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1. Introduction. Various conditions under which an upper semi-continuous 
(u.s.-c.) decomposition of E3 yields Es as its decomposition space have been 
given by Armentrout (1 ;2 ;5) , Bing (7; 8), Lambert (13), McAuley (14), 
Smythe (17), and Wardwell (18). If the projection of the non-degenerate 
elements is O-dimensional in the decomposition space, then ''shrinking" or 
"Condition B" (6) has proven particularly useful. 

In this paper we shall investigate monotone u.s.-c. decompositions of a locally 
compact connected metric space M, where the projection of the non-
degenerate elements is O-dimensional. We show in Theorem 1 that each open 
covering of the non-degenerate elements of a O-dimensional decomposition has 
a locally finite refinement. 

In § 5, we use Theorem 1 to investigate the following question wrhich is 
similar to one raised by Bing (11, p. 19): Let G, G, and G" be decompositions 
of M such that the non-degenerate elements of G are those of G' together with 
those of G". If Gr and G" are shrinkable, does it follow that G is shrinkable? 
Example 1 gives us a negative answer for the above question and the one 
raised by Bing. However, we obtain an affirmative answer if we impose the 
additional hypothesis that whenever the limiting set of a convergent sequence 
of non-degenerate elements of G' intersects a non-degenerate element of G", it 
is that element. We also show that Gr is shrinkable if G is shrinkable. 

A decomposition G is shrinkable at a set X if there exists an open set A 
containing X such that the decomposition, whose non-degenerate elements are 
those of G which are subsets of A, is shrinkable. Using the above definition we 
obtain the following two theorems. 

A decomposition G of M is shrinkable if and only if G is shrinkable at each of its 
non-degenerate elements (Theorem 10). 

If G is a decomposition of M and A is an open set such that G is shrinkable at 
each non-degenerate element of G which is a subset of A, then G yields the same 
decomposition space as the decomposition whose non-degenerate elements are those 
of G which are not subsets of A (Theorem 12). 
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Section 6 contains restatements of the above theorems in terms of a 3-
manifold, where the shrinking requirement is replaced by the requirement that 
the decomposition yield a 3-manifold. 

Section 7 contains a short discussion on a few results which may be obtained 
when it is not required that the projection of the non-degenerate elements be 
0-dimensional. 

For presentations of a number of fundamental results on monotone u.s.-c. 
decompositions of separable metric spaces, see (16, Chapter V) and (19, 
Chapter 7). An extensive recent bibliography on u.s.-c. decompositions of Es 

can be found in (6). 

2. Definitions and notation. Throughout this paper, M will denote a 
locally compact connected metric space. If G is a decomposition of M, then 
M/G denotes the associated decomposition space, P denotes the projection 
map of M onto M/G, and H(G) denotes the set of all non-degenerate elements 
of G. 

A decomposition G is monotone if each element of G is a compact continuum. 
We say that G is a 0-dimensional decomposition if P(H(G)) is a 0-dimensional 
subset of M/G. 

Let G and G' be decompositions of M such that if g and g' are intersecting 
elements of H{G) and H(G'), respectively, then g = gf. Let G + G denote the 
decomposition of M whose non-degenerate elements are those of G together 
with those of G'. Whenever we use G + G', we shall assume that G and G' 
intersect as described above. Unless otherwise specified, G, G', and G + G' will 
denote u.s.-c. decompositions of M which are monotone and 0-dimensional. 

We say that K is an open covering of H(G) in M whenever K is a collection 
of open subsets of M such that each element of H(G) is a subset of some 
element of K. We shall also say that K covers H(G) if K is a covering of 
iJ(G). For each subset X of M, let XG denote \J{g 6 G\g C X}, and let GiX) 
denote the decomposition of M such that H(G(X)) = \g £ H(G)\g C -X"}. 

A collection / of subsets of M is null if for each e > 0 there are only a finite 
number of elements of / with diameter greater than e. A collection J of subsets 
of M is locally null if for each point of M there is an open set A containing x 
such that the collection of all sets of / that intersect A is a null collection. 

A collection J of subsets of M satisfies Property 1 if for each compact subset 
X of M, the closure of the set \J{j £ J\j intersects X] is a compact set. 

If J is a collection of subsets of M and / is a function of M into a metric 
space, then / ( / ) will denote the set {f(J) \j 6 J}. 

We say that G satisfies Condition B if for each open set A containing 
\JH(G) and each positive number e, there is a homeomorphism / from M onto 
M such that Diam(/(g)) < e for each g G G and f(x) = x for each 
x e (M - A). 

We say that G satisfies Condition B* if for each open set A containing 
\JH(G), each positive number e, and each homeomorphism h from M onto M, 
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there is a homeomorphism/ from M onto M such that Diam(f (g)) < e for each 
g G G and/ (x) = h{x) for each x G (M — -4). 

