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ON THE ZEROS OF THE POWER SERIES 
00 

Z(-im-c-n-iTzn 

n=0 

WITH AN APPLICATION TO DISCONTINUOUS 
RIESZ-SUMMABILITY 

BY 

D. BORWEIN AND W. KRATZ 

1. On the zeros of Zn=o( - l ) n ( l - c " n - 1 ) K z n . K not stated otherwise, we 
assume throughout that K > 0 , C > 1 , and that k < K < k + l where 
fc = 0 ,1 , 2, We reserve the symbol x to denote real numbers, and define 
C* = C-{x:x<-l}, C being the complex plane. Let 

oo 

<t>(z) = <t>(z,c,K) = I ( - 1 ) " ( 1 - c - ' - ' r z " . 
n = 0 

The series defining <\>(z) is only convergent for | z | < l , but Lemma 1 (1) 
(below) shows that </>(z) is a meromorphic function in C with simple poles at 
z = - c n , n = 0 , 1 , 2 , . . . . The zeros of <j>(z) have been investigated by 
Peyerimhofï [3], and the following theorem is due to him. 

THEOREM P. <f>(z) has exactly k zeros in the region C*, and they are all 
positive and simple. [3, Theorem 5]. 

REMARK. We denote the zeros of <\>{z) = <\>(z, c, K) by r^c, K), i = 1 , . . . , k 
with 0<ri(c , K ) < - • - < r k ( c , K). Since the zeros are simple, we have 
(/>'(rj(c, K))T*0; and therefore every rt(c, K) is an analytic function of c and K 

for c > l , K > 0 , by implicit function theory [1, 10.2]. 

In this part of the paper we prove the following theorem on the monotonicity 
of the zeros rt(c, K). 

THEOREM 1. Every zero rt(c, K) is a strictly increasing, unbounded function of c 

with (d/dc)ri(c, K)>0. 

Wirsing [4] proved: 

THEOREM W. Every zero rt(c, K) is a strictly decreasing function of K with 

(d/dKMc, K ) < 0 . 
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418 D. BORWEIN AND W. KRATZ [December 

We shall use the following notation: 

-—trW;) 
for n = 0 , 1 , 2 , . . . , where I ) denotes the binomial coefficient; 

$(z) = i/r(z, c, K) = -zcj)(z, c, K); 

i//(z) = ^i(z, c, K) =— ï/r(z, c, K); 
oZ 

^2(2:, c, K)=—i | f (z , c, K); 
dc 

k + 1 

e(z) = e(z,c,K) = 4>'(z)U(cv + z). 
v = 0 

We need some auxiliary results: 

LEMMA 1. For z^-cn, n = 0 , 1 , 2 , . . . , 

(1) <MZ,C,K)= Ë A - " " 1 - ^ — ; 
n=0 C +Z 

(2) ^(z, c, K +1) = i//(z, c, K) ^ iM - ,C,K\; 

(3) i//2(z, C,K + 1) =-^—2— i/>i(- , c, A 

Proof. Expanding (1 - c"n~1)K into a binomial series we get (1). We can derive 
(2) and (3) directly from the power series representation of i//(z, c, K). 

The proof of Theorem 1 is based largely on the following lemma: 

LEMMA 2. For all x>-l, (-l)k6(k+1\x)>0. 

Proof. Using formula (1) we get 

00 

n=0 

where 

with w = cn + JC. We consider two cases. 
First, let n<fc + l. Then 

jU*) = ( - l ) n — + P k ( w ) w 
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where Pk(w) is a polynomial of degree fc in w, and 

Mn = nf[(cn-cv) f l (cv-cn)>0. 
v=0 v = n + l 

Hence 

/ d \k+1 M 

(-i)k+iAr-v(—J ^u)=(-îrAr^c^fc+DI ~ > o 
for JC > —1. 

