
J. Functional Programming 10 (1): 121–134, January 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

121

T H E O R E T I C A L P E A R L

Lambda terms for natural deduction,
sequent calculus and cut elimination

HENK BARENDREGT

Department of Computer Science, Catholic University,

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(e-mail: henk@cs.kun.nl)

SILVIA GHILEZAN

Faculty of Engineering, University of Novi Sad,

Trg Dositeja Obradovića 6, 21000 Novi Sad, Yugoslavia

(e-mail: gsilvia@uns.ns.ac.yu)

For Roger Hindley on his 60th birthday

Abstract

It is well known that there is an isomorphism between natural deduction derivations and

typed lambda terms. Moreover, normalising these terms corresponds to eliminating cuts in the

equivalent sequent calculus derivations. Several papers have been written on this topic. The

correspondence between sequent calculus derivations and natural deduction derivations is,

however, not a one-one map, which causes some syntactic technicalities. The correspondence

is best explained by two extensionally equivalent type assignment systems for untyped lambda

terms, one corresponding to natural deduction (λN) and the other to sequent calculus (λL).

These two systems constitute different grammars for generating the same (type assignment

relation for untyped) lambda terms. The second grammar is ambiguous, but the first one is

not. This fact explains the many-one correspondence mentioned above. Moreover, the second

type assignment system has a ‘cut-free’ fragment (λLcf). This fragment generates exactly

the typeable lambda terms in normal form. The cut elimination theorem becomes a simple

consequence of the fact that typed lambda terms posses a normal form.

1 Introduction

Systems of natural deduction for propositional and predicate logic have been intro-

duced in Gentzen (1935) to represent in a natural way (intuitionistic) arguments. In

that same paper Gentzen also introduced the sequent calculus systems, equivalent

to the system of natural deduction, i.e. having the same set of derivable statements.

By leaving out one of the derivation rules this system has a natural sub-system, the

cut-free sequent calculus, having again the same set of derivable statements (this fact

is stated by Gentzen’s Hauptsatz or cut-elimination theorem). This subsystem enjoys

certain properties, by which several meta-properties about the full logical systems

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

122 H. Barendregt and S. Ghilezan

can be proved. For example, in this way it can be shown that intuitionistic systems

satisfy the disjunction property

` A ∨ B ⇒ ` A or ` B.
Another proof-theoretic property, valid for both classical and intuitionistic logic,

that can be derived from Gentzen’s Hauptsatz is the Craig interpolation theorem

` A→ B ⇒ ` A→ C and ` C → B, for some C with as non-logical symbols

(propositional atoms, relation symbols or function symbols)

a subset of those occurring both in A and in B

(see Troelstra and Schwichtenberg (1996)).

Later, another method of obtaining such meta-statements was given by Prawitz

(1965), by showing that in the systems of natural deduction each derivation can

be reduced to a normal form derivation, which proves the same conclusion as the

original one.

So Gentzen obtained the meta-theoretic results by relying on the subset of the

derivations in sequent calculus that can be characterised easily by leaving out the

cut-rule, whereas Prawitz on the other hand used the system of natural deduction and

the structural requirement on derivations of being in normal form. The Hauptsatz

of Gentzen is more easy to formulate than Prawitz’ normalisation theorem: no

structural properties of derivations need to be stated. On the other hand, for the

proof of the Hauptsatz as well as for the proof of its consequences, one does need

to analyse structural properties of sequent calculus derivations.

It became clear that there was a relation between the two methods and more

in particular between the cut-free derivations in the sequent calculus and the nor-

mal derivations in the system of natural deduction (Prawitz, 1965; Zucker, 1974;

Pottinger, 1977). The correspondence is not one-one: several cut-free derivations

correspond to one normal derivation. This may have caused some of the mentioned

work to be quite lengthy.

There is a perfect correspondence between natural deduction derivations and typed

lambda terms. This was hinted at (for the implicational fragment) by Curry (1942),

first formulated well by Howard (1980) (written in 1969), and used intensively, but

not explicitly formulated, by de Bruijn (in his Automath project for the automated

verification of mathematics – see Nederpelt et al., 1994). The correspondence is often

called the Curry Howard(-de Bruijn) isomorphism. As the map also involves a

correspondence between statements (formulas) and types, it is also referred to as the

formulas-as-types interpretation.

