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A GENERAL RIGIDITY THEOREM FOR
COMPLETE SUBMANIFOLDS

KATSUHIRO SHIOHAMA anpD HONGWEI XU

Abstract. Making use of 1-forms and geometric inequalities we prove the
rigidity property of complete submanifolds M"™ with parallel mean curvature
normal in a complete and simply connected Riemannian (n 4 p)-manifold N7
with positive sectional curvature. For given integers n, p and for a nonnegative
constant H we find a positive number 7(n,p) € (0,1) with the property that if
the sectional curvature of N is pinched in [7(n,p), 1], and if the squared norm
of the second fundamental form is in a certain interval, then N™*? is isometric
to the standard unit (n + p)-sphere. As a consequence, such an M is congruent
to one of the five models as seen in our Main Theorem.

§0. Introduction

An important problem in differential geometry is the study of relations
between the geometric structure and the geometric invariants of Rieman-
nian submanifolds. After the pioneering work of Simons [S] the following
result, known as the rigidity theorem for submanifolds containing minimal
cases, was proved first by Lawson [L1], Chern-do Carmo-Kobayashi [CDK]
and later Li and Li [LL] and finally by the second author [X1], as stated

THEOREM 0.1. For given constant H > 0 and positive integers n (>
2), p there exists a positive number C(n,p, H) with the following property:
If M™ is a closed submanifold in the standard unit (n + p)-sphere S™P(1)
with parallel mean curvature normal field having norm H, and if S is the
squared norm of the second fundamental form satisfying

S S C(n7p)H)?

then M is congruent to one of the following:

(1) ™ ()
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(2) the isoparametric hypersurface Sn_l(\/fi__,\z) X Sl(\/ﬁv) in S™t1(1),

(3) one of the Clifford minimal hypersurfaces Sk(\/g) x Snk(y/2=E) in
S*tl(1), fork=1,---,n—1,

(4) the Clifford torus S*(r1) x St(re) in S3(r) with constant mean cur-
vature Hy, where r1, o = [2(1 + H?) £ 2Hy(1 + H>)V?|71/2 ¢ =
(1+H?>—-H3) /%, and 0< Ho < H,

(5) the Veronese surface in S*( \/leT)

Here A and C(n,p, H) are given by

A= 5(5}:—1—)[71H + /n2H? + 4(n — 1)],

and
a(n,H), forp=1,orp=2and H#0
C(n,p, H) = { min{a(n, H), %(277, + 5nH?)),
forp>3, orp=2and H=0,

where

n3 n{n — -
2 D) 2_ 2én — ?; V/n2H4 4 4(n — 1)H2.

a(n,H)=n+

Note that the special case where p = 1 and H # 0 was proved indepen-
dently by Alencar and do Carmo in [AdC]. Also note that Theorem 0.1 was
obtained under the assumption that the ambient space is the round sphere.
The existence of parallel mean curvature normal field imposes very nice
properties to submanifolds, whatever the ambient spaces are. In fact the
second author proved in [X2] the rigidity for compact minimal submanifolds
in pinched Riemannian manifolds, as stated

THEOREM 0.2. ([X2]) For given positive integers n > 2, p there exists
a number §(n,p) with 0 < §(n,p) < 1 with the following properties: If M™
is an oriented closed minimal submanifold in a complete simply connected
manifold N™ P whose sectional curvature Ky satisfies 6(n,p) < Ky <1
and if

Blr,p)(1—¢) < S <n— Tsgn(p—1) = 1(n,p)(1 - <),
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where ¢ := inf Ky, then N is isometric to S"™P(1). Moreover M is congru-
ent to one of the following:

(1) s*(v),

(2) the Clifford minimal hypersurfaces Sk(\/g) x 87 k( "T"k) in S"T1(1),
fork=1,---,n—1,

(3) the Veronese surface in S*(1).

Here 3(n,p), v(n,p) and §(n,p) are given as

B(n,p) := Ili[pn(n —1)(52n — 50)]1/2,

v(n,p) =n+ g(p ~1)(n-1)Y2+ ilg[pn(n —1)(52n — 50)]*/2,
8(n,p) :==1—n(3—sgn(p—1)){3n +2(p — 1)(n — 1)/2

V2 1/2}~1.

+ T[pn(n —1)(26n — 25)]

The purpose of this paper is to relax the special closed submanifolds
in the above results to complete submanifolds with parallel mean curvature
normal fields, and the ambient space to general Riemannian manifold N™*?.
Thus we obtain the generalization of Theorems 0.1 and 0.2.

MAIN THEOREM. For given positive integers n (> 2), p and a non-
negative constant H there exists a number 7(n,p) such that 0 < 7(n,p) <1
with the following properties: If M™ is an oriented complete submanifold
with parallel mean curvature normal field with its norm H in a complete and
stmply connected (n + p)-dimensional Riemannian manifold with 7(n,p) <
Ky <1, and if

nH + Ay(n, p)(1 — ¢) + As(n, p)[(1 + H?) H]Y2(1 — o)V/4
< S < C(n,p,H) — Bi(n,p)(1 - ¢) — Ba(n,p)[(1 + H*)H]'/*(1 — c)'/*,
where ¢ := inf Ky, then N is isometric to S"*P(1). Moreover,

1. Ifsupy, S < a(n, H), then M is congruent to either S™( l}er) or the

Veronese surface in S*( \/1—41:7{—2)

2. If M is compact, then M is congruent to one of the following:
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(1) 8™,

(2) the isoparametric hypersurface Sn_l(\/li_T) X Sl(\/lj—T) in S"T1(1),
(3) one of the Clifford minimal hypersurfaces SF (\/g ) x 8¥7k(,/ "T-k) in
S"ti(1), fork=1,---,n—1,

(4) the Clifford torus S'(r1) x S(re) in S3(r) with constant mean cur-
vature Ho, where r1, o = [2(1 + H?) £ 2Ho(1 + H>)Y?|71/2 ¢ =
(1+H? - H3)™Y/2, and 0< Hy < H,

(5) the Veronese surface in 84(\/#)'

Here C(n,p, H), a(n,H) and A are defined as in Theorem 0.1.