Armentrout (4; 6) has shown that if M is Ez, then Conditions B and B* are 
equivalent. We show that they are equivalent for the decompositions of metric 
spaces considered in this paper. Thus, we shall say that a decomposition is 
shrinkable if it satisfies either Condition B or Condition B*. 

A decomposition G is shrinkable at an element g of G if there exists an open 
set A containing g such that Bd(4) does not intersect any element of H(G), 
and G (A) is shrinkable. 

An element g of G is pointlike if M — g is homeomorphic to the complement 
of some point in M. We say that G is a pointlike decomposition if each element 
of G is pointlike. 

3. Decomposition and coverings. In this section we present several 
modifications of a given u.s.-c. decomposition such that the new decomposition 
is u.s.-c. Several theorems are presented on refinements of open coverings of 
0-dimensional sets and decompositions. As indicated in § 2, the decompositions 
studied in this section are assumed to be 0-dimensional and monotone. Lemmas 
1-4 seem to be well known and will be presented without proof. 

LEMMA 1. If X is a closed subset of M such that each element of G that intersects 
X is a subset of X, then G(X) is u.s.-c. 

Remark. If A is an open subset of M whose boundary does not intersect any 
element of H(G), then CI (4) satisfies the hypothesis of Lemma 1, and G (A) 
is the same decomposition as G (Cl (4 ) ) . 

LEMMA 2. Iff is a homeomorphism of M onto M and f{G) = {f(g)\ g G G}, 
then f (G) is a 0-dimensional monotone, u.s.-c. decomposition of M. 

LEMMA 3. The decomposition G + G' is u.s.-c. 

LEMMA 4. There exists an open cover K of M which satisfies Property 1. 

LEMMA 5. If g is an element of H(G) and A is an open set containing g, then 
there exists an open subset B of A containing g whose boundary does not intersect 
any element of H(G). 

Proof. Note that P (4G) is an open subset of M/G containing P(g). Since 
P{H{G)) is 0-dimensional, there exists an open subset C of P(AG) containing 
P(g) whose boundary does not intersect P(H(G)). Then P~X(C) is the required 
set 5 . 

LEMMA 6. If K is an open covering of H(G) in M, then there exists a countable 
collection K' of disjoint open sets which covers H(G) and is a refinement of K. 

Proof. For each g G H {G), choose an element A of K which contains g. 
Apply Lemma 5 to obtain an open subset Og of A containing g whose boundary 
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does not intersect any element of H{G). Since {0g\ g 6 H (G)} covers H (G) in 
M, M is separable, and G is monotone, it follows that there is a countable sub-
collection {Oi} that covers H{G). Let G = Ou and for i > 1 let d = 
Ot - UCHOj) (1 ^ j < i). Let X' = {Ct}. Then iT is a collection of disjoint 
open sets that refines K. For each element g of G, there is a first integer k such 
that g C Ok. For each i < k, it follows that g H C1(0*) = 0 and that g C C*. 
Thus, K' is a disjoint collection of open sets which covers H(G) in M. 

LEMMA 7. If A is an open set whose closure is compact and whose boundary 
does not intersect \JH{G), then there exists a countable collection K of disjoint 
open sets covering H(G(A)) such that each element B of K is a subset of A and 
there is an element g of G(B) such that Diam(5) < 2 Diam(g). 

Proof. Let J = {g G H(G(A))\Dmm(g) ^ 1} ; then \JJ is a closed subset 
of A, and hence is compact. For each element g of J use Lemma 5 to obtain an 
open subset Og of A C\ N(g, Diam(g)/2) whose boundary does not intersect 
\JH(G). Since {Og\ g G /} is a covering of {JJ, there exists a finite subcover 
O0l, . . . , Og . Since each gt is compact, it follows that there exist disjoint open 
sets Blt . . .W, Bn such that giCBtC 0Q. and BdGB,) Pi (\JH(G)) = 0. 
Define open sets G, . . . , Cn as follows: 

Ci = 0 ^ - C l ( U ^ ) ( j = 2 , 3 , . . . , n ) , 

C, = 0,. - C1((US,) W (UCO) (1 ^ * < *, j * i). 

I t now follows that gi d Bt C Ct C Og. and the set K\ = {G, . . . , Cw} 
is a finite disjoint collection of open sets. Any point in 0Ql U . . . VJ Og 

that is not in U-^i is either a point of the boundary of some Og. 
or a point of the boundary of some Bt. Thus, K\ covers / . Furthermore, 
Diam(Cî) ^ Diam(0^t.) < 2 Diam(g*). Proceeding inductively, assume that 
Kt has been chosen; then, in the above argument, replace A by 

Ai = A - C l ( U ( U i Q ) , 

where j ranges from 1 toi, and Jby Jt = {g G H(G(Ai))\D'mm(g) ^ 1/i} and 
obtain a finite disjoint collection Ki+1 of open sets covering Jt. If we let 
K — Ui°= iKu then X is a collection of disjoint open sets and for each B G K, 
there is an element g of G{B) such that Diam(i3) ^ 2 Diam(g). Since {Jn

i=iKt 

covers all elements of H(G(A)) with diameter greater than 1/n, it follows that 
K covers H(G(A)). 

