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Abstract

We establish a Schwarz lemma for V-harmonic maps of generalised dilatation between Riemannian
manifolds. We apply the result to obtain corresponding results for Weyl harmonic maps of generalised
dilatation from conformal Weyl manifolds to Riemannian manifolds and holomorphic maps from almost
Hermitian manifolds to quasi-Kähler and almost Kähler manifolds.
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1. Introduction

The classical Schwarz–Pick lemma says that any holomorphic map from the unit
disk in the complex plane into itself decreases the Poincaré metric. Ahlfors [1],
Chern [4] and Lu [10] generalised this result to more general domains and targets.
In 1978, Yau [15] showed that a holomorphic map from a Kähler manifold with
Ricci curvature bounded below to a Hermitian manifold with bisectional curvature
bounded above by a negative constant is distance nonincreasing up to a constant
depending only on these bounds. Later, in [14], Yang and Chen improved Yau’s result.
Recently, Tosatti [12] established a Schwarz lemma for holomorphic maps between
almost Hermitian manifolds with curvature and torsion conditions on the canonical
connection.

We can also consider the case of harmonic maps. In [5, 6], Goldberg et al.
considered harmonic maps of bounded dilatation between Riemannian manifolds.
Shen [11] considered generalised dilatation and improved the result in [5].

In this paper, using an Omori–Yau maximum principle from [3] (see Theorem 2.1),
we establish a Schwarz lemma, that is, a distance decreasing theorem up to a constant
depending on the dimensions of the manifolds, the bounds of the curvatures and
the order of dilatation, for a V-harmonic map of generalised dilatation between
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Riemannian manifolds (Theorem 3.3). By combining this with the Maclaurin
inequality, we obtain a corollary for intermediate volume elements (Corollary 3.5).
Since Weyl harmonic maps from conformal Weyl manifolds to Riemannian manifolds
are V-harmonic, we also have a Schwarz lemma for Weyl harmonic maps of
generalised dilatation (Theorem 3.4). Finally, since any holomorphic map between
almost Hermitian manifolds naturally has generalised dilatation, we can apply
Theorem 3.3 to the holomorphic map between almost Hermitian manifolds when the
target manifold is a quasi-Kähler manifold (Theorem 4.3). When the target manifold is
an almost Kähler manifold, by replacing the sectional curvature with the holomorphic
bisectional curvature, we can obtain a distance decreasing theorem up to a constant
depending only on the bounds of the curvatures of the two manifolds (Theorem 4.4).
Some results in this paper improve the corresponding results in [5, 8] (see Remarks 3.6
and 4.7).

2. Preliminaries for V-harmonic maps
For convenience, we denote by ∇ the Levi-Civita connections of all manifolds and

the induced connections derived from Levi-Civita connections, and by 〈· , ·〉 the inner
products on all manifolds and bundles.

Let (Mm, g) and (Nn, h) be two Riemannian manifolds and V a C1 vector field on
M. Following [2], a smooth map u : M → N is called V-harmonic if it satisfies

τV (u) = τ(u) + du(V) = 0, (2.1)

where τ(u) is the tension field of the map u. Examples of V-harmonic maps include
Hermitian harmonic maps, Weyl harmonic maps and affine harmonic maps (see [2]).

Let ∆V · = ∆ · + 〈V,∇·〉 and denote by RicV = RicM − 1
2 LVg the Bakry–Émery Ricci

tensor of M, where LV is the Lie derivative. For a smooth map f : M → N, from [13],
we have the Bochner formula:

1
2 ∆|du|2 = 〈∇eiτ(u), du(ei)〉 + |∇ du|2

+ RicM(ei, e j)〈du(ei), du(e j)〉 − 〈RN(du(ei), du(e j)) du(e j), du(ei)〉,
(2.2)

where {ei} is a local orthonormal frame of T M. From (2.1),

〈∇eiτ(u), du(ei)〉=−〈∇ei (du(V)), du(ei)〉
=−〈(∇ei du)(V), du(ei)〉 − 〈du(∇ei V), du(ei)〉
=−〈(∇V du)(ei), du(ei)〉 − 〈du(∇ei V), du(ei)〉
=−〈∇V (du(ei)), du(ei)〉 + 〈du(∇Vei − ∇ei V), du(ei)〉
=− 1

2 V |du|2 − 1
2 LVg(ei, e j)〈du(ei), du(e j)〉. (2.3)

Substituting (2.3) into (2.2) and setting e(u) = |du|2, we obtain the Bochner formula
for V-harmonic maps:

1
2 ∆Ve(u) = |∇ du|2 + RicV (ei, e j)〈du(ei), du(e j)〉

− 〈RN(du(ei), du(e j))du(e j), du(ei)〉. (2.4)
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We also have the following Omori–Yau maximum principle for the operator ∆V .