Next, let n > fc + 1 . Expanding W^tl (w + cv - cn) in powers of w, we get 

Mx) = (-l)k+2M„(-V- I -^-r) + ft(w) 

where Pk(w) is a polynomial of degree k in w and 

Mn=n(cn-c")>0. 

Hence 

(-l)k+1A--1cn(£j+\n(x) 

= (_ i r^-v^#M/f4^4- f c-2),o 
w W e -c / 

for x > - l , since ( - l ) k + 1 A~ K _ 1 >0 when n>fc + l. 
It follows that 

(-l)fc+1e(fc+1)(x) = ( - l ) k + 1 ( - I o A r ' c " ( £ + V w ) < 0 for x > - 1 . 

Proof of Theorem 1. By Lemma 2, 0(x) has at most k + 1 zeros in the range 
x > — 1, and consequently the same holds for ^'(JC). By (2), with z = ^(c, K + 1) = rh 

we have i/f(ri? c, K) = ^(^/c, c, K) and hence i//,(xi) = 0 for some xf e (rj/c, rf), 
i = l , . . . , k + l. 

Peyerimhofï has shown that 0 < ri/c < rx < r2/c < • • • < rk < rk+1/c < rk+i 
[3, p. 210]. Thus the fc + 1 numbers xu x 2 , . . . , xk+1 are distinct and they yield all 
the zeros of I/>'(JC) in the range x>— 1. Hence 

(4) (AI(^(C,K + 1 ) / C , C , K ) ^ 0 . 

Next, by (3) and (4) with K -1 in place of K, we have 

c2ip2(ri(c, K), C, K) = /^(c, /Oi/^r^c, K)/C, c, K - 1 ) ^ 0. 

We also have that ^i(rf(c, K), C, K) ^ 0, since the zeros of <j>(z) are simple in C* 
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by Theorem P. Hence 

drt(c, K) ip2(ri(c, K),C, K) 
?*0 for C > 1 , i = l , . . . , fc. 

dc ^IMC, K), C, K) 

In order to prove that (dldc)rt(c, K) > 0 it suffices to show that 

lim ri(c, K) = OO. 

For fixed K > 0, we have 

lim (f>(x, c, K) = lim £ A""" 1
 w = —— 

c^°° c ^°°n = 0 C + X 1+JC 

uniformly for x>0. Therefore, given r > 0 , there exists s such that 

^' c 'K ) s2(ÏT7j> 0 

whenever c > 5 and 0 < x < r . It follows that r"i(c, * ) > r whenever c>s, and 
hence that limc^oo n(c, K) = oo. 

2. On the equivalence of discontinuous Riesz-summability with 
convergence. Let {An} be an unbounded increasing sequence of non-negative 
numbers. Given a series YA a™ and a number K > 0, let 

A;(x)= X (x-An)Kan. 
A n < x 

If x~KA^(x) —> s as x —» oo5 the series XT #n is said to be summable (JR, An, K) to 
5. The series is said to be summable by the discontinuous Riesz method 
(i?*, An, K) to s if AnKAx(An) -> s as n -» oo. 

We shall discuss the equivalence of (JR*, An, K) with convergence in the 
special case An = cn for some c > 1. The following results on the equivalence of 
(R*, An, K) with convergence are known. 

THEOREM K 1. If lim infn_^o An+i/An> 1, then (R*, An, K) is equivalent to 
convergence for 0 < K < 1 and /or K = 2 ; SO fhaf (JR*, cn, K) is equivalent to 
convergence for every c>l when 0 < K < 1 and when K = 2 . (See Kuttner 
[2, Theorem 2].) 

In the same paper Kuttner proved the following results: 

THEOREM K 2. If 1<K<2, then (JR*, cn, K) is equivalent to convergence for 
every c>\. [2, Theorem 4]. 

THEOREM K 3. If K>2, then there is a c0 = C0(K) such that (R*, cn, K) is not 
equivalent to convergence whenever 1< c < c0. [2, Theorem 3]. 