The constants 7(n,p), A1(n,p), As(n,p), B1(n,p) and Bs(n,p) are pre-
cisely given in the proof (see §3). In the case where M is not oriented, we
can obtain similar results by using the Riemannian double cover. Our proof
method is quite different from the previous ones developed in Theorems 0.1
and 0.2. In contrast to the proofs of Theorems 0.1 and 0.2, our proof does
not require the generalized maximum principle and the generalized Simons
inequality, but the use of two distinct differential 1-forms and integral in-
equalities for the semi-norms of the second fundamental form of M. The
crucial point of our proof is to verify that ¢ = 1. The closed minimal case
in our Main Theorem has already been established in Theorem 0.2, and
hence H # 0 is assumed throughout §2 and §3. In due course of the proof
of our Main Theorem we obtain geometric inequalities (see Theorems 2.4,
2.8, etc.) by which the rigidity results for compact cases are obtained (see
Theorems 3.1, 3.3 and 3.4). In complete case we show by computations that
the Ricci curvature is bounded below by a positive constant, and hence it
reduces to compact case.

The paper is organized as follows. Local formulas and propositions are
prepared in §1. In §2 we present two geometric inequalities for the semi-
norms of the second fundamental form. In §3 we investigate the rigidity of
closed submanifolds with parallel mean curvature normal field in a pinched
manifold. In §4 we discuss complete submanifold with parallel mean curva-
ture normal field and complete the proof of our Main Theorem.

The second author would like to express his thanks to Professor P. Li
for his valuable suggestions.
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§1. Preliminaries

Throughout this paper let M™ be an n-dimensional connected and
complete Riemannian manifold isometrically immersed into an (n + p)-
dimensional Riemannian manifold N®*P. The following convention of in-
dices are used throughout.

lanBaC,Sn"‘P, 1SZ7J)k3Sna TL+1§OA,,3,’Y,§’)’L+])

Choose an orthonormal frame field {e4} in a neighborhood of a point p € M
such that the e;’s span the tangent space T,M to M at p. Let {wa} be
the dual frame fields of {e4} and {wsp} the connection 1-forms of N.
Restricting these forms to M, we have

Zh wj, kY =hS.

Let a(z), b(z) for £ € N be the minimum and maximum of Ky at that
point and ¢, d the infimum and supremum of a,b6: N — R over N. The
curvature tensors of N, M are denoted by Kapcp, Rijki, and the normal
curvature tensor of M by R,gy respectively. Let R be the scalar curvature
of M. The second fundamental form of M is denoted by A and the mean

curvature normal field by £. Set H := ||€||, the mean curvature of M and
S the squared norm of h. We then have
(1.1) h=) hw ®w; ® eq,
« i,j
(1.2) Z hieq,
(13) R'l,]k:l 7.]kl =+ Z hzk Jl zl jk)
(1.4) Raogrl = Kapki + Z ikhu - ilhiﬁk)‘

The scalar curvature R of M is given by
(1.5) R=)" Ky +n*H*>-S.
2%
DEFINITION 1.1. We say that M admits parallel mean curvature nor-
mal field iff € is parallel in the normal bundle over M.
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We assume that M admits a parallel mean curvature normal field and that
H # 0. Choose e, such that it is parallel to € and tr H,41 := tr(h"“)
nH. Then, setting H, the (n x n)-matrix with (¢,5) component hz]’
observe that tr Hg = 0 for all 8 > n+ 2. The squared norm S of the second
fundamental form is divided into two parts as follows.

Sy = tr H? ntl Sy = Z tng.
B#n+1

The following proposition is immediate from the definition, and the proof
is omitted here.

ProPOSITION 1.2. If M admits parallel mean curvature normal field
&, then either H = 0 or H is non-zero constant and HyHp+1 = Hpy1Hy +

(Kn+1aij)nxn-

Denoting the covariant derivatives of h;; by h: ik and hY
have

Z hiigwk = dhg; + Z hgjwis + Z hiswjs + th]waﬁ,
Z hzgklwl - dhz]k + Z hsgkwis + Z hzsksz + Z h’zjswks + Z hz]kwaﬁ

We then have
(1.6) hiik — hik; = —Kaijk,

and the Ricci formula

(L7) b —hy =Y h%Reri+ D b Rejir + 3 b R,
s s B

ikl respectively, we

Let Kqijk be the covariant derivative of Kok as the section of TH(M) ®
T*(M)Q@T*(M)®T*(M) and Kapcp;E the covariant derivative of Kapcp
as the curvature tensor of N. Restricted to M we have

(1.8) Z Kaijriwr = dK aiji + Z Kosjkwis
l s

+ Z Kaisksz + Z Kaijswks =+ Z Kﬂijkwaﬂ)
s L] B

https://doi.org/10.1017/50027763000025083 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025083

RIGIDITY FOR COMPLETE SUBMANIFOLDS 111

and

(1.9)  Kaijeg = Kaijr — Z Kaﬁjkhﬁ
B
- Z Kaiﬁkh]@l — ZKaijﬁh’gl + Z Kmijkhgnp
B B m

DEFINITION 1.3. M is called a submanifold with parallel second fun-
damental form iff A k=0 for all ¢, j, k and a. N is by definition a locally
symmetric space iff K apcp;e =0forall A, B, C, D, E.