THEOREM 1. Let K be an open covering of H(G) in M. Then there exists a 
refinement K' of K such that 

(1) Kf is an open covering of H(G) in M, 
(2) Kf is a disjoint countable collection, 
(3) Kf satisfies Property 1, and 
(4) Kf is a locally null collection. 
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Proof. By applying Lemma 4 to M/G and then lifting the open covering by 
P - 1 , we see that there exists an open covering C of H(G) in M satisfying 
Property 1. We note that any refinement of C will also have Property 1. 
Hence, C = {k C\ c\k £ K and c G C} is a refinement of K satisfying 
Property 1 which covers H(G). 

Using Lemma 6, we obtain a countable refinement C" of C such that C" is an 
open covering of H(G) and the elements of C" are disjoint. 

If we let K' be a collection obtained by applying Lemma 7 to each element of 
C", then Kr is a refinement of K such that 

(1) Kr is an open covering of H(G) in M, 
(2) Kf is a countable collection of disjoint open sets, 
(3) Kr satisfies Property 1, and 
(4) if B is an element of K', then there exists an element g of H(G(B)) such 

that Diam(£) < 2 Diam(g). 
I t also follows that K! is a locally null collection. 

THEOREM 2. Suppose that 
(1) K = {Oi) is a locally null collection of disjoint open subsets of M, 
(2) N is a metric space, 
(3) {Ci} is a locally null collection of subsets of N, 
(4) / is a continuous map of M — KJK into Nf 

(5) ft is a continuous map of CI (00 into CI (CO, 
(6) jf|Bd(0,) = /«|Bd(0,),awd 
(7) F{x) = f(x) if x is an element of M — \JK, 

Fix) = fiix) if x is an element of Ot. 
Then Fix) is a continuous map of M into N. 

Proof. Let {xi} be a sequence of points converging to a point x of M. Define 
a sequence {3̂ } by the following technique: (1) if xt 6 M — \JK, letyt = x{; 
(2) if Xi 6 On and there are only finitely m a n y / s so that Xj Ç C\, let y t be an 
element of Bd(0n) ; (3) if xt Ç On and there are infinitely many fs so that Xj 
is an element of Oni let yt = x. 

We shall first show that {3̂ } converges to x. Let A be an open set containing 
x. Choose an open subset B of A containing x so that only finitely many 
elements of K have closures which intersect both B and M — A. There exists 
an m such that if i > m, then xt 6 B. If i > m, then the only yn's that do not 
lie in A will be in the closure of an element of K that contains only a finite 
number of x/s and intersects both B and M — A. Therefore, there are only a 
finite number of such yn's. 

If x G On, then \F(Xi)} converges to Fix). 
If x G M — KJK, then each yt is an element of M — VJK and this implies 

that Fiyt) = fiyt). Thus, [Fiyt)} converges to Fix). Let A' denote an open 
subset of N that contains Fix). There exists an open subset B' oi A' and an 
integer k such that if i > k, then CI (CO does not intersect both B' and M — A'. 
For each 0n there exists an integer mn such that if i > mn and xt is an element of 
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Cl(On), then fn(Xi) is an element of A'. There exists an integer m such that if 
i > m, then F(yt) is an element of B!. Letmf = max (m, mi, m2,... , mk). Thus, 
if i > m', it follows that i^x*) G -4', and hence that F is continuous. 

LEMMA 8. If X is a compact subset of M and K is a locally null collection of 
subsets of M, then there is an open set A containing X such that 

j = {k G K\kr\A 9* 0} 
is a null collection. 

Proof. Since K is locally null, then for each point x of X we can choose an 
open set Ax containing x such that Kx = {k G K\k C\ Ax ^ 0} is a null 
collection. There exists a finite collection AXl, . . . , AXn that covers X. If we let 
A = U" = î 4s., then J — U l = i^t.» and this is a null collection. 

LEMMA 9. If K is a locally null collection of subsets of M and 

p(K) = {P(k)\k ex], 

then P(K) is a locally null collection of subsets of M/G. 