THEOREM K 4. In order fhaf (JR*, cn, K) fee equivalent to convergence for K > 1, 
c > l , it is necessary and sufficient that (j>(z, c, K)^0 for | z | ^ l , z ^ — 1 . 
[2, Lemma 3]. 
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We shall prove the following theorem. 

THEOREM 2. There exists a function C(K), defined on [0, o°), such that 
(a) (i?*, cn, K) is equivalent to convergence if and only if C>C(K); 

(b) C(K) is continuous and monotonie non-decreasing on [0, oo) with C(K) = 1 
/or 0 < K < 2 , and C'(K)>0 for K > 2 ; 

(c) C(K) is analytic for K>2, and for sufficiently large K, 
oo 

C(K)= X CnK~n, 
n = - l 

where c_i = l/log2, c0 = —I and Ci = - 6 + ( if- log2)log2; so tfiaf 

K 3 
C(K) = -—--- + 0(1) as K ^ O O . 

log 2 2 

We write /K(c) = 0(1 , c, K). Since 

MZ,C,K)= t ( - ! ) " ( ( ! - 0 — ^ - 1 ) 1 " + - ^ - for | z | < l , 

we have 

(5) /„(<:) = *+ £ (-l)"((l-c-"-V-D. 
n = 0 

For K > 2 , let 

SK = { c > l : 0(r, c, K) = 0 for some re[0,1]}; 

C(K) = sup SK; 

c(K) = sup{c>l: /K(c) = 0}. 

Note that SK ̂  0 (since l e S K for every K > 2 ) and that C(/C)<C(K). 

For the proof of Theorem 2 we need two lemmas. 

S K = [ 1 , C ( K ) ] ; 

C(K)>1 for all K>2 and lim C(K) = 1 ; 

ri(c(ic), K) = 1 ; 

C(K) = C(K) . 

(10) 0(r,c,2) = -

LEMMA 3. 

(6) 

(7) 

(8) 

(9) 

Proof. Since 

(l + r)(c + r ) (c 2 +r) ' 
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it follows that c(2)= 1. By Theorem K3, we have C ( K ) > 1 for all K > 2 . Assume 
K>2. Since $(r, c, K) is continuous in r and c, it follows that C(K)ESK, i.e., 
</>(r, C(K), K) = 0 for some re [0 ,1 ] . Hence ri(c(K), K ) < 1 . Since ri(c, K ) > 0 for 
c > l , K > 1 by Theorem P, and ri(c, K) is an increasing function of c by 
Theorem 1, we have 

0<r i (c , K )<TI (C(K) , K ) < 1 for 1 < C < C ( K ) . 

Therefore SK = [ 1 , C(K)]. 

Let c' = limsupK_^2+C(K). Then c/>(r, c', 2) = 0 for some r e [0,1], and hence 
c ' < l by (10). Since C ( K ) > 1 for K > 2 , it follows that limK_*2+c(*c) = 1. 

If ri(c(K), K ) < 1 , then rx(c(/<) + e, K ) < 1 for some e > 0 , since ri(c, K) is a 
continuous function of c. It follows that C(K) + £ G S K , which contradicts the 
definition of C(K). Hence ^ (C^K) , K) = 1. This implies that C(K) = C(K). 

LEMMA 4. Lef c* = (fc/log 2 ) - § + e /or complex e and K. Then 

( ID / K ( C * ) = ^ ^ + 0(1/K2), 

(12) / ' K ( C * ) = ^ + 0 ( 1 / K 2 ) , 
2 K 

as K->OO uniformly for | e | < l ; and 

(13) / K ( C ) > 0 when c and K are real, C>K and K is sufficiently large. 