Herbelin (1995) relates sequent calculus derivations and terms of the typed lambda

calculus extended with explicit substitution operators (e.g. see Bloo and Rose (1996)

for an introduction to this subject). This clarifies the situation, as typed λ-terms with

explicit substitution operators are halfway between sequent calculus derivations and

typed lambda calculus, see the discussion in Section 5.

We prefer to describe the situation in a different way from the point of view

of ordinary lambda terms (without explicit substitution operators). A satisfactory

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 123

view can be obtained, by considering the sequent calculus as a more intensional

way to do the same as natural deduction: assigning lambda terms to provable

formulas. There is a well-known system that assigns types to untyped lambda terms,

the Curry assignment system λ→, which here will be denoted by λN. Next to this

system there are two other systems of type assignment: λL and its cut-free fragment

λLcf . These systems have been described by Gallier (1993), in Barbanera et al.

(1995) (appearing as subsystems of one that also includes intersection types), and

by Mints (1996). The three systems λN, λL and λLcf exactly correspond respectively

to the natural deduction calculus NJ , the sequent calculus LJ and the cut-free

fragment of LJ , here denoted by N, L and Lcf . Moreover, λN and λL generate the

same type assignment relation. The system λLcf generates the same type assignment

relation as λN restricted to normal terms and cut elimination exactly corresponds

to normalisation.

In λN given a Γ and an M, one can find relatively easily a proposition A such

that Γ ` M : A. Conversely, in λLcf given the Γ and the A one can find relatively

easily an M such that Γ `M : A. (Still, the complexity of this is PSPACE complete

as shown by Statman, 1979.)

Using this approach, the Hauptsatz can be seen as a (canonical) consequence of

the normalisation theorem for typeable lambda terms. Since all of this must have

been known to several people, our contribution is mainly expository: but we have

not seen the story told in this way. The emphasis is on lambda terms rather than on

derivations. As a matter of fact, lambda terms are more easy to reason about than

the two dimensional derivations. Since derivations in the natural deduction system

are isomorphic to typed lambda terms, there is some preference for this logical

system, notably for the intuitionistic case.

For simplicity the results are presented only for the essential kernel of intuitionistic

logic, i.e. for the minimal implicational fragment. The proof of the Hauptsatz

probably can be extended along the same lines to the full logical system, using the

terms as in Gallier (1993).

2 The logical systems N , L and Lcf

Definition 2.1

The set form of formulas (of minimal implicational propositional logic) is defined

by the following abstract syntax.

form = atom | form → form

atom = p | atom′

We write p, q, r, . . . for arbitrary atoms and A, B, C, . . . for arbitrary formulas. Sets

of formulas are denoted by Γ, ∆, The set Γ, A stands for Γ ∪ {A}. We consider

derivability from finite sets of formulas (for the system L this is a bit unorthodox,

but inessential).

Definition 2.2

(i) A statement A is derivable in the system N from the set Γ, notation Γ `N A, if

Γ ` A can be generated by the following axiom and rules:

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

124 H. Barendregt and S. Ghilezan

N

A∈Γ

Γ ` A axiom

Γ ` A→ B Γ ` A
Γ ` B → elim

Γ, A ` B
Γ ` A→ B

→ intr

(ii) A statement A is derivable from assumptions Γ in the system L, notation Γ `L A,

if Γ ` A can be generated by the following axiom and rules:

L

A∈Γ

Γ ` A axiom

Γ ` A Γ, B ` C
Γ, A→ B ` C → left

Γ, A ` B
Γ ` A→ B

→ right

Γ ` A Γ, A ` B
Γ ` B cut

(iii) The system Lcf is obtained from the system L by omitting the rule (cut).

Lcf

A∈Γ

Γ ` A axiom

Γ ` A Γ, B ` C
Γ, A→ B ` C → left

Γ, A ` B
Γ ` A→ B

→ right

Lemma 2.3

Suppose Γ ⊆ Γ′. Then

Γ ` A⇒ Γ′ ` A
in all systems.