Theorem 2.1 [3, Theorem 1]. Let (Mm, g) be a complete Riemannian manifold and V
a C1 vector field on M. Suppose RicV ≥ −F(r), where r is the distance function on M
from a fixed point x0 ∈ M, and F : R→ R is a positive continuous function satisfying

ϕ(t) :=
∫ t

ρ0+1

dr∫ r
ρ0

F(s) ds + 1
→ +∞ (t→ +∞)

for some positive constant ρ0. Let f ∈ C2(M) with limx→∞ f (x)/ϕ(r(x)) = 0. Then
there exist points {x j} ⊂ M, such that

lim
j→∞

f (x j) = sup f , lim
j→∞
|∇ f |(x j) = 0 and lim

j→∞
∆V f (x j) ≤ 0.

3. A Schwarz lemma for V-harmonic maps of bounded dilatation
Let u : (Mm, g)→ (Nn, h) be a smooth map between Riemannian manifolds. For a

point x ∈ M, the linear map du : TxM → Tu(x)N and its transpose du† : Tu(x)N → TxM
are related by

〈du(X),Y〉h = 〈X, du†(Y)〉g for X ∈ Γ(T M),Y ∈ Γ(T N).

This gives a linear map du† ◦ du : TxM → TxM. Let {ei}
m
i=1 and {ẽα}nα=1 be local

orthonormal frames of T M and T N, respectively and write du† ◦ du(ei) = Ui je j. Then

Ui j = 〈du† ◦ du(ei), e j〉 = 〈du(ei), du(e j)〉 = uαi uαj .

In other words, we have a matrix equation, (Ui j) = (uαi )(uαi )†, where (uαi ) is a semi-
positive define symmetric matrix of order m. Therefore, the eigenvalues of du† ◦ du
are nonnegative, say, λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) ≥ 0. Let k = min{m, n}. The rank of
du† ◦ du is less than or equal to k.

Remark 3.1. Let QN denote the third term on the right-hand side of the Bochner
formula (2.4). When the sectional curvature of the target manifold is bounded above
by a negative constant −B, then

QN ≥ B
(
|du|4 −

∑
i, j

〈du(ei), du(e j)〉2
)
.

However, from the right-hand side of (2.4),

QN ≥ C′|du|4

is usually impossible, where C′ is some positive constant.

In order to overcome the obstacle noted in Remark 3.1, we need to add some
conditions on u. To this end, we can introduce the so-called bounded dilatation and
generalised dilatation.

Definition 3.2 (see [5, 11]). A smooth map u : M→ N has bounded dilatation of order
β, if there is a positive number β such that λ1(x) ≤ β2λ2(x) for every x ∈ M. The
map u has generalised dilatation of order β, if there is a positive number β such that
λ1(x) ≤ β2(λ2(x) + · · · + λm(x)) for every x ∈ M.
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From this definition, bounded dilatation is generalised dilatation of the same order
and generalised dilatation of order β is bounded dilatation of order

√
(m − 1)β. Hence,

the condition of generalised dilatation yields a smaller bound (see [11]). For V-
harmonic maps of generalised dilatation between Riemannian manifolds, from the
Bochner formula (2.4) and Theorem 2.1, we have the following Schwarz lemma.

Theorem 3.3. Let (Mm, g) be a complete Riemannian manifold with RicV ≥ −A, where
A is a constant. Let (Nn, h) be a Riemannian manifold with sectional curvature
bounded above by a negative constant −B. Let u : M → N be a nonconstant V-
harmonic map of generalised dilatation of order β. Then, A > 0 and

u∗h ≤
Ak2β4

2B(1 + β2)
g,

where k = min{m, n}. In particular, if A ≤ 0, then any V-harmonic map of generalised
dilatation from M to N is constant.