Proof. Let x be an element of M/G. There exists an open set A containing x 
whose closure is compact. Now P_1(C1(^4)) is compact and by Lemma 8 there 
is an open set B containing it such that C = [k ^ K\k C\ B 9^ Q) is a null 
collection. Note that P(C) contains D = {P(k) G P(K)\ P(k) intersects A}. 
Assume, by way of contradiction, that D is not a null collection. Then there is a 
8 > 0 such that there exist infinitely many elements {P(Ot)} oiD with diameter 
greater than 25, and, for each i, points xt and yt of P(Ot) such that xt G A and 
p(xi,yi) > 5. Let x/ and y I be points of P~1(xi) and P~1(yi)1 respectively, 
that are contained in Ot. We may assume, without loss of generality, that {x/} 
converges to a point y of P~1(C\(A)). For any e > 0, there are only finitely 
many elements of C that have a diameter larger than e. This implies that {y/} 
also converges to y. Since P is continuous, {P(x/)} and {P(y/)} both converge 
to P(y), and this is a contradiction to the choice of {#*} and {yt}. Thus, D is 
null, and since x was an arbitrary point of M/G, it follows that P(K) is locally 
null. 

4. Shrinking decompositions. Bing (7; 8) used the shrinking of a decom­
position of Ez to show that the decomposition space was E3. He also used the 
non-shrinking of a decomposition of Ez to show (see 9; 10; 11) that the 
decomposition space was not Es. McAuley (14; 15) extended Bing's shrinking 
process. In Theorem 4 of this section we use a proof similar to that of Bing 
(8, Theorem 1). Theorem 5 is similar to a lemma used by Bing (9, p. 497). 
Armentrout (4; 6) has shown the equivalence of Conditions B and B* for 
monotone, 0-dimensional, u.s.-c. decompositions of En. In Theorem 3 of this 
section, we show the equivalence of Conditions B and B* for the decompositions 
of metric spaces considered in this paper. In Theorem 5, together with 
Theorem 4, we give another condition that is equivalent to Condition B. 
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THEOREM 3. Conditions B and B* are equivalent. 

Proof. We observe that Condition B* implies Condition B by letting the 
homeomorphism h be the identity map of M onto M. 

We shall now show that Condition B implies Condition B*. To this end, let A 
denote an open set containing \JH(G), e a positive number, and h a homeo­
morphism of M onto M. By Theorem 1, there exists a locally null collection of 
disjoint open subsets Oi, 02, . . . of 4̂ such that K covers H(G) and each CI (Ot) 
is compact. Since each homeomorphism of M forms a natural decomposition of 
M into points, it follows from Lemma 9 that h(K) is a locally null collection of 
disjoint open subsets of h (A ). 

We now wish to define, for each i, a homeomorphism ht of CI (Oi) onto 
h(C\(Ot)) such that h\Bd(Ot) = hi\Bd(Oi) and Dia.m(ht(g)) < e for 
g G H(G(0i)). There exists a positive number 5i such that if X C C\(Ot) and 
Diam(X) < bu then Diam(fe(X)) < e. There exists an open covering J' of 
VJH(G) such that the closure of each open set is a subset of an element of K. 
Let / be a refinement of J' satisfying the conclusion of Theorem 1. By Condi­
tion B, there exists a homeomorphism ft of M onto M such t ha t / ^x ) = x for 
x 6 (ikf — UJO and Diam (/*(#)) < ô* for g Ç G. Let Ẑ  denote hft restricted 
to CI (Oi). Then ^ is a homeomorphism of C1(0*) onto h(C\(Of)) with the 
desired properties. 

With such a function defined for each Oi, let 

i( \ = (h^ H* € (M- UK), 
n%) \ht(x) ifx € Oi. 

Clearly,/ is one-to-one and maps M onto itself. By applying Theorem 2 twice, 
we conclude that / and / _ 1 are continuous, and thus / is a homeomorphism 
which satisfies the requirements of Condition B*. 

THEOREM 4. If G is shrinkable and A is an open set containing \JH(G), then 
there is a homeomorphism F of M/G onto M such that 

P\(M - A) = F~l\(M - A). 

Proof. First we shall define a sequence {Ki} of open coverings of H(G) and a 
sequence of homeomorphisms {ft} of M onto M. Let K0 denote an open cover­
ing of H(G) such that each element is a subset of A and has a compact closure. 
Let /o be the identity map. Assume, inductively, t ha t /* and Kt have been 
chosen. Since {JKt is an open set containing \JH(G), Condition B* may be 
applied with e = l/(i + 1) and h = ft to obtain a homeomorphism fi+i such 
that 

(1) fi+1\(M- \JKt) =fi\(M- UKi),<md 
(2) Dmm(fi+1(g)) < l/(i+l) for g G G. 

We shall now choose Ki+1. For each g Ç H (g), let 0^ be an open set containing 
g such that 
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(3) Og is a subset of P~l{N(P{g), \/{i + 1))), 
(4) C\(0g) is a subset of some element of Ku and 
(5) Diam(fn-i(0,)) < 2 Diam(f m (g) ) . 