Proof

By a trivial induction on derivations.

Proposition 2.4

For all Γ and A we have

Γ `N A⇔ Γ `L A.

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 125

Proof

(⇒) By induction on derivations in N. For the rule (→ elim) we need the rule (cut).

Γ `L A→B
Γ `L A

(axiom)

Γ, B `L B
(→ left)

Γ, A→B `L B
(cut)

Γ `L B
(⇐) By induction on derivations in L. The rule (→ left) is treated as follows:

Γ, B `N C
(→ intr)

Γ `N B→C
(lemma 2.3)

Γ, A→B `N B→C

(axiom)

Γ, A→B `N A→B
Γ `N A

(2)

Γ, A→B `N A
(→ elim)

Γ, A→B `N B
(→ elim)

Γ, A→B `N C
The rule (cut) is treated as follows:

Γ, A `N B
Γ `N A→ B

(→ intr)
Γ `N A

Γ `N B (→ elim). q

Definition 2.5

Consider the following rule as alternative to the rule (cut):

Γ, A→ A ` B
Γ ` B cut′

The system L′ is defined by replacing the rule (cut) by (cut′).

Proposition 2.6

For all Γ and A

Γ `L A⇔ Γ `L′ A.

Proof

(⇒) The rule (cut) is treated as follows:

Γ `L′ A Γ, A `L′ B
(→ left)

Γ, A→A `L′ B
(cut′)

Γ `L′ B
(⇐) The rule (cut′) is treated as follows:

(axiom)

Γ, A `L A
(→ right)

Γ `L A→A Γ, A→A `L B
(cut). q

Γ `L B
Note that we have not yet investigated the role of Lcf .

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

126 H. Barendregt and S. Ghilezan

3 The type assignment systems λN , λL and λLcf

Definition 3.1

The set term of type-free lambda terms is defined as follows:

term = var | term term | λvar.term
var = x | var′

We write x, y, z, . . . for arbitrary variables in terms and P , Q, R, . . . for arbitrary

terms. Equality of terms (up to renaming of bound variables) is denoted by ≡. The

identity is I ≡ λx.x. A term P is called a β normal form (P is in β-nf) if P has

no redex as part, i.e. no subterm of the form (λx.R)S . A term with redex is said to

reduce as follows:

C[(λx.R)S]→β C[R[x := S]].

Here C[] is the rest of the term (the context) and R[x := S] denotes the result of

substituting S for the free occurrences of x. The transitive reflexive closure of →β

is denoted by →→β . If P →→β Q and Q is in β-nf, then Q is called the β-nf of P (one

can show it is unique). A collection A of terms is said to be strongly normalising if

for no P∈A there is an infinite reduction path

P →β P1 →β P2

Definition 3.2

(i) A type assignment is an expression of the form

P : A,

where P is a lambda term and A is a formula.

(ii) A declaration is a type assignment of the form

x : A.

(iii) A context Γ is a set of declarations such that for every variable x there is at

most one declaration x : A in Γ.

Definition 3.3

(i) A type assignment P : A is derivable from the context Γ in the system λN (also

known as λ→), notation

Γ `λN P : A,

if Γ ` P : A can be generated by the following axiom and rules:

λN

(x : A)∈Γ

Γ ` x : A
axiom

Γ ` P : (A→ B) Γ ` Q : A

Γ ` (PQ) : B
→ elim

Γ, x : A ` P : B

Γ ` (λx.P) : (A→ B)
→ intr

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 127

(ii) A type assignment P : A is derivable from the context Γ in the system λL,

notation

Γ `λL P : A,

if Γ ` P : A can be generated by the following axiom and rules:

λL

(x : A)∈Γ

Γ ` x : A
axiom

Γ ` Q : A Γ, x : B ` P : C

Γ, y : A→ B ` P [x := yQ] : C
→ left

Γ, x : A ` P : B

Γ ` (λx.P) : (A→ B)
→ right

Γ ` Q : A Γ, x : A ` P : B

Γ ` P [x := Q] : B
cut

In the rule (→ left) it is required that Γ, y : A→ B is a context. This is the case

if y is fresh or if Γ = Γ, y : A→ B, i.e. y : A→ B already occurs in Γ.