The Laplacian Ah% of the second fundamental form A is defined by Ah% =
>k hipp- We set Vihey := he, . For an (n x n)-matrix A = (a;;) we denote
by N(A) the squared norm of 4, ie., N(A) := tr(A'A) = 3, . a % Then
N(A) = N(TA'T) holds for every orthogonal (n x n)-matrlx T.
PRrROPOSITION 1.4. (see [CDK], [LL)) For symmetric matrices An+1,
y Angp let Sap = tr(AqAp), So = Saa = N(Aa) and S := Y Sa.
Then

ZN (AaAp — AgAd) +Z 1+—Sgn(p—1))52,

where sgn(-) is the standard sign function. Moreover, equality holds if and
only if at most two matrices A, and Ag are non-zero and they can be
transformed simultaneously by an orthogonal matriz into scalar multiples of
A, and Ag respectively where

010 0 1 0 0 0
100 0 0 -1 0 0
A,=| 000 0|, Ag=|0 0 0 0
000 0 0 0 0 - 0

The following Proposition is seen in [G]. The proof is omitted here.

PROPOSITION 1.5. Let N be an (n+p)-dimensional Riemannian man-
ifold. If a < Ky < b is satisfied at a point, then the following estimates
hold at that point.

(1) |Kacpel < 5(b—a), for A# B,
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(2) |Kapep| < %(b —a), for all distinct indices A, B, C, D.

PROPOSITION 1.6. Let ai,---,an and by,---,b, be real numbers satis-
fying > ,ai=3,bi=0, 5,02 =a and 3_,;b? =b. Then

|37 aib?] < (n - 2)[n(n — 1)}~ V2al/,
- :
where equality holds if and only if either ab = 0, or at least n — 1 pairs of
numbers of (a;,b;)’s are the same.

Proof. We only need to check the case where n > 3 and a = b = 1.
Consider the function

(110) f(ml,""xnayla"'vyn)zzmiyz?
A

subject to the constraint conditions
(1.11) dozi=> yi=0, Y al=) =1

The Lagrange multiplier is employed for the proof by setting

F(mlv"'7xnayl7'"7yn7>‘7p’7y70)

= Zmiyf—l-)\(Zziz— 1) —I—u(Zyiz— 1) +u2xi+UZyi.

If (z1, -, Zn, Y1, ", Yn) is a critical point of f with the critical value Tj
under the constraint conditions (1.11), we then have

(1.12) Y2 + 2z +v =0,
(1.13) 2x;y; + 2uy; + o = 0.

From (1.11) and the above relations,

1
(1.14) V=——, )\:—M:—— T;y; =—§T0~

Combining (1.12) and (1.14),

(1.15) T2 = —2/\iny§ = Zy;‘ - %
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Now we compute the maximum of the function
‘ 41
9z, m) = 5 =
1
under the constraint conditions
(1.16) > =0, 22 =1.
7 1
From (1.16) we get
1
(1.17) Z ZiZg = Z?L — 5

1<i<j<n—1

Making use of (1.16), (1.17) and the Schwarz inequality,

g(zla e >Z’n)
n~—1 2 1
:(Zzlz) -2 Z z?z?—%—zﬁ—;
i=1 1<i<j<n—1
2
4 1
3(1—22)2—————————( Z Z«L'Zj) 42—
(n=D -2\ 52, n
2n(n—3) 4 2n(n — 3) 2+n—1 1
= 2z, — z - .
m=1)n-2)" (n-1)(n-2)" n (n—1)(n—2)
Note that 1
n -—_—
< —,
where equality holds if and only if
1

Rl "ty Zn—1 ==+

Vnln—1)

Therefore we have
(118) 9(217"'7Zn) S (n-—2)2[n(n— 1)]—1a

where equality holds if and only if at least n — 1 numbers of z;’s are equal.
From (1.15) and (1.18)

(1.19) }Z iy

< max{| Mol, |mol} < (n - 2)[n(n — 1)]7Y/2,
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where My and mg are the maximum and minimum of f under the con-
straint condition (1.11) respectively. The above computation implies that
the equalities in (1.19) hold if and only if at least n — 1 pairs of the (z;,y;)’s
are equal. 0

CorOLLARY 1.7. Ifay,---,a, aren real numbers with >.;0i =0, then
3/2
< (=2 -1)]72(Y3a?) ",

(1.20) 'Z
(1.21) ;af < %(%3_”—;3—3(2 a3)2.

)

Moreover the following (1), (2) and (3) are equivalent.
(1) The equality in (1.20) holds.
(2) The equality in (1.21) holds.

(3) At least n — 1 numbers of the a;’s are equal.

§2. Geometric inequalities for the second fundamental form

Throughout this section let M™ be an oriented closed submanifold of
dimension n in an (n + p)-dimensional manifold N™*P with parallel mean
curvature normal field. The squared norm of the second fundamental form
is divided into Sy and Sj, which we shall call the semi-norms of the sec-
ond fundamental form. The geometric inequalities for the semi-norms are
provided in this section. In Theorems 2.4 and 2.8 we need not assume the
completeness of N.

From (1.6), (1.7) and Proposition 1.2,

AhZ_H - Z n+1kikj + Kn+lzjkk + Z hn+1R/m”k + h Rmkjk)-

k,m

Substituting (1.3) into the above, we get

Ah?;rl =— Z(Kn+1kikj + Knt1ijkk) + Z(hfn"glekjk + h::]-cleijk)
k

m,k

+ Z (h%—'zjlh%jh%k+hn+lhkt mj h'n+1h'km 1 h‘n+1h’a kh )

m,k,a
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Therefore

ijk
u,5,k 1,5,k

(2.1) %ASH = S+ S REARS = A+ B+ C,

Here we set

A=nHtrHy  — (tHy ) - Z [tr(Hn11Hp)]?,
B#n+1
= > (BT R Kogi + BT R K ),
.)j k m
C =Y (BTN = (W Knykig + R Knyaige)
).7’ ‘L’j’k
+ > te(HopHp)? ~ > te(HZ, Hp).
B#n+1 B#n+1

Several lemmas will be needed for the proof of our geometric inequalities.
We first find the lower bound for A in terms of H, Sy and S.