Apply Theorem 1 to {00\ g £ H (G)} and obtain a disjoint collection i£*+i of 
open sets that cover H(G). Statements (2) and (5) imply t h a t / i + i maps each 
element of Ki+i onto a set of diameter less than 2/(i + 1). 

Since M is connected and since statement (1) implies that 

ft\(M- \JKt) =fj\(M- UK,) 

for each j > i, it follows that either/^(x) = fj{x) or they lie in elements of 
fi(Kt) whose boundaries intersect. Thus, it follows that 

(6) p(Ji(x),fj(x)) < 4c/i for j > i and x G M. 
Now we define a function Fr from M into ilf by 
(7) F'(x) = lim^Mx), 

and a function F from M/G into M by 
(8) F(g) = F'(x), where x f ^ G . 

We need to show that these two functions are well-defined. Consider any 
x G M. The sequence {fi(x)} lies in a compact set. Hence, some subsequence of 
{fi(x)} converges to a point y of M, and it follows from (6) that {/*(#)} con­
verges to y. Thus, F'(x) is well-defined. If x and s are points of an element of G, 
then (2) implies that F'(x) = F'(z). Therefore, F(g) is well-defined. 

Let {x,} be a sequence of points converging to a point x of M, and let e be a 
positive number. It follows from (6) and (7) that there exists an integer j such 
that p(fj(y), F'(y)) is less than e/3 for each pointy of M. Sincefj is continuous, 
there exists an integer n such that p(fj(Xi),fj(x)) is less than e/3 for i > n. 
Thus, if i > n, then p(F'(x), Ff(Xi)) < e, and thus F' is continuous. If C is an 
open set in F'(M), then F'-^C) is open. Since P{Ff~l{C)) = T^HO, it 
follows that F_1(C) is an open subset of M/G. Therefore, F is continuous. 

We have shown in the preceding three paragraphs that F is a continuous 
function carrying M/G into M.lt remains for us to show that F is a one-to-one 
mapping of M/G onto M and that 77-1 is continuous. 

Let x be a point of ikf. For each integer i there exists a point x* such that 
fiixi) = x. The sequence {x,} lies in a compact set. Thus, we can assume, 
without loss of generality, that {x,} converges to a point y of M. Then {F'(Xi)} 
converges to Fr(y). Statements (6) and (7) imply that p{F'(x^.f^x/)) ^ 4/i, 
and hence that {F' {x/) ) converges to x and that F' (y) = x. Let g be the element 
of G which contains y. Now F(g) = F1'(y) = x, and thus Fis a continuous map 
of M/G onto Jkf. 

If g and g' are elements of G and g ^ g', then P(g) ^ P(g')> There exists an 
integer i such that p(P(g), P(gr)) > 9/i. Statement (3) implies that g and g' 
do not lie in elements of Kt whose boundaries intersect. Thus, F(g) ^ F(gr), 
and it follows that F is one-to-one. 

Let D be an open subset of M/G and let x be an element of D. There exists an 
integer n such that N(x, 6/n) is a subset of D. Let / be the union of N(x, 2/n) 
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and all elements of P (Kn) which intersect N (x, 2/n). Let J' be the union of J and 
all elements of P(Kn) whose closures intersect Cl(7). I t follows from (3) 
that J' is a subset of N(x, 6/n). Notice that F(Jf) contains/w(P_ 1(/)) which is 
an open set containing Fix). Since x was an arbitrary point of D, it follows that 
F(D) is an open set. Thus F~l is continuous. 

We have shown in the preceding paragraphs that F is a homeomorphism of 
M/G onto M. Since/i restricted to M — A is the identity map, it follows that 
F' restricted to M — A is the identity map. We can also conclude that P and 
F~l are equal when restricted to M — A. 

THEOREM 5. If for each open subset A of M containing \JH(G) there exists a 
homeomorphism f of CI (A) onto P (CI (A)) suchthatf\Bd(A) = P\Bd(A), then G 
is shrinkable. 

Proof. Suppose that e is a positive number and that A is an open set contain­
ing \JH(G). If we let K0 = {A}, then, by Theorem 1, there exists a locally null 
refinement K of K0 of disjoint open sets {Oi} covering H(G) such that CI (Oi) 
is compact for each i. Since \JK is an open set containing \JH(G)y it follows 
from the hypothesis that there exists a homeomorphism/ of C l ( U ^ ) onto 
P(Cl(UK)) such t h a t / | B d ( U K ) = P\Bd(\JK). 