(iii) The system λLcf is obtained from the system λL by omitting the rule (cut).

λLcf

(x : A)∈Γ

Γ ` x : A
axiom

Γ ` Q : A Γ, x : B ` P : C

Γ, y : A→ B ` P [x := yQ] : C
→ left

Γ, x : A ` P : B

Γ ` (λx.P) : (A→ B)
→ right

Remark 3.4

The alternative rule (cut′) could also have been used to define the variant λL′. The

right version for the rule (cut′) with term assignment is as follows:

Rule cut′ for λL′

Γ, x : A→ A ` P : B

Γ ` P [x := I] : B
cut′

Notation

Let Γ = {A1, . . . , An} and
→
x = {x1, . . . , xn}. Write

Γ→
x

= {x1 : A1, . . . , xn : An}
and

Λ◦(→x) = {P∈term |FV (P) ⊆ →x},
where FV (P) is the set of free variables of P .

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

128 H. Barendregt and S. Ghilezan

The following result has been observed for N and λN by Curry, Howard and

de Bruijn. (See Troelstra and Schwichtenberg, 1996, § 2.1.5. and Hindley, 1997,

6B3, for some fine points about the correspondence between deductions in N and

corresponding terms in λN.)

Proposition 3.5 [Propositions-as-type interpretation].

Let S be one of the logical systems N, L or Lcf and let λS be the corresponding

type assignment system. Then

Γ `S A⇔ ∃→x ∃P∈Λ◦(→x) Γ→
x
`λS P : A.

Proof

(⇒) By an easy induction on derivations, just observing that the right lambda term

can be constructed. (⇐) By omitting the terms.

Since λN is exactly λ→, the simply typed lambda calculus, we know the following

results whose proofs are not hard, but are omitted here. From Corollary 4.3, it

follows that the results also hold for λL.

Proposition 3.6

(i) (Normalisation theorem for λN)

Γ `λN P : A⇒ P has a β-nf P nf .

(ii) (Subject reduction theorem for λN)

Γ `λN P : A and P →→β P
′ ⇒ Γ `λN P ′ : A.

(iii) (Generation lemma for λN) Type assignment for terms of a certain syntactic

form is caused in the obvious way.

(1) Γ `λN x : A ⇒ (x : A)∈Γ.

(2) Γ `λN PQ : B ⇒ Γ `λN P : (A→ B) and Γ `λN Q : A,

for some type A.

(3) Γ `λN λx.P : C ⇒ Γ, x : A `λN P : B and C ≡ A→ B,

for some types A, B.

Proof

(i) See, for example, Turing’s proof in Gandy (1980). The idea is that reduction of

the rightmost redex of highest rank decreases the number of such redexes, where

rank is defined by

rank(p) = 0;

rank(A→ B) = max{rank(A) + 1, rank(B)}.
(ii) and (iii) See Barendregt (1992).

Actually, even strong normalisation holds for terms typeable in λN (e.g. see de

Vrijer (1987) or Barendregt (1992)).

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 129

4 Relating λN , λL and λLcf

Now the proof of the equivalence between systems N and L will be ‘lifted’ to that

of λN and λL.

Proposition 4.1

Γ `λN P : A⇒ Γ `λL P : A.

Proof

By induction on derivations in λN. Modus ponens (→ elim) is treated as follows

(use a fresh y).

Γ `λL P : A→B
Γ `λL Q : A Γ, x:B `λL x:B

(→ left)

Γ, y:A→B `λL yQ : B
(cut) q

Γ `λL PQ : B

Proposition 4.2

(i) Γ `λL P : A⇒ Γ `λN P ′ : A, for some P ′ →→β P .

(ii) Γ `λL P : A⇒ Γ `λN P : A.

Proof

(i) By induction on derivations in λL. The rule (→ left) is treated as follows (the

justifications are left out, but they are as in the proof of 2).