LEMMA 2.1.
n(n —2)

vn(n—1)

Proof. Let {e;} be an orthonormal frame at a point on M such that
the matrix H,; takes the diagonal form and such that h?jﬂ = )\?“(Sij for

A> (Sg — nH?) [2nH2 —5- H(Sk — nH2)1/2].

all 7, j. Set
fr = Z(}\?+l)k, By, = Z(M;H—l)k’ NZL—H —H — )\n+1
1 1
fori=1,---,n.
Then
(2.2) B, =0, By = Sy —nH?,
and
(2.3) Bs = 3HSy — 2nH® — fs.

From (2.2), (2.3) and Corollary 1.7, we get

A=nHfs -S4 - Y [Z(h"“ H6i;) h ]

B#n+1  i,j

https://doi.org/10.1017/50027763000025083 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025083

116 K. SHIOHAMA AND H. XU
2
>nH [3HSH —2nH?3 — _n___B3/2} % — Z (Z un+1hﬁ)

n(n—1) B+l i

> (Sy —nH?) |2nH? - n=2) ppy *| + nH25y — S} - B,

vn(n—1)

= (Su —nHQ)[2nH2 -8 - _n(__?)_H(SH _ nH2)1/2],

Vn(n—1)

This proves Lemma 2.1. 0
The lower bound of B in terms of a, H and Sp is obtained as follows.
LEMMA 2.2.
B > na(Sy — nH?).
Proof. It follows that
B = Z()\?+1)2Kikik + Z/\?H/\ZHKMM
ik ik
_ %Z(A?H _ )\ZH)QKikik > %a Z(}\?H _ )\Z+1)2
; ik
= na(Sy — nH?).
This proves Lemma, 2.2.
The integral of C' is estimated as
LEMMA 2.3.
/M CdM > —7—12n(n —1)(26n + 16p — 41) /M(b —a)?dM.

Proof. First of all we note that

- Z P K 1jige + hw 'Kt 1ijkk)
,J?
+1 +1
= — ka(h?k Knt1jij + i Kntijk)
1,5,k
+1 +1
+ ) _(higk Kntijij + Rk Kntijk)-
1,5,k
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We define a differentiable 1-form w as follows.

ntl +1
w = Z(hik Knt1jij + hii™ Kniji)wk.

1,5,k
We then get
divw = Z Vk(h?k—HKn+1jij + h%+1Kn+1ijk).
1,5,k
Thus,

n+1 n
C= Z(hﬁak + hzk:k n+15ij T h“k Kn+1zgk)
1,5,k 1,5,k

—divw + Z h%+1hinﬁn+lmi'
i g Bn 1

Since the mean curvature normal field of M is parallel,

(2.4) Zh”“ =0, forallj.

11
From (1.6), (2.4) and Proposition 1.5,

n+
thkk n+1jij = Z(hkkq, n+lkzk)Kn+1jij

(2.5) > - Z (Z Kn+1jij)2
> —-}In(n ~1)2%(b-a)%

On the other hand, 37, ; ; (A 4 2 K+1i5k)° > 0 implies that

n+1
Z hige )™ + thk n+1ijk

4,5,k 4,5,k
2= Z n+1ijk
(2.6) . Lok
Z-7 > Kiig - Z nt1iji
itk s

> —%n(n ~1)(8n - T)(b - a)?.
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Also from (1.4),

> WA Kpniimi

i,3,m,B#n+1
1 1 1 1 2
=5 D (WThn WG Kanpimi— 5 Y K
i,jym,Bn+1 i;m fn+1

> ~2(p—Dn(n — 1)(b— a)’.

Here we note that h"’”hﬁ + hZ hﬁj’l is symmetric with respect to 7 and

m, while Kgny1m; is antl symmetrlc with respect to 7 and m. Therefore

Z (hz_+1h,3 hﬁ hn+1)Kﬁn+lmi —0.

1] mj
1,J,m,B#n+1
Thus we have
(2.7) C > ——71—2n(n —1)(26n + 16p — 41)(b — a)? — divw.

By using Green’s divergence theorem we get

/ CdM > —in(n —1)(26n + 16p — 41)/ (b—a)?dM.
M 72 M

a

We are now in position to establish the following geometric inequality by
setting the constant

D(n,p) := 7—12n(n- 1)(26n + 16p — 41).

THEOREM 2.4. Let a(z) and b(z) for a point x € N™P be the mini-
mum and mazximum of the sectional curvature of N at the point respectively.
Then

(2.8) /{(SH-HH2)[na+2nH2 S——~(n——)—H(SH_nH2)1/2]

vn(n—1)

— D(n,p)(b—a)?}dM < 0.
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Proof. 1t follows from Lemmas 2.1, 2.2 and (2.1) that

1
(29)  ASk > (Sy—nH?) [na +2nH? — 8
n(n —2)

N vn(n—1)

Integrating both sides of (2.9) and applying Lemma 2.3, we conclude the
proof. 0

H(Sg - nH2)1/2] +C.