Proof. Choose a local orthonormal frame {e1, . . . , em} formed by eigenvectors
corresponding to the eigenvalues {λ1, . . . , λm} of du† ◦ du. By the curvature conditions
and the Bochner formula (2.4), combined with the definition of sectional curvature,

∆Ve(u) = 2|∇ du|2 + 2RicV (ei, e j)〈du(ei), du(e j)〉
− 2SecN(du(ei), du(e j))(〈du(ei), du(ei)〉〈du(e j), du(e j)〉 − 〈du(ei), du(e j)〉2)

≥−2Ae(u) + 2B
m∑

i, j=1

(〈du(ei), du(ei)〉〈du(e j), du(e j)〉 − 〈du(ei), du(e j)〉2). (3.1)

Since u is of bounded dilatation,
m∑

i, j=1

(〈du(ei), du(ei)〉〈du(e j), du(e j)〉 − 〈du(ei), du(e j)〉2)

=

m∑
i=1

〈du† ◦ du(ei), ei〉

m∑
j=1

〈du† ◦ du(e j), e j〉 −

m∑
i, j=1

〈du† ◦ du(ei), e j〉
2

=

m∑
i=1

λi

m∑
j=1

λ j −

m∑
l=1

λ2
l = 2

∑
1≤i< j≤m

λiλ j ≥ 2λ1

m∑
j=2

λ j ≥
2
β2 λ

2
1

≥
2
β2

(
λ1 + · · · + λk

k

)2
. (3.2)

On the other hand,

e(u) =

m∑
i=1

〈du(ei), du(ei)〉 =

m∑
i=1

〈du† ◦ du(ei), ei〉 =

m∑
i=1

λi =

k∑
i=1

λi. (3.3)

Combining (3.1), (3.2) and (3.3),

∆Ve(u) ≥ −2Ae(u) +
4B

k2β2 e(u)2. (3.4)
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Now, choose f = −1/
√

e(u) + C, where C > 0 is a constant. Since e(u) ≥ 0, we have
−1/
√

C ≤ f < 0, that is, f is bounded. By Theorem 2.1, there exist points {x j} ⊂ M
such that

lim
j→∞

f (x j) = sup f , lim
j→∞
|∇ f |(x j) = 0 and lim

j→∞
∆V f (x j) ≤ 0. (3.5)

However,

∇ f =
∇e(u)

2(e(u) + C)3/2 and ∆V f = −
3|∇e(u)|2

4(e(u) + C)5/2 +
∆Ve(u)

2(e(u) + C)3/2 . (3.6)

By (3.5), (3.6) and the definition of f , we have lim j→∞ e(u)(x j) = sup e(u) and

lim
j→∞

∆Ve(u)(x j)
(e(u)(x j) + C)2 ≤ 0. (3.7)

Combining (3.4) and (3.7),

lim
j→∞

2B
k2β2

(e(u)(x j))2 − Ae(u)(x j)
(e(u)(x j) + C)2 ≤ 0. (3.8)

If lim j→∞ e(u)(x j) = sup u = +∞, then (3.8) gives a contradiction, so, sup u < +∞.
Using (3.8) again,

2B
k2β2 (sup e(u))2 − A sup e(u) ≤ 0,

and it follows that

e(u) ≤
Ak2β2

2B
. (3.9)

Now, e(u) = trgu∗h = tr(Ui j) =
∑m

i=1 λi, so

λ1 +
1
β2 λ1 ≤

m∑
i=1

λi ≤
Ak2β2

2B
.

Thus, λ1 ≤ Ak2β4/(2B(1 + β2)), which completes the proof. �

Now we consider Weyl harmonic maps from conformal Weyl manifolds to
Riemannian manifolds. Firstly, we recall the related facts briefly (see [9, Section 2]).
Let (M, c) be a conformal manifold and ∇W its Weyl structure. There is a 1-form
Θ, called the Higgs field, such that ∇Wg = Θ ⊗ g for g ∈ c. Let (N, h) be a Riemannian
manifold. A smooth map u : (M, c,∇W)→ (N, h) is called Weyl harmonic if τW(u) =

τ(g,∇W ,∇) = 0. We know that

τW(u) = τ(u) −
(m − 2

2

)
du(Θ]), (3.10)

where ] maps a 1-form to its dual vector field. Gauduchon showed that there is a
unique (up to homothety) metric g ∈ c whose Higgs field Θ is co-closed with respect
to g. The Weyl Laplacian on functions is given by ∆W = trg∇