Γ, x:B `λN P : C

Γ `λN (λx.P) : B→C
Γ, y:A→B `λN (λx.P) : B→C

Γ `λN Q : A

Γ, y:A→B `λN Q : A Γ, y:A→B `λN y:A→B
Γ, y:A→B `λN yQ : B

Γ, y:A→B `λN (λx.P)(yQ) : C

Now (λx.P)(yQ)→β P [x := yQ] as required. The rule (cut) is treated as follows:

Γ, x : A `λN P : B

Γ `λN (λx.P) : A→ B
(→ intr)

Γ `λN Q : A

Γ `λN (λx.P)Q : B
(→ elim).

Now (λx.P)Q→β P [x := Q] as required.

(ii) By (i) and the subject reduction theorem for λN (3(ii)).

Corollary 4.3

Γ `λL P : A⇔ Γ `λN P : A.

Proof

By propositions 4 and 4(ii).

Now we will investigate the role of the cut-free system.

Proposition 4.4

Γ `λLcf P : A⇒ P is in β-nf .

Proof

By an easy induction on derivations.

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

130 H. Barendregt and S. Ghilezan

Lemma 4.5

Suppose

Γ `λLcf P1 : A1, . . . ,Γ `λLcf Pn : An.

Then

Γ, x : A1 → · · · → An → B `λLcf xP1 . . . Pn : B

for those variables x such that Γ, x : A1 → · · · → An → B is a context.

Proof

We treat the case n = 2, which is perfectly general. For `λLcf we write ` and y will

be a fresh variable.

Γ ` P1 : A1

Γ ` P2 : A2

(axiom)

Γ, z:B ` z : B
(→ left)

Γ, y:A2→B ` yP2 ≡ z[z:=yP2] : B
(→ left)

Γ, x:A1→A2→B ` xP1P2 ≡ (yP2)[y:=xP1] : B

Note that x may occur in some of the Pi.

Proposition 4.6

Suppose that P is a β-nf. Then

Γ `λN P : A⇒ Γ `λLcf P : A.

Proof

By induction on the following generation of normal forms:

nf = var | var nf+ | λvar.nf.
The cases P ≡ x and P ≡ λx.P1 are easy. The case P ≡ xP1 . . . Pn follows from the

previous lemma, using the generation lemma for λN (3(iii)).

Now we get as a bonus the Hauptsatz of Gentzen (1935) for minimal implicational

sequent calculus.

Theorem 4.7 [Cut elimination]

Γ `L A⇒ Γ `Lcf A.

Proof

Γ `L A ⇒ Γ→
x
`λL P : A, for some P∈Λ◦(→x), by 3,

⇒ Γ→
x
`λN P : A, by 4(ii),

⇒ Γ→
x
`λN P nf : A, by 3(i), (ii),

⇒ Γ→
x
`λLcf P nf : A, by 4,

⇒ Γ `Lcf A, by 3. q

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 131

The proof can be depicted as follows:

kN kL

LN

kLcf

LcfN cf

kNnf

As it is clear that the proof implies that successive elimination of cuts leads to

a method normalising terms typeable in λN = λ →, the main result in Statman

(1979) implies that the expense of such a procedure is beyond elementary time

(Grzegorczyk class 4). Moreover, as a cut-free derivation is of the same order of

complexity as the corresponding normal lambda term, the size of a derivation after

such a procedure may not be elementary in the size of the original derivation. On

the other hand, abandoning the desideratum of convertibility of the corresponding

lambda terms, one may eliminate cuts by a procedure (see Hudelmaier, 1992) with

an elementary upper bound on derivation growth.

5 Discussion

The main technical tool is the type assignment system λL corresponding exactly to

sequent calculus (for minimal propositional logic). The type assignment system λL

has been introduced by Gallier (1993) in Barbanera et al. (1995) (for a different

purpose), and by Mints (1996). The difference between the present approach and

those by Gallier and Mints is that in these papers, derivations in L are first class

citizens, whereas in λL the provable formulas and the lambda terms are.

In λN typeable terms are built up as usual (following the grammar of lambda

terms). In λLcf only normal terms are typeable. They are built up from variables by

transitions like

P 7−→ λx.P

and

P 7−→ P [x := yQ].