If p > 1, then (1.3), (1.6) and (1.7) imply that for all 8 # n + 1,

AR == (Kpkikj + Kgijer) + Z(h,ﬁnkaijk + By Kok

k,m

k
+ Z (hﬁ ho gk + hikh%ihgzj - hﬁ 'h'akh?j - hfm (I:mhij)

mi'“mj mi''m
a,m,k
+ Y MKagimt Y (kG — hyh)hg.
k,a#n+1 k,l,a#n+1

Therefore we have
1 _ B \2 B A B
g A8 = Y. (gt D hAhy
(2.10) i,3,k,B#n+1 i,5,8#n+1

where we set

Wi=— Y N(HoHs—HgHo)— Y [tr(HaHp),
a,B#n+1 a,B#n+1
(211) X :=nH Y tr(HppHY) — Y [tr(Hnp1Hp)),
B#n+1 B#n+1
(212) Y= > (WR Kok + B b Komijie)
i,9,k,m,B#n+1
+ Y RG] Kagik,
1,3,k,0,87#n+1
(2.13) Z = Z (hgk)z - Z (hiﬁngkikj + h?jKﬁijkk)
i,5,k,B#n+1 i,d,k,B#n+1
+ > tr(HopHp)? = > te(HZy, HB).
B#n+1 B#n+1
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From Proposition 1.4 we find a lower bound for the first term of right hand
side of (2.10) as

1 9\ 2
(2.14) W2 —(1+ ;sgn(p— 2))( 3 trHﬁ) .
B#n+1
To estimate the lower bounds for the other terms on the right hand side of
(2.10) we need the following Lemmas.

LEMMA 2.5.
X > [%HQ — (n—2)n'%(n - 1)"V2H (tr H2,; — nH?)'/?

—trH +1:| Z trHﬁ
B#n+1

Proof. We rewrite (2.11) as

X =nH Z tr[(Hps1 — HI)HE%]

(2‘15) B#n+1

+nH? > trHi— > [te(Hnyr — HI)Hg)?,
B#n+1 B#n+1
where I is the unit (n x n)-matrix. Fix a vector eg and let {e;} be a local
orthonormal frame such that the matrix Hg takes the diagonal form and

such that
hy; =0,  fori#j.
Then we get
nH tr[(Hpy1 — HI)Hj] — [tr(Hnqy — HI)Hg)?
2
(2.16) _ nH[Z(hZ—H _ H)(hﬁ)z] _ [Z(hz-ﬂ _ H)hﬁ] _

2 7

Using the Schwarz inequality and Proposition 1.6, we see from (2.16)
nH tr[(Hny1 — HIVHE] — [tr(Hn41 — HI)Hg]?

> —(n— 2)n1/2(n _ 1)_1/2H [Z(hzﬂ _ H)2] 1/2 [Z(hiﬁi)Q]
_ [Z (hn+l — ][Z(h }

> —(n—2)n'?(n—1)" 1/2H(tng+1 —nH*)2tr H}
— (trHZ, —nH)trHﬁ
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This together with (2.15) implies the desired inequality. 0

LEMMA 2.6.

2
Y >na E tng—g(p—2)(n—1)1/2(b——a) E tng.
B#n+1 B#n+1

Proof. For a fixed index 3 we choose an orthonormal frame {e;} such
that the matrix Hg takes the diagonal form. We then conclude the proof

by
N (WD Konkin + BR  Komige) + Y BGRY Kagji
i,5,k,m 1,9,K, a#n-’-l
= Z(h Kivit + 3 Wl K+ > hGMN Ko
i,k i,k,a#n+1
2
2 B
>z Z Ick Kigik — Z 3(b__ a’)lh >‘ ]
1#k,a#0,n+1
> —az hfk)2
— Y e-alm- D080+ (=)0
i#k,a#ﬁ,n—i—l
1
>na- tng - g(n ~1)Y2(b - a) Z tr H2
a#fB,n+1
1
— 5 1)12(p — 2)(b — a) tr H3.
0
LEMMA 2.7.

1
/ ZdM > -1 (p— 1)n(n — 1)(26n — 9)/ (b—a)?dM.
M 72 M
Proof.. A differentiable 1-form @ is defined as follows

0 := Z (hiﬁngﬂj + h?jKﬂijk)wk:
1,5,k,B7#n+1
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We then have

@17 - Y (thﬁkikj+thﬁijkk)
ik fn ]

1,5,k B7#n+1

From 3, ( wk + %Kﬁzjk)z > 0 we have

Z [(hik) +hngﬁia‘k]

i fEnt1
1 2
>-7 > Kia
(2.18) 1,3,k,B#n+1
1 , 1 ,
> Y Kia-5 X, Kby
i kAL Bn+1 i ftn+1
1

>——(p—1n(n—1)(8n—"T7)(b—a)?
Since M admits parallel mean curvature normal field, we have
(2.19) th =0, for all j.
From (1.6), (2.19) and Proposition 1.5 we get
P 2
(2.20) > WKew=— Y (3 Kpni)

i,9,k,B7n+1 i,8#n+1  j

1
> (0~ n(n—1)’(b— a)”.
From (1.4) and Proposition 1.2,

S (i He? — Y ()
B#£n+1 B#n+1
1 1,8 1 1
= 5 Z (hn+ h A hn+ hﬁ )Kn+113jk — —2— Z +1ﬂjk
1,],]{),,3#11-{-1 ],IC ﬂ;én+1

> —2(p-Dnln—1)(b- a)”.
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Combining (2.13), (2.17), (2.18), (2.20) and the above inequality, we get

(2.21) Z>——(p—1)n(n—1)(26n—9)(b—a)®—dive

We now set

E(n,p) = %(p ~2)(n—1)Y2, F(n,p):= 7—12(;0 —1)n(n —1)(26n — 9).

THEOREM 2.8. Ifp# 1, then

/ {S[[na +2nH? - S — 1sgn(p - 2)Sr
M 2
—(n—2)n?(n —1)"Y2H(Sy — nH?)/?
—E(n,p)(b - a)] — F(n,p)(b - a)z} dM <0.

Proof. We see from (2.10), (2.14), Lemmas 2.5 and 2.6,

%AS’] > Sr|na + onH? - § — %sgn(p— 2)St
— (n—2)nY%(n — 1)"Y2H(Sy — nH?)'/?

- —Z—(p — (= 1)V2(b— a)] + 2.

By the Green formula and Lemma 2.7,
9 1
{SI[na +2nH* — S — —sgn(p—2)S;
M 2
(2.22) — (n=2)n'?(n— 1)"Y2H(Sy — nH?)'/?