Wd. From (3.10), Weyl
harmonic maps are V-harmonic, where V = − 1

2 (m − 2)Θ].
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Theorem 3.4. Let (Mm, c, ∇W) be a conformal Weyl manifold, endowed with a
Gauduchon metric g ∈ c, and denote by Θ its Higgs field. Suppose that

RicW +
m − 2

4
(|Θ|2g − Θ ⊗ Θ) ≥ −A,

where A is a constant and RicW denotes the Ricci tensor of ∇W . Let (Nn, h) be a
Riemannian manifold with sectional curvature bounded above by a negative constant
−B. Let u : M→ N be a Weyl harmonic map of generalised dilatation of order β. Then
either u is constant, or A > 0 and u is distance decreasing up to a constant depending
on A, B,m, n, β.

Proof. From [9, Lemma 3.1],
∆We(u) = |∇ du|2 − 〈RN(du(ei), du(e j)) du(e j), du(ei)〉

+ RicW(Xα, Xα) +
m − 2

4
(|Θ|2|Xα|

2 − Θ(Xα)2),

where Xα = (u∗ω̃α)] and the systems {ei} and {ω̃α} are local orthonormal frames of
T M and T ∗N, respectively. By the curvature condition and since u is of generalised
dilatation,

∆We(u) ≥
4B

k2β2 e(u)2 − A|Xα|
2 =

4B
k2β2 e(u)2 − A|uαi ei|

2 =
4B

k2β2 e(u)2 − Ae(u). (3.11)

By (3.10), for a function f on M,
∆W f = ∆ f + d f (V) = ∆ f + 〈V,∇ f 〉 = ∆V f . (3.12)

On the other hand, from the proof of [9, Lemma 3.1],

RicW(X, X) +
m − 2

4
(|Θ|2|X|2 − Θ(X)2) = Ric(X, X) +

m − 2
2

(∇XΘ)(X),

where X ∈ Γ(T M) and Ric denotes the Ricci tensor of a Gauduchon metric g. But
m − 2

2
(∇XΘ)(X) =

m − 2
2
〈∇XΘ], X〉 = −〈∇XV, X〉 = −

1
2

LVg(X, X).

It follows that

RicV (X, X) = RicW(X, X) +
m − 2

4
(|Θ|2g(X, X) − Θ(X)2).

Hence, RicV ≥ −A. Theorem 2.1, combined with (3.11) and (3.12), gives the desired
result. �

As in [6], we can also consider the intermediate volume elements. If r ≤ k, du can
be extended to the linear map ∧rdu :

∧r T M →
∧r T N given by

(∧rdu)(X1 ∧ · · · ∧ Xr) = du(X1) ∧ · · · ∧ du(Xr),
where Xi ∈ Γ(T M). Then (see [6]),

|∧r du|2 =
∑

1≤i1<···<ir≤m

λi1 · · · λir . (3.13)

In particular, |∧1du|2 = |du|2 = e(u). Observe that |∧r du| bounds the ratio of r-
dimensional volume elements. Hence, from the Maclaurin inequality together with
(3.9) and (3.13), we have the following corollary for intermediate volume elements.
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Corollary 3.5. Under the conditions of Theorem 3.3,

|∧rdu|2 ≤
(
k
r

)(Akβ2

2B

)r
,

where r = 1, . . . , k = min{m, n}.

Remark 3.6. Theorem 3.3 and Corollary 3.5 generalise [5, Theorem 1 and Corollary 1]
to V-harmonic maps.

4. Applications to holomorphic maps from almost Hermitian manifolds
In this section, we apply Theorem 3.3 to holomorphic maps from almost Hermitian

manifolds to quasi-Kähler manifolds.
Let (M2m, g, J) and (N2n, h, J′) be two almost Hermitian manifolds. A smooth map

u : M → N is holomorphic if du ◦ J = J′ ◦ du. It is easy to see that du† ◦ J′ = J ◦ du†

from the definition of the transpose, so du† ◦ du ◦ J = J ◦ du† ◦ du if u is holomorphic.
Accordingly, the first two eigenvalues λ1 and λ2 are equal when u is a holomorphic map
between almost Hermitian manifolds. Consequently, any holomorphic map between
almost Hermitian manifolds is a bounded dilatation of order 1 (see also [8]). It is also
a generalised dilatation of order 1.

