widely used nonprobabilistic convex
models—usually fails to reflect the dependence between variables. As a result, the design results turn out to
be too conservative. The data-based convex polyhedron model is a natural extension of the interval model,
overcoming the shortcomings of interval models and helping obtain reliable design results.

The convex polyhedron model for uncertain linear optimization of engineering structure is studied in
this paper. Firstly, the convex polyhedron model for uncertainty quantification is studied. In order to
prevent the data from future experiments fall outside of the convex hull, beyond certain probability,
Chebyshev inequality has been applied to inflate the convex polyhedron.

Secondly, the characteristics of the optimal solution of the convex polyhedron linear programming
problem are investigated. The vertex solution of convex polyhedron linear programming is discussed. The
modeling method of convex polyhedron linear programming problemwith the example of a load-bearing
capacity problem of the structure is then introduced.

Finally, in the first example of the load-bearing problem of plane truss, the effectiveness of the vertex
solution is verified by comparison with the Monte-Carlo method. In the second example of stiffened
composite plates, one complex convex polyhedron linear programming is simplified into 18 linear
programming tasks, which demonstrates the calculation efficiency of the vertex solution method.
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Appendix A: Relation Between Optimal Solutions and Vertex Solutions
Sample appendix content. This section analyzes whether every optimal solution x∗ can be expressed by the linear combination of
vertex optimal solutions x∗ij.

We multiply both sides of by (35)
P
j
β j and

P
i
αi respectively. Equation (35) will be transformed intoX

i

X
j

αiβ jAix
∗ ¼
X
i

X
j

αiβ jb j : (A.1)

We then multiply both sides of Equation (38) by αiβ j, and calculate the sum over i and j, the following relation is obtainedX
i

X
j

αiβ jAix
∗
ij ¼
X
i

X
j

αiβ jb j : (A.2)

Then, comparing Equation (A.1) with (A.2), we obtainX
i

X
j

αiβ jAix
∗ ¼
X
i

X
j

αiβ jAix
∗
ij (A.3)

or in another form X
i

X
j

αiβ jAix
∗�
X
i

X
j

αiβ jAix
∗
ij ¼ 0: (A.4)

Equations (A.3) and (A.4) are the necessary conditions that every optimal solution x∗ of (23) should satisfy.

It is noteworthy that x∗ is a function of αi,β j , therefore, the first term of (A.3) and (A.4) cannot be simplified. Considering the
assumption at the beginning of 4.2, x∗ can be uniquely determined if αi,β j are given by using (A.3) or (A.4).

This work can be done by analyzing every x∗0 ∈ X 0 and every x∗0∉X 0. The necessary condition (A.4) will be used to check
whether x∗0 may be one optimal solution of the problem (23) or not.

1. ∀x∗0 ∈ X v⊆X 0.
it is obvious that x∗0 ∈ X .

2. ∀x∗0 ∈ X 0.
According to (37), x∗0 can be determined as x∗0 ¼ P

i1, j1

μi1ν j1x
∗
i1 j1

. Therefore, check the necessary condition as follow

X
i

X
j

αiβ jAix
∗0 �

X
i

X
j

αiβ jAix
∗
ij ¼
X
i1, j1

X
i

αiAið Þμi1ν j1x
∗
i1 j1

� 1
nAnb

X
i

X
j

αiβ jAix
∗
ij

� �" #
: (A.5)

Applying the equation Aix∗ij ¼ b j and
P
i
αiAix∗0 ¼ b, the second term in Equation (A.5) can be transformed into

1
nAnb

X
i

X
j

αiβ jAix
∗
ij

� �
¼ 1
nAnb

X
i

X
j

αiβ jb j

¼ 1
nAnb

X
i

αiAix
∗0

¼ 1
nAnb

X
i

αiAi

X
i2, j2

μi2ν j2x
∗
i2 j2

,

(A.6)

where nA and nb identify the number of vertices of polyhedrons A and B, respectively. Substituting the equation above into
Equation (A.5), the following result is obtained

X
i

X
j

αiβ jAix
∗0 �

X
i

X
j

αiβ jAix
∗
ij ¼
X
i

αiAi

X
i1, j1

μi1ν j1x
∗
i1 j1

� �
� 1
nAnb

X
i1, j1

X
i2, j2

μi2ν j2x
∗
i2 j2

" #
(A.7)

Therefore, Equation (A.4) holds. That is, if x∗0 ∈ X 0, x∗0 maybe an optimal solution of (23). On the other hand, if Equation (A.4)
does not hold, x∗0 does not belong to X 0. We use “maybe” here because (A.4) is a “necessary condition,” not a “sufficient and
necessary condition”: Equation (A.4) is necessary for all optimal solutions, and there exist x∗0 satisfying Equation (A.4) is not an
optimal solution of (23).