— E(n,p)(b-a)] — F(n,p)(b— a)2} dM < 0.
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§3. Rigidity theorems for compact submanifolds

The compact case for Main Theorem is discussed here. By setting

1
Bi(n) = m“”(" — 1)(26n — 25),

1
1(n) :=n+ m\/n(n —1)(26n — 25),

we first prove the following.

THEOREM 3.1. Let p = 1. There exists a number 61(n) with 0 <
61(n) < 1 such that if the sectional curvature of N™"*1 and the squared
norm of the second fundamental form of M satisfy

81(n) <Ky <1, nH?+fi(n)(1-¢) < S <aln, H) - y(n)(l-c),

where ¢ := inf Ky, then N is isometric to S"*1(1). Moreover M is congru-
: n 1 : ; n—1 1
ent to either S™( \/ﬁTﬁ) or the isoparametric hypersurface S™*( m) X

Sl(\/li\-T)' Here A and a(n, H) are defined in Theorem 0.1.

Proof. Since ¢ < a(z) < b(z) <1, (2.8) implies that

n(n —2)
n(n —1)

~ D(n,p)(1 - )} <0.

(3.1) ‘/M{(S—nhﬂ) [nc+2nH2—S— H(S—nHz)l/z]

Setting 61(n) i= 1 — 2n(n — 1)[(n? — 21 + 2)(B1(n) + 1 (n))]~", we have
1-c<1=é(n)=2n(n—1)[(n* = 2n+2)(6i(n) + 1 (n))) ™
< minfa(n, H) - nH?[B1(n) +m(n)] ™
< [a(n, H) = nH?] [B1(n) + 71(n)] .
Thus we get
nH? 4+ Bi1(n)(1 - ¢) < a(n, H) = n(n)(1 —¢).
From assumption

(3-2) nH? + B (n)(1—¢) < § < a(n, H) — 71 (n)(1 - o),
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we see that the first term on the left hand side of (3.3) is not less than

Bi(n)(1 —¢)[n +2nH? — a(n, H)
_nn=2) a(n —nH?)Y? 4 a(n - nec—mn
\/n(n‘—l)H((’H) H)""+a(n H) -5+ ]
— Bi(m)(1 - &)[an, H) — S + nfc — 1)
Z fi(n)(1 = )m(n)(1 —c) = n(l - c)]
= D(n,p)(1 - ¢)%
Thus we have
n(n — 2)
n(n — 1)
— D(n,p)(1 —c)? >0.

(3.3) (S—nH2)[nc+2nH2 -5 — H(S—nHQ)l/Q]

From (3.1) and (3.3) we observe that the left hand side of (3.3) is identically
zero. This together with (2.8) and ¢ < a < b < 1 impliesa =cand b = 1.
Since equalities hold on (2.5) and (2.6), we have

1 1
>R Kz = —7n(n = DA - a)? = = gn(n — 121 - )%,

7.77

1
ntl ) n+41
hzkk §Kn+lzkk hzkk

This implies that 1 — ¢ = 0. Therefore all the equalities hold in (2.5), (2.6),
(3.1) and (3.3). Since the left hand side of (3.3) is identically zero and ¢ = 1,
we see that N is isometric to S"*1(1), and

S =nH? or S =a(n, H).

The above relations imply that S < C(n,p, H). From Theorem 0.1 we see
that M is the small sphere Sn(\/Tlr—H_—?) or the isoparametric hypersurface

n—1 1 1 A
(i) > 8™ () 0
The following lemma is needed for the discussion of the case of higher
codimensions.
LEMMA 3.2. Let M™ be a closed and oriented submanifold in N™*P. If
n3 n(n —
S < nd+ H? - n2H* + 4(n — 1)H?d — a1(d — ¢),
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then either d = c or

/(SH—nHz)dMgag/ (b—a)dM.
M M

Here a1, ag are positive constants with as = D(n,p)(a; —n)~! and d =
supy b as defined in §1.

Proof. Let

n3 n(n —2)
= H? - 24 —1)H?2d.
a(n,H,d) :=nd + 3n = 1) 2 =1) Vn2HY + 4(n —1)H?d

From assumption, the left hand side of (3.4) is not less than
n(n — 2)

n(n —1)

+a(n,H,d)—S—a1(d—c¢) =a(n,H,d)— S —ai(d—c) > 0.

nd + 2nH? — a(n, H,d) — H(a(n,H,d) — nH?)
Then we see

(3.4) nd—ay(d—c)+2nH? -8 — n(n —2)

vn(n—=1)

H(S —nH*)'Y2 > 0.

From Theorem 2.4,

CnHA e+ omE? — 5 — 222 mis g2y
(35) /M{(SH H?)[nc+2nH? - S mH(S H»)YY

—D(n,p)(d —c)(b—a)}dM < 0.
From (3.4),

ne+2nH? — S — —”(—7(’—_%11(5 — nHY)Y2 > 051D(n,p)(d - ¢),
nn —

where ag = D(n, p)(a; —n)~!. Substituting the above inequality into (3.5)
gives

/ {(Sg —nH?)[a; ' D(n,p)(d - c)] — D(n,p)(d — c)(b—a)} dM < 0
M
Therefore we have either d = ¢ or

/M(SH —nH?)dM < oy A4 (b —a)dM.
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We continue the proof of our Main Theorem.
If p =2, then (2.8) and (2.22) imply that

/ {(s — nH?) [na +2nH? — 8
M
(3.6) - (n - 2% (n — 1) V2H(Sy - nH2)1/2]
— (D(n,p) + F(n,p))(b — )} dM < 0.

This implies
(3.7) / {(§ —nH?)[na +2mH? ~ 5
M
— (n - 2)n(n - 1)"V2H(S - nH2)1/2] —G(n) (b~ a)z} dM <0,

where we set

Gln) = 3—1677,(n —1)(26n - 9).