Definition 4.1 [7]. An almost Hermitian manifold (M, g, J) is a quasi-Kähler manifold
if (∇X J)Y + (∇JX J)JY = 0 for all X,Y ∈ Γ(T M).

Lemma 4.2. Let u : (M2m, g, J)→ (N2n, h, J′) be a holomorphic map between almost
Hermitian manifolds. If N is a quasi-Kähler manifold, then u is a V-harmonic map,
where V = −JδJ and δ is the co-differential operator on M.

Proof. Let {eA}
2m
A=1 = {ei; Jei}

m
i=1 be a locally orthonormal frame of T M. Omitting

summation, by a standard computation,

(∇Jei du)(Jei) =∇Jei (J′(du(ei))) − du(∇Jei (Jei))
= (∇Jei J

′)(du(ei)) + J′(∇Jei du)(ei) − du((∇Jei J)ei)
= J′(∇Jei J

′)(J′(du(ei))) + J′(∇ei du)(Jei) − du((∇Jei J)ei)
= J′(∇Jei J

′)(du(Jei)) + J′∇ei (du(Jei))
− J′(du((∇ei J)ei)) − J′(du(J∇ei ei)) − du((∇Jei J)ei)

= J′(∇Jei J
′)(du(Jei)) + J′∇ei (J′(du(ei)))

− J′(du((∇ei J)ei)) + du(∇ei ei) − du((∇Jei J)ei)
= J′(∇Jei J

′)(du(Jei)) + J′(∇ei J
′)(du(ei))

− (∇ei du)(ei) − J′(du((∇ei J)ei)) − du((∇Jei J)ei).

By the definition of the tension field and since N is a quasi-Kähler manifold,

τ(u) = (∇ei du)(ei) + (∇Jei du)(Jei) = −J′(du((∇ei J)ei)) − du((∇Jei J)ei)
= du(−J(∇ei J)ei − J(∇Jei J)(Jei)) = du(JδJ),

which establishes the lemma. �
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The next result follows from Definition 4.1, Theorem 3.3 and Lemma 4.2.

Theorem 4.3. Let (M2m, g, J) be a complete almost Hermitian manifold such that
RicM + 1

2 LJδJg ≥ −A, where A is a constant. Let (N2n, h, J′) be a quasi-Kähler
manifold with sectional curvature bounded above by a negative constant −B. Let
u : M → N be a nonconstant holomorphic map. Then A > 0 and

u∗h ≤
A`2

4B
g,

where ` = min{2m, 2n}. In particular, if A ≤ 0, then there is no nonconstant
holomorphic map from M to N.

As in [5], replacing the sectional curvature by the holomorphic bisectional curvature
when the target manifold is an almost Kähler manifold, we have the following distance
decreasing theorem up to a constant depending only on the curvature bounds.

Theorem 4.4. Let (M2m, g, J) be as in Theorem 4.3. Let (N2n, h, J′) be an almost
Kähler manifold with holomorphic bisectional curvature bounded above by a negative
constant −B. Let u : M → N be a nonconstant holomorphic map. Then A > 0 and

u∗h ≤
A
B

g.

In particular, if A ≤ 0, then there is no nonconstant holomorphic map from M to N.

Yau [15] proved that there is no bounded holomorphic function on a complete
Kähler manifold with nonnegative Ricci curvature. Similarly, we have also the
following corollary from Theorem 4.3.

Corollary 4.5. Let (M, g, J) be an almost Hermitian manifold with RicM + 1
2 LJδJg≥ 0.

Then there is no nonconstant bounded holomorphic function u : M → C.

Similar to Corollary 3.5, we have also the following result for intermediate volume
elements for a holomorphic map in the almost Hermitian case.

Corollary 4.6. Under the assumptions in Theorem 4.3,

|∧rdu|2 ≤
(
`

r

)(A`β2

2B

)r
,

where r = 1, . . . , ` = min{2m, 2n}.

Remark 4.7. Theorems 4.3 and 4.4 generalise [5, Corollary 2 and Theorem 2].
Corollary 4.5 improves [8, Proposition 8] to the case where the domain manifold is an
almost Hermitian manifold without the condition of nonpositive sectional curvature.
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