This is an ambiguous way of building terms, in the sense that one term can be built

up in several ways. For example, one can assign to the term λx.yz the type C → B

(in the context z : A, y : A→ B) via two different cut-free derivations:

x : C, z : A ` z : A x : C, z : A, u : B ` u : B

x : C, z : A, y : A→ B ` yz : B

z : A, y : A→ B ` λx.yz : C → B
(→ right)

(→ left)

and

z:A ` z:A
x:C, z:A, u:B ` u : B

(→ right)

z:A, u:B ` λx.u : C→B
(→ left)

z:A, y:A→B ` λx.yz : C→B

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

132 H. Barendregt and S. Ghilezan

These correspond, respectively, to the following two formations of terms

u 7−→ yz 7−→ λx.yz,

u 7−→ λx.u 7−→ λx.yz.

Therefore, there are more sequent calculus derivations giving rise to the same

lambda term. This is the cause of the mismatch between sequent calculus and

natural deduction as described by Zucker (1974), Pottinger (1977) and Mints (1996).

See also Dyckhoff and Pinto (1999), Schwichtenberg (1999) and Troelstra (1999).

Herbelin (1995) pointed out that the L-derivations can be made into a one-to-

one correspondence with typed lambda terms with explicit substitution. Define the

system λL+, which is λL with explicit substitutions as follows. λL+cf is the system

without the cut-rule.

λL+

(x : A)∈Γ

Γ ` x : A
axiom

Γ ` Q : A Γ, x : B ` P : C

Γ, y : A→ B ` P 〈x := yQ〉 : C
→ left

Γ, x : A ` P : B

Γ ` (λx.P) : (A→ B)
→ right

Γ ` Q : A Γ, x : A ` P : B

Γ ` P 〈x := Q〉 : B
cut

Here P 〈x := Q〉 is an explicit substitution operator. Deductions in L and Lcf are

in a one-to-one correspondence with lambda terms with explicit substitutions. The

transition from L to λL factorises through λL+ and the many-to-one aspect is caused

by performing the substitutions.

L kL+ kL

kL+cfLnf kLcf

So the above derivations correspond to

λx.(u〈u := yz〉),
(λx.u)〈u := yz〉.

In the present paper, lambda terms (without explicit substitutions) are considered as

first class citizens also for sequent calculus. This gives an insight into the mismatch

mentioned: one of the causes is the intensional aspect how the sequent calculus

generates lambda terms.

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

Theoretical pearl 133

It is interesting to note, how in the full system λL the rule (cut) generates terms

not in β-normal form. The extra transition now is

P 7−→ P [x := F].

This will introduce a redex, if x occurs actively (in a context xQ) and F is an

abstraction (F ≡ λx.R), the other applications of the rule (cut) being superfluous.

Also, the alternative rule (cut′) can be understood better. Using this rule the extra

transition becomes

P 7−→ P [x := I].

This will have the same effect (modulo one β-reduction) as the previous transition,

if x occurs in a context xFQ. So with the original rule (cut) the argument Q (in

the context xQ) is waiting for a function F to act on it. With the alternative rule

(cut′) the function F comes close (in context xFQ), but the ‘couple’ FQ has to wait

for the ‘green light’ provided by I. To obtain a cut-free proof one can manipulate

derivations in such a way that the terms involved get reduced. By the strong

normalisation theorem for λN (= λ→) it follows that eventually a cut-free proof

will be reached.

We have not studied in detail whether cut elimination can be done along the lines

of this paper for the full system of intuitionistic predicate logic, but there seems to

be no problem. More interesting is the question, whether there are similar results for

classical and linear logic. See Urban and Bierman (1999) for work in the direction

of classical logic.

Acknowledgements

The paper uses the TEX macros of Paul Taylor for building proof-trees and the

package XY-pic of Kris Rose and Ross Moore to construct diagrams. We thank

Venanzio Capretta, Daniel Isaacson, Simon Peyton Jones, Christian Urban and

notably Roy Dyckhoff for useful discussions.