By using the similar method as developed in the proof of Theorem 3.1, we
obtain the following

THEOREM 3.3. Let p = 2. There exists a number §3(n) with 0 <
82(n) < 1 such that if b2(n) < Ky <1 and if

nH? + Ba(n)(1 —¢) < S < afn, H) — v2(n)(1 - ¢),

where ¢ := infy Ky, then N2 is isometric to S*72(1). Moreover M is
congruent to one of the following:

n 1
(1) S"(kgn):
(2) the isoparametric hypersurface S”_l(\/ﬁ) X Sl(¢1i\r7) in S™HL(1).

(3) the Clifford torus S(ry) x S'(ry) in S3(r) with constant mean cur-
vature Hy, where r1, 7o = [2(1 + H?) £ 2Hy(1 + H?)/2|71/2 r =
(1+H?-H2)"Y2, and 0 < Hy < H.

Here the constants are given by

1
B2(n) = 6—ﬁ\/n(n —1)(26n —9),

1
Yo (n) :=n+ m\/n(n —1)(26n — 9),

82(n) := 1= 2n(n — 1)[(n? = 2n + 2)(Ba(n) + y2(n))] "
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We now discuss the case where p > 3.

THEOREM 3.4. Let p > 3. There ezists a number 83(n,p) € (0,1) such
that if 863(n,p) < Ky <1, and if

nH? + B3(n,p)(1 = ¢) + Ba(n,p)[(1 + H*)H]/* (1 — 0)1/*
< S S C(TI,, va) - 73(71,[))(1 - C) - ’74(71,]9)[(1 + Hz)Hll/z(l - 0)1/47

then N is isometric to S"*P(1) and M is congruent to one of the following:
n 1

(2) the isoparametric hypersurface S"“l(\/ﬁv) X Sl(\/fi_ﬁ) in S™(1).

:

(3) the Clifford torus S*(ry1) x Si(ry) in S3(r) with constant mean cur-
vature Ho, where 1, ro = [2(1 + H?) £ 2Ho(1 + H>)V?|71/2 =
(14+H? - H3)"'/2, and 0 < Hy < H.

(4) the Veronese surface in S*(———).

V1+H?

Here the constants (33, B4, v3, 74 and 63 are given later in the remark.

Proof. We argue the proof by deriving a contradiction. Suppose that
¢ # 1. We then have from (2.22)
5 5 3 1/2 —-1/2 211/2
(3.8) {s, [na + onH? = 28— (n— 2)n!/2(n — 1)V H(Sy - nH?)
M

— E(n,p)(1 — c)] — F(n,p)(1 — c)z}dM <0.

In fact, since S = Sy + S > nH? + S; we observe

5 3 1
“pH? -8 <2nH?-S§-—=8].
2 2 2

This together with 0 < b—a < 1 — ¢ implies that the left hand side of (3.8)
is not greater than the left hand side of (2.22) which is nonpositive.
Note that the assumption implies

S <C(n,p,H)—v(n,p)(1 —¢c) < a(n,H) — ai(n,p)(1 - c).
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This shows that the assumption of Lemma 3.2 is fulfilled, where d = 1. By
the Schwarz inequality and Lemma 3.2,

/ HS;(Syg —nH»)Y2dM
M
1/2
(3.9) < H max Sy - vol(M)*/? [ / (Sgr — nH2)]
M
2

< Snoa(n, p)Y?H(1 + H>)(1 - )2 vol(M).

Here the second inequality is obtained as follows. By Lemma 3.2,

/ (Sg —nH?)dM < ay(1 — ¢) vol(M).
M

This together with S; < S—nH? < C(n,p, H) —nH? < 2n(1+ H?) implies

1/2
H max 87 vol(M)Y/? [ / (g — nH2)dM] /
M

< %nag(n, P 2ZH(1 + H2)(1 = ¢)Y2 vol(M).
Combining (3.8) and (3.9), we have
5 . 3
(3.10) /M{SI [ne+ 2nb? — 35— B(n,p)(1 - o))
— Ei(n,p, H)(1 — &)"/2 — F(n,p)(1 — 0)2} dM < 0,

where we set
El(nap)H)
= 202 = 9)(n — 1)72D(n, p) /2 (01 (m, ) — )" M(1 + H)H,

Since C(n,p, H) < §(2n+5nH?) and 73(n,p) > 3[n+ E(n,p) + F(n,p)"/*
and v4(n,p)[(1 + H?)H]/? = 2Ey(n,p, H)/2, we obtain

s < Yian 4 snm?) - ;(n + E(n,p) + F(n,p)/*)(1 - ¢)

Wl =

2
— =By (n,p, H)Y2(1 = )4,
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Substituting the above into (3.10), we get

(3.11) [ S1aM < [Fn,p) (1 - o)+ Bx(n.p, HYP2(1 - )Y vol (M),
M

and this together with Lemma 3.2 yields

(3.12) / (S = nH2)dM < [(an(n, p) + F(n, p)/2)(1 - ¢)
N + E1(n, p, H)Y2(1 = )Y4 vol(M).
From assumption follows
S —nH? > B3(n,p)(1 — c) + Ba(n, p)[(1 + H*)H]'/?(1 - ¢) /4.
This and (3.12) imply that
S —nH? = [az(n,p) + F(n,p)?|(1 = ¢) + Ex(n,p, H)/?(1 - )/,

Therefore we see that all the inequalities in (2.18), (2.20), (2.22), (3.8)
and (3.12) are actually equalities. From (2.22), (3.8) and (3.12) we get
1—c=b—a. Because c < a <b <1, we have a = ¢, b = 1. It follows from
(2.18) and (2.20) that

1 1
0= hz@j + 5 Kpijs = hf}j, Zhiﬁijﬁkz‘k = =Dn(n - 1)2(1 - )2

This implies 1 — ¢ = 0, contradicting to what is supposed at the beginning
of the proof. Since N is assumed to be complete and simply connected, N
is isometric to S"*P(1). Moreover from (3.5) and (3.10),

S=nH?> or S=C(n,p, H).