Proof. We have 

( l - c O - ' e x p ^ - ^ + O d / O ) 

4(l-^(2-£)) + 0(l/O, 

( i_ c *-y = i-^M!i+o(i/K2), 
K 

and 

(l-c*"""1)K = l + 0(l/Kn) 

uniformly for | e |< 1 and n = 2, 3 , . . . as K —» oo. 
From this and (5) we obtain 

/„(<:*)=*+ £ ( - 1 ) " ( ( 1 - C * - " T - D = : L 1 ^ + 0(1/K2) 
n=0 2K 

and 

/K(C*)=4 Ë (-i)n(n+i)c*-7i-c*n"r-i=^+o(i/K2) 
C n=0 2K 

as K —> a>, uniformly for |e| < 1. 
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For real c, K,C>K, K sufficiently large we have 

fK(c)=4(d-c"1r1+o(i/K))>o, 
c 

since ( l - c~ 1 ) K ~ 1 >( l - l / i c ) , c ~ 1 >l / e . 
Proof of Theorem 2. Conclusion (a) of the theorem follows from 

Theorem K4 and (6). Since ri(c(/<), K ) = 1 for K>2 by (8), we obtain, by 
implicit function theory [1, 10.2], that C(K) is analytic and 
C'(K) = -{(a/ÔK)r1(c(/<:), K)}l{(d/dc)ri(c(K), /<)}for K > 2. Since (d/dc)ri(c, K ) > 0 by 
Theorem 1, and (d/d/c)ri(c, K) < 0 by Theorem W, we have C'(K) > 0. This, together 
with (7), Theorems K 2 and K 3 establishes (b). 

Let £ > 0 and J(K) = ( ic/ log2)-i By (11) and (13), we have /K(y( /<)-e)<0, 
/K(7(K) + £ ) > 0 and f'K(c)>0 for c>/< and K>K0(e). Hence 

(14) c(K) = - ± - - - + <i)(i) as K-^OO. 
log 2 2 

Now consider /K(c) for complex c, K with |c |> 1. For K sufficiently large, we 
have, by (11) and (12), that 

(15) /icOyOO + e ) ^ 0 whenever |e| = l 

and 

(16) / 'K(7(K) + E ) ^ 0 whenever | e | ^ l . 

Suppose in what follows that p is a sufficiently large positive number. Let 
Kp = { K G C : | K | = P}, and let Cp={K:KeKp, /K(c) = 0 for some c such that 
| c -y ( /<) |< l} . Since | c (p) -y(p) |< 1, by (14), we have peCp, and hence 
Cp ¥• (f). By the continuity of /K(c) in c and K, C P is closed. For KX G CP, we have 
/Kl(c) = 0 for some c such that |c - J(K)\ < 1; and, for the same c, /'Kl(

c) ^ 0 by 
(16). By implicit function theory [1, 10.2], we can conclude that there exists a 
neighbourhood of KX and an analytic function C(K) such that /K(C(K)) = 0 

throughout this neighbourhood; moreover, | C ( K ) - Y ( K ) | < 1 by (15). This shows 
that Cp is non-empty, and is open and closed relative to Kp. Therefore 
CP — Kp. 

We show next that, for every K G CP, there exists a unique c = C(K) such that 
/K(C(K)) = 0 and | C ( K ) - Y ( K ) | < 1. Assume /K(ci) = /K(c2) = 0, | Q - 7 ( K ) | < 1 , 

î = l , 2 . Then 0 = /K(c2)-/K(ci) = nj//K(c) dc = (c2-d)JJfK(M(0) dt where 
u(r) = Ci + r(c2-Ci). Since | M ( 0 _ 7 ( K ) | < 1 , we have 

fK(W(0) = ((log22)/(2K))(l + 0(l/K)) 

as K -> oo, uniformly for r G [0,1], by (12). Therefore Jj /'K(w(0) df^ 0 for large K, 
and this implies that c2=Ci. We thus have a unique function C(K) for KEKP, 
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which is analytic on Kp by implicit function theory [1, 10.2]. Therefore 

C(*)= X CnK~n 

n = - l 

for large K. By (14), c_i = l/log2 and c0 = —j. 
Calculations similar to those used in the proof of Lemma 4 show that 

Ci = - 6 + ( î f - log2) log2<0 , and therefore C(K) is convex (i.e., C"(K)<0) for 
large K. 
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