We now wish to define, for each i, a homeomorphism Ft of C1(0*) onto 
CI(f^P(0*)) such that Fi\Bd(Ot) is the identity map, and Diam(P^g)) < e 
for g G G(Oi). There is a positive number bt such t h a t / - 1 maps each subset of 
P(Cl(Oi)) with diameter less than dt onto a set with diameter less than e. For 
each g G H (G), let 0Q be an open set containing g such that Diam(P(Oi7)) < 5* 
and CI (Of) is a subset of an element of K. By Theorem 1, there exists a refine­
ment J oi {Og\ g G H (G)} which is a disjoint collection of open sets covering 
H(G). Since \JJ is an open set containing \JH(G), it follows from the hypoth­
esis that there exists a homeomorphism h of Cl(U^) onto P(C\({JJ)) such 
that A|Bd(U/) = P | B d ( U / ) . We observe that if C is an element of /which is 
a subset of Ou then Diam(/_1^(C)) < e. Let 

F M = Xr^(*) Ux G (Cl(Ot) - U/), 

Thus, Diam(P*(g)) < e for each g G G(Oi). Since P and & are equal on the 
Bd(U^) , it follows that Ft is the required homeomorphism. 

With such a function defined for each Oiy let 

F/ x / * if x 6 (M - UK) 
^ W lP,(x) if* G Oi. 

I t follows, by applying Theorem 2 twice, that P(x) is a homeomorphism of ikf 
onto M. Since i£ covers H(G), it also follows that Diam(P(g)) < e for each 
g G JÏ(G). Since M — A is a subset of M — UK, it follows that F is the 
identity map when restricted to M — A. Thus, F is a homeomorphism which 
satisfies the requirements of Condition B. 
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Remark. We note that Theorems 4 and 5 could be combined into the 
following form: G is shrinkable if and only if for each open set A containing 
\JH(G), there exists a homeomorphism / of CI (A) onto P(Cl(A)) such that 

/|BcL4 = P\BdA. 

5. Adding decompositions. Bing (11, p. 19) raised the following question: 
"Let Gi (i = 1, 2) be a pointlike decomposition of E3 such that each Gt yields 
E3 and if a non-degenerate element of G\ intersects a non-degenerate element of 
G2, then the elements are the same. Let G be the decomposition of E3 whose 
non-degenerate elements are the non-degenerate elements of Gi and G2. Does G 
yield £3?". 

Example 1 of this section provides a negative answer to Bing's question. 
Theorem 6 is also related to Bing's question and is an affirmative answer 
obtained by imposing an additional condition on the decompositions Gi and Gi. 

Lambert (13) used a result of Armentrout (2, Theorem 1) to obtain theorems 
similar to Theorems 7 and 9 of this section. Lambert had the additional 
hypothesis that G was a pointlike decomposition of S3 such that CI (P({JH(G) ) ) 
was a compact O-dimensional set. 

Example 1. There exist pointlike decompositions G and G' of E3 such that 
each decomposition yields E3 and no non-degenerate element of G intersects a 
non-degenerate element of G', but G + G' does not yield E3. 

In Bing's paper on pointlike decompositions of E3 (see 10), an example of a 
toroidal decomposition of E3 is given so that the decomposition space is not E3. 
There are two planes such that each non-degenerate element of the decomposi­
tion lies in one of them. Let G and G' denote decompositions of E3 such that 
H(G) is the set of non-degenerate elements in one plane and H(G) those in the 
other plane. Thus, G + Gr is the decomposition described. I t follows from a 
result of Dyer and Hamstrom (12) that G yields E3 if H(G) lies in a plane. 
Thus, G and G yield E3, but G + G' does not yield E3. 

For the theorems in this section, the decompositions G and Gr will be as 
denned in § 2. 

THEOREM 6. If G and G' are shrinkable, and, for any sequence of elements of 
H(G) converging to a set X, either X Ç G or X does not intersect any non-
degenerate element of G, then G + G' is shrinkable. 

Proof. Assume that e is a positive number and that A is an open set contain­
ing \JH(G + G'). I t follows that A also contains \JH(G) and \JH(G). Since 
Gf is shrinkable, there exists a homeomorphism f of M onto M such that 
f\ (M — A ) is the identity map and Diam(f (g')) ^ e/2 for each g' 6 G'. 

LetJ= {g G G|Diam(f(g)) ^ e}. Since/(G) is u.s.-c, it follows that Uf(J) 
and U ^ are closed subsets of M. I t follows from the hypothesis that, for each 
g (: J, there exists an open subset Og of A containing g such that 0Q does not 
intersect any non-degenerate element of G. If g G H (G) and g is not an element 
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of / , then, since g is compact and \JJ is closed, it follows that there exists an 
open subset 0Q of A containing g such that 0Q does not intersect any element 
of J . I t follows from Theorem 1 that there exists a refinement K of 
{0g\ g G H (G)} such that K is a disjoint collection of open sets covering H(G). 
I t follows that \JK is an open set containing {JH(G), and for each g G J the 
component of UK containing g does not intersect any element of H(G'). Let A' 
denote the union of all components of UK that intersect \JJ. I t follows from 
Condition B* that there is a homeomorphism h of M onto M such that 
h\(M - UK) = f\(M - UK) and Diam(ft(g)) < e for each g G G. Let 

F M = {A(*> i f x eA'> 
r{ } \f(x) if* G (ikf- ,4 ') . 