From Theorem 0.1 we see that M is one of the (1), (2), (3) and (4). This
proves Theorem 3.4. U

Remark 3.5. To make sure of the assumption in Theorem 3.4 we set

4
1—§(ﬂ3+73)_1, for n =2
3 5
63(n,P) = § 1 — min{16(8s + 73 + 7707
256

M[n_l(n —1)(Bs+ )%}, forn>3.
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Then the following inequality makes sense.
nH? + f3(n, p)(1 — c) + Ba(n, p)[(1 + H)H]/2(1 = o)/
< C(napv H) - 73(71,]))(1 - C) - 74(”717)[(1 + H2)H]1/2(1 - 0)1/4‘

Here a1, asg, B3, B4, 73 and 74 are constants precisely given as follows.

01(n,p) = n + ——[n(n — 1)(26n + 16p — 41)]/2,

612

as(n,p) = al/—i[n(n — 1)(26n + 16p — 41)]/2,

Bs(n,p) = az(n,p) + F(n,p)"?,

To(n, ) = max{a (n,p), 5 (0 + B(n, ) + F(n,0)"2)},

Ba(n,p) = 3734207 (n — 2)*(n — 1)1 (26n + 16p — 41)]'/8,

va(n,p) = 3777451207 (n — 2)4(n — 1)1 (26n + 16p — 41)]*/5.
The constants in Main Theorem are given as follows.

( 6(n,p), for H=0

) bi(n), forp=1land H#O0
7(n.p) = b2(n), forp=2and H #0
L 63(’”,]9), for p=3 and H 7é 0,

B(n,p), for H=0

Bi(n), forp=1and H#0
Ba(n), forp=2and H #0
\ ﬁg(n,p), for p > 3 and H # 0,

A (n,p) =

([ v(n,p), for H=0

_ ) mn), forp=1land H#0
Bin.p) = ~v2(n), forp=2and H#0
{ 713(n,p), forp>3and H#0,

| Ba(n,p), forn>3,p>3and H#0
Az(n,p) = { 0, otherwise,

_ | vn,p), forn>3,p>3and H#0
Ba(n,p) = { 0, otherwise.

Combining Theorems 0.2, 3.1, 3.3 and 3.4, we conclude the proof of Main
Theorem for compact case.
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§4. The complete case

The generalized maximum principle due to Omori [O] and Yau [Y2] is
the useful tool to generalize rigidity theorems such as the Chern-do Carmo-
Kobayashi theorem to complete cases where compactness is not assumed
(see [H], [P]). However it does not apply to our case because the divergence
of the two 1-forms in (2.7) and (2.21) require pointwise estimates. We shall
employ the following useful Lemma 4.1 for the discussion of the rigidity of
complete submanifolds with parallel mean curvature normal fields where
compactness is not assumed. We emphasize that all the results obtained
here include the minimal case.

LEMMA 4.1. (see [X-4]) Let M™ be an n-dimensional submanifold in
an (n+p)-dimensional Riemannian manifold N"*P with Kn > c. Here c is
a constant satisfying c+H?* > 0. If S < a(n, H, c), then the Ricci curvature
satisfies

n—1

—2
ne+oni?—5— =2 gig_ g

vn(n—1)

Moreover, if sup;(S — a(n,H,c)) < 0, then M is compact, where

RiCM >

3
N n 2 n(n—=2) —— — 5
a(n,H,c):= nc+ 2(n—1)H 2 =1) V/n2H4 + 4(n — 1)cH?.

Thus from the rigidity theorems in previous section and Lemma 4.1, we
obtain the following

THEOREM 4.2. For given positive integers n > 2, p and a nonnegative
constant H there exists a number 7(n,p) with 0 < 7(n,p) < 1 such that
if M™ is an oriented complete submanifold in a complete simply connected
Riemannian (n + p)-manifold NP with 7(n,p) < Ky < 1, and if

nH? + Ai(n,p)(1 - ¢) + Aa(n, p)[(1 + H?)H]'/?(1 = ¢)'/*
< 8 < C(n,p, H) — By(n,p)(1 — ¢) — Ba(n,p)[(1 + H))H]V?(1 — ¢)/4,
then N is isometric to S"*P(1). Moreover if

sup S < a(n, H),
M

1
1+H?

then M is congruent to either S™( ) or the Veronese surface in

s( 1iH2)'
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We conclude the proof of Main Theorem by the combination of Theo-
rems 3.1, 3.3, 3.4 and 4.2.

In due course of the proof of Main Theorem the completeness and
simple connectedness of N is used only to guarantee that N is isometric
to the round sphere. We can derive Ky = 1 without these assumptions.
Thus we obtain the following Theorem 4.3 by using the orientable double
covering.

THEOREM 4.3. For given positive integers n > 2, p and a nonnegative
constant H there exists a number 7(n,p) with 0 < 7(n,p) < 1 such that if
M™ is a complete submanifold with parallel mean curvature normal field in
a Riemannian (n + p)-manifold NP with 7(n,p) < Ky <1, and if

nH? + Ay(n,p)(1 — ¢) + Ag(n,p)[(1 + HY) H]Y/?(1 — ¢)'/*
< S < C(n,p, H) = Bi(n,p)(1 — c) — Ba(n,p)[(1 + H*)HJ/2(1 — c)"/*,

then Ky = 1. Moreowver,

(1) if supy; S < a(n, H), then S = nH? and M is totally umbilic, or
S=2%(2+5H?)

(2) if M is compact, then S = nH? and M is totally umbilic, or S =
C(n,p, H).
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