3. ∀x∗∉X 0.
Assuming that x∗0 ¼ P

i1, j1

μi1ν j1x
∗
i1 j1

þxi0 j0 , where xi0 j0 6¼ 0 and
P
i1, j1

μi1ν j1x
∗
i1 j1

þxi0 j0 ≥ 0. The constraint condition holds as

P
i
αiAi

P
i1, j1

μi1ν j1x
∗
i1 j1

þxi0 j0

 !
¼ b. Similar to ii), the necessary condition is checked as
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X
i

X
j

αiβ jAix
∗0 �

X
i

X
j

αiβ jAix
∗
ij

¼
X
i

αiAið Þ
X
i1, j1

μi1ν j1x
∗
i1 j1

þ 1
nAnb

xi0 j0

� �
� 1
nAnb

X
i1, j1

X
i2, j2

μi2ν j2x
∗
i2 j2

" #

¼
X
i

αiAið Þxi0 j0

¼ A0þ
X
i

ΔAi

 !
xi0 j0 :

(A.8)

To satisfy Equation (A.4), it is required that A0þ
P
i
ΔAi

 !
xi0 j0 ¼ 0. Consider small quantities of zero order and first order:

A0xi0 j0 ¼ 0

ΔAixi0 j0 ¼ 0, i¼ 1,2,…,nA

�
: (A.9)

In practice, the number of vertices of polyhedron A calculated from samples often larger than the equation number in (A.9),
which means that simultaneous Equations (A.9) have no solution. Therefore, case (3) is not true. That is, if x∗0∉X 0, x∗0 is not an
optimal solution of (23).

Appendix B: Demonstration that Flexibility Matrices can be Quantified as a Convex Polyhedron
The perturbation method will be used to demonstrate that D can also be regarded as a convex polyhedron in Appendix B.

The elements of K and D are denoted by kij and dij, and kij can be expressed by

kij ¼ k0,ijþΔkij (B.1)

The determinant of K is as follows:

det Kð Þ¼
X

j1, j2,⋯, jn

�1ð Þτ j1 j2⋯ jnð Þk1 j1k2 j2⋯knjn , (B.2)

where τ j1 j2⋯ jnð Þ represent the number of inversions in j1, j2,…, jn. Denote the algebraic cofactor of kij as K ij, then K ij can be
computed as:

K ij ¼ �1ð Þiþj
X

j1, j2,⋯, jn�1 6¼j

�1ð Þτ j1 j2⋯ jn�1ð Þk1 j1⋯k i�1ð Þ ji�1
k iþ1ð Þ jiþ1

⋯knjn (B.3)

We substitute (B.1) into (B.2) and (B.3). The determinant of K and the algebraic cofactor of kij are transformed into

det Kð Þ¼
X

j1, j2,…, jn

�1ð Þτ j1 j2⋯ jnð Þ k0,1 j1k0,2 j2⋯k0,njn þ
Xn
s¼1

Δksjs
Y
l 6¼s

k0,ljl

 !"

þ
Xn
s, t¼1

ΔksjsΔktjt
Y

l 6¼s, l 6¼t

k0,ljl

 !
þ⋯þΔk1 j1Δk2 j2⋯Δknjn

# (B.4)

K ij ¼
X

j1, j2,⋯, jn�1 6¼j

�1ð Þiþjþτ j1 j2⋯ jn�1ð Þ k0,1 j1⋯k0, i�1ð Þ ji�1
k0, iþ1ð Þ jiþ1

⋯k0,njn þ
Xn
s¼1

Δksjs
Y

l 6¼i, l 6¼s

k0,ljl

 !"

þ
Xn
s, t¼1

ΔksjsΔktjt
Y

l 6¼i, l 6¼s, l 6¼t

k0,ljl

 !
þ⋯þΔk1 j1⋯Δk i�1ð Þ ji�1

Δk iþ1ð Þ jiþ1
⋯Δknjn

#
,

(B.5)

where the zero-order items in (B.4) and (B.5) are represented as det K0ð Þ and K0,ij. Combining Equations (B.4) and (B.5), dji can be
represented as:

dji ¼ K ij

det Kð Þ (B.6)

We retain the first-order small quantities of Equation (B.6). The following expression is obtained:
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dji ¼ K0,ij

det K0ð Þþ
1

det K0ð Þ
X

j1, j2,⋯, jn�1 6¼j

Xn
s¼1

�1ð Þiþjþτ j1 j2⋯ jn�1ð Þ Δksjs
Y

l 6¼i, l 6¼s

k0,ljl

 !

� K0,mn

det2 K0ð Þ
X

j1, j2,⋯, jn

Xn
s¼1

�1ð Þτ j1 j2⋯ jnð Þ Δksjs
Y
l 6¼s

k0,ljl

 ! (B.7)

We denote the zero-order term and first-order small quantity as d0,ji and Δdji. SignifyD0 ¼ d0,ij
	 


n�n, then the flexibility matrix
is written as

D¼D0þ Δdij
	 


n�n (B.8)

The former term of Equation (B.8) is the inverse of the nominal matrix K0, while the latter term is a linear combination of
matrices that only contains the first-order small quantity Δdij. It is obvious that the latter term is convex according to the convex
property of Δksjs .
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