References

Barbanera, F., Dezani-Ciancaglini, M. and de’ Liguoro, U. (1995) Intersection and union

types: syntax and semantics. Information & Computation 119, 202–230.

Barendregt, H. P. (1992) Lambda calculi with types. In S. Abramsky, D. M. Gabbai and T.

S. E. Maibaum (editors), Handbook of Logic in Computer Science, vol. 2. Oxford University

Press, Oxford, pp. 117–309.

Bloo, R. and Rose, K. H. (1996) Combinatory reduction systems with explicit substitu-

tion that preserve strong normalization. In H. Ganzinger (editor), Rewrite Techniques and

Applications: Lecture Notes in Computer Science 1103, pp. 169–183. Springer-Verlag.

Curry, H. B. (1942) The combinatory foundations of mathematical logic, Journal of Symbolic

Logic 7, pp. 47–64.

Dyckhoff, R. and Pinto, L. (1999) Permutability of proofs in intuitionistic sequent calculi.

Theoretical Comput. Sci. 212, 141–155.

Gallier, J. (1993) Constructive logics (Part I: A tutorial on proof systems and typed lambda-

calculi). Theoretical Comput. Sci. 110 (2): 249–339.

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

134 H. Barendregt and S. Ghilezan

Gandy, R. (1980) An early proof of normalization by A. M. Turing. In J. P. Seldin and

J. R. Hindley (editors), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism, pp. 453–457. Academic Press.

Gentzen, G. (1935) Untersuchungen über das logischen Schliessen. Mathematische Zeitschrift

39, 176–210, 405–431. (Translation in Collected papers of Gerhard Gentzen, M. E. Szabo

(editor), pp. 68–131. North-Holland, 1969.)

Herbelin, H. (1995) A lambda calculus structure isomorphic to Gentzen-style sequent calcu-

lus structure. Computer Science Logic (CSL’94): Lecture Notes in Computer Science 933,

pp. 61–75. Springer-Verlag.

Hindley, J. R. (1997) Basic Simple Type Theory. Cambridge University Press.

Howard, W. A. (1980) The formulas-as-types notion of construction. In J. P. Seldin and

J. R. Hindley (editors), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism, pp. 479–490. Academic Press.

Hudelmaier, J. (1992) Bounds for cut elimination in intuitionistic propositional logic. Archive

for Mathematical Logic 31, 331–353.

Mints, G. (1996) Normal forms for sequent derivations. In P. Odifreddi (editor), Kreiseliana.

About and Around Georg Kreisel, pp. 469–492. A. K. Peters, Wellesley, MA.

Nederpelt, R. P., Geuvers, J. H. and de Vrijer, R. C. (editors) (1994) Selected Papers on

Automath. Studies in Logic and the Foundations of Mathematics 133. North-Holland.

Pottinger, G. (1977) Normalization as a homomorphic image of cut-elimination. Ann. Math-

ematical Logic 12, 323–357.

Prawitz, D. (1965) Natural deduction. A proof-theoretical study. Almquist and Wiksell, Stock-

holm.

Schwichtenberg, H. (1999) Termination of permutative conversion in intuitionistic Gentzen

calculi. Theoretical Comput. Sci. 212, 247–260.

Statman, R. (1979) The typed λ-calculus is not elementary recursive. Theoretical Comput. Sci.

9, 73–81.

Troelstra, A. S. (1999) Marginalia on sequent calculi. Studia Logica 62, pp. 291–303.

Troelstra, A. S. and Schwichtenberg, H. (1996) Basic Proof Theory. Cambridge University

Press.

Urban, C. and Bierman, G. (1999) Strong normalisation of cut-elimination in classical logic. In

J.-Y. Girard (editor), Typed Lambda Calculus and Applications: Lecture Notes in Computer

Science 1581, pp. 365–380. Springer-Verlag.

de Vrijer, R. (1987) Exactly estimating functionals and strong normalization. Indagationes

Mathematicae 49, 479–493.

Zucker, J. (1974) Cut-elimination and normalization. Annals of Mathematical Logic 7, 1–112.

https://doi.org/10.1017/S0956796899003524 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003524