Since A|BdC4') = /|BdC4')> it follows that T7 is a homeomorphism of M onto 
Af. If g G (G + G7) and g is a subset of A', then g (z G and 

Diam(F(g)) = Diam(ft(g)) < e. 

If g G (G + G7) and g is not a subset of A\ then g £ J and 

Diam(Ffe)) = Diamtffe)) < e. 

Since / | (M - A) is the identity map and F\(M — A) = f\(M — A), it 
follows that F is the homeomorphism required in Condition B. 

THEOREM 7. If G is shrinkable and H(G) D H(Gf), then G' is shrinkable. 

Proof. Let e be a positive number and let A be an open set containing 
UH{G'). Let / = {gf G G'|Diam(g') è e}. Since UJ is closed, it follows that 
{A, (M — UJ)} is an open covering of H(G). By Theorem 1, there exists a 
refinement K of {̂ 4, (ikf — U^)} such that K is a disjoint collection of open 
sets covering H(G). I t follows that the union A' of all components of UK 
which intersect UJ is a subset of A. Since G is shrinkable, there exists a 
homeomorphism/ of M onto M such tha t / | (ikf — UK) is the identity map and 
Diam(/(g)) < e for each g £ G. Let 

w U if * € (M-A'). 

Since jf|Bd 04r) is the identity map, it follows that 7MS a homeomorphism of M 
onto M. If gf (z G', then either gf is a subset of A' and 

Diam(F(g')) = Diamtffe')) < € 

or g' is neither a subset of A1 nor an element of J and 

Diam(F(g')) = Diam(g') < e. 

Thus, G' satisfies Condition B. 

THEOREM 8. If H{G) D H(G'), g is an element of G and of G', awd G w 
shrinkable at g, then G' is shrinkable at g. 
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Proof. Let A be an open set containing g such that Bd(4) does not intersect 
any non-degenerate element of G and G (A) satisfies Condition B. Then G (A) 
and G'(A) satisfy the hypothesis of Theorem 7. 

THEOREM 9. If g £ G, g £ G', H (G) D H (G'), and G is not shrinkable at g, 
then G is not shrinkable at g. 

Proof. This theorem is a corollary to Theorem 8. 

THEOREM 10. The decomposition G is shrinkable if and only if G is shrinkable 
at each element of H(G). 

Proof. If G is shrinkable, then for each g G G, M is an open set containing g 
and G(M) is shrinkable. 

Let e be a positive number and A an open set containing UH(G). For each 
g Ç H (G), there exists an open set 0Q containing g such that G(Og) is shrink­
able. Use Theorem 1 to obtain a refinement K of {A P\ Og\ g G H (G)} that is a 
locally null disjoint collection of open sets Oi, 0 2 , . . . covering H(G). Theorem 7 
implies that G{Ot) is shrinkable for each i. Since Ot is an open set containing 
KJH(G{Oi)), Condition B implies that there exists a homeomorphism ft of M 
onto M such t h a t / i | ( M — 0*) is the identity map and Diam (/*(#)) < e for 
each g £ G(Pt). 

With such a function defined for each 0U let 

/ * if* Ç {M- UK), 
P{X) \ft(x) if* € 0 , , 

Theorem 2 implies that F is a homeomorphism of M onto Af. Since X covers 
H(G) and U ^ C A, it follows that Condition B is satisfied. 

THEOREM 11. If A is an open subset of M such that G is shrinkable at each 
element of'H{G{A)) and Bd{A) does not intersect any element of H(G), then there 
is a homeomorphism f of CI {A ) onto P (CI (A)) such that f and P are equal when 
restricted to Bd(^4). 

Proof. This theorem is a direct result of Theorems 4, 8, and 10. 

THEOREM 12. If A is an open subset of M such that for each element g of G 
that intersects A, g is a subset of A and G is shrinkable at g, then M/G is 
homeomorphic to M/G{M — A). 

Proof. Let P' denote the projection map associated with G(M — A). I t 
follows from Theorem 20 (see §7) that P''(G) is a u.s.-c. decomposition of 
M/G(M - A) and that M/G is homeomorphic to (M/G(M - A))/Pf{G). 
Since Pr is a homeomorphism on the open set A and each non-degenerate 
element of P' (G) is a subset of P' (A ), it follows that P' (G) is shrinkable at each 
of its non-degenerate elements, and hence that P''(G) is shrinkable. Thus, 
M/G(M — A) is homeomorphic to (M/G(M — A))/Pf{G) and our conclusion 
follows. 
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THEOREM 13. If g G G and G is shrinkable at g, then g is pointlike. 

Proof. Since G is shrinkable at g, there is an open set A containing g such that 
G (A) is shrinkable. Since M — g is an open set satisfying the hypothesis of 
Theorem 12 relative to the decomposition G {A), it follows that 

M = M/G(A) = M/(G(A))(g) = M/{g}; 

that is, the decomposition, whose only non-degenerate element is g, yields M 
as its decomposition space. Thus, M — g is homeomorphic to the complement 
of a point in M. 

6. Decompositions of 3-manifolds. If the space M is a 3-manifold, then 
several of the theorems presented earlier can be modified by using results of 
Armentrout (5) stated below as Theorems Ai and A2. Theorems which are 
similar to Theorems Ai and A2 also appear in other papers by Armentrout 
(1; 2; 3). Since Armentrout's results do not depend on the conditions used in 
the preceding sections of this paper, we shall state each theorem in a form that 
is independent of such conditions. 

THEOREM A I . If M is a 3-manifold, G is a cellular u.s.-c. decomposition of M, 
and the associated decomposition space M/G is a 3-manifold, then M/G is 
homeomorphic to M. 

THEOREM A2. Suppose that M is a 3-manifold, G is a cellular u.s.-c. decomposi­
tion of M, and M/G is a 3-manifold. Suppose that A is an open subset of M whose 
boundary does not intersect any element of H(G). Then there exists a homeo-
morphism h of CI (A ) onto P (CI (A)) such that h and P are equal on Bd {A ). 

Although it is not required in Theorems Ai and A2 that G be O-dimensional, 
we shall continue to impose this requirement in the following theorems. 
Throughout this section, G, G', and G + G' will denote cellular, O-dimensional, 
and u.s.-c. decompositions of a 3-manifold M. 

THEOREM 14. The decomposition G is shrinkable if and only if M/G is homeo­
morphic to M. 

Proof. If G is shrinkable, then Theorem 4 implies that M/G is homeomorphic 
to M. If M/G is homeomorphic to M, then Theorems A2 and 5 imply that G is 
shrinkable. 

THEOREM 15. / / M = M/G = M/G' and for any sequence of elements of 
H(G') converging to asetX, either X is an element of G or X does not intersect any 
element of H{G), then M/(G + Gf) is homeomorphic to M. 

Proof. This theorem is a result of Theorems 6 and 14. 

THEOREM 16. If M/G = M and H (G) D H\G'), then M'/G' is homeomorphic 
to M. 

Proof. This theorem is a result of Theorems 7 and 14. 
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THEOREM 17. Suppose that g is an element of G. The decomposition G is 
shrinkable at g if there exists an open set containing g whose projection is 
homeomorphic to E3. 

Proof. Apply Theorem 14 to the open set containing g. 

THEOREM 18. If A is an open subset of M such that each element of H{G) that 
intersects A lies in an open subset of A whose projection is homeomorphic to E3, 
then M/G(M — A) is homeomorphic to M/G. 

Proof. This theorem follows from Theorems 12 and 17. 

7. Decompositions which are not O-dimensional. In this section we 
present two theorems that are related to the type of question studied in § 5. 
The first theorem is a direct result of Theorem Ai. In this section we do not 
place any restrictions on the decompositions considered other than those stated 
in each theorem. 

THEOREM 19. Let M be a 3-manifold. Let G and G' be cellular u.s.-c. decomposi­
tions of M such that M/G = M/G' = M and C\(\JH(G)) does not intersect 
CI({JH(G')). Let G + G' be the decomposition of M such that 

H(G + G') = H(G) U H(G'). 

Then, M/(G + G') is homeomorphic to M. 

Proof. If g is any element of G + G', then there exists an open set A contain­
ing g which intersects only one of CIQJH(G)) and C\(\JH(G')). Thus, the 
projection of A in M/(G + G') is a 3-manifold. I t follows from Theorem Ai 
that M/(G + G') is homeomorphic to M. 

THEOREM 20. If M is a metric space, G and G' are u.s.-c. decompositions of M 
such that H(G) D H(Gf), and P' is the projection map of M onto M/G', then 
P'(G) is a u.s.-c. decomposition of M/G' and M/G = (M/G')/P'(G). 

Proof. Let P'(g) be an element of P' (G) and A an open subset of M/G' 
containing P'(g). Since P'~l(A) is an open subset of M containing g, it follows 
that C = P'dP'-^A^G) is an open subset of A containing P'(g). If P'(y) is 
any element of P' (G) which intersects C, then P'(y) is a subset of C. Thus, 
P' (G) is a u.s.-c. decomposition of M/G'. 

The fact that (M/G')/P'(G) is homeomorphic to M/G follows directly from 
the definition of decomposition spaces. 

Remark. In Theorem 20, the set \JH(P'(G)) is homeomorphic to 
\J(H(G) — H(G')). However, Example 1 illustrates the fact that their 
respective embeddings might be different even when M = M/G. 
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