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1. Introduction

In this paper we show that whether or not a group admits a lattice-
order often depends upon whether or not it possesses a set of subgroups
that satisfy certain algebraic conditions. Using these techniques we are
able to determine large classes of groups that can be lattice-ordered.

There are many places in the literature where a class of groups that
can be totally ordered has been characterized as those groups with a chain
of subgroups that satisfy certain restrictions — for example see Iwasawa
[6] and Neumann [8]. Malcev [7], Podderyugin [9] and Rieger [10] have
derived conditions on a chain of subgroups that are necessary and sufficient
for the ordering of a group (an account of part of their work can be found
in Fuchs [5]). In our theory we recover the results of Podderyugin and
Rieger.

In section 2 we recall some of the definitions and the theory of lattice-
ordered groups ("/-groups") that we need. Most of these results are from
[4]. We then prove the necessity of the conditions that are used in section 3
to characterize /-groups. Also we derive some new results. For example,
Theorem 2.1 has proven to be extremely useful in this paper and also in
other contexts.

In section 3 we determine all those groups that admit a lattice-order
which is finite valued. We also determine those groups that admit a normal
lattice-order. In fact, the techniques that we use can only describe normal
lattice-orders, but since this includes all representable /-groups as well as
all finite valued /-groups, this class is quite large.

The results in section 3 all have content if we restrict our attention
to abelian groups. In section 4 we show that our theory fits in nicely with
the representation theory for abelian /-groups that is developed in [2].

Throughout this paper we assume that the reader is familiar with the
results in [4].

1 This research was done while the author held a National Science Foundation senior
postdoctoral fellowship.
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NOTATION. If A and B are subgroups of a group G, then N(A) will
denote the normalizer of A in G, [A, B] will denote the subgroup of G that
is generated by all commutators — a—b-\-a-\-b where aeA and beB,
A < B will denote that A is a normal subgroup of B, and A\B will denote
the set of all elements in A but not in B. We shall denote the null set by • .
We shall write /-group (o-group) for lattice-ordered group (totally ordered
group). If x belongs to an /-group, G, then G(z) will denote the subgroup
{y e G | \y\ < n \z\ for some n > 0}. We shall denote the fact that a, b e G
are not comparable by a || b and also that subsets X and Y are not com-
parable with respect to the inclusion relation by X 11 Y.

2. Some properties of /-groups

Throughout this section G will denote an l-group. We first recall some
definitions and results from [4] that we need. A subgroup C of G is called a
convex l-subgroup if C is a sublattice of G such that 0 < g < c e C implies
g eC. The set of all convex /-subgroups of G is a complete distributive
sublattice of the lattice of all subgroups of G. A convex /-subgroup C is
called prime (regular) if the convex /-subgroups of G that contain it form
a chain (if it is maximal without containing some element geG) . Theorem
3.2 in [4] establishes six equivalent definitions of a prime convex /-sub-
group. In particular, each regular convex /-subgroup is prime. If C is a
regular convex /-subgroup of G, then C is a proper subgroup of the inter-
section C* of all convex /-subgroups that properly contain C. In fact, this
property is equivalent to regularity. Also if C is a prime or a regular convex
/-subgroup of G, then so is —g+C-\-g for all g e G.

Let C be a regular convex /-subgroup of G that is covered by the convex
/-subgroup C* and suppose that C < C*.

(a) [[N(C),N(C)IC*]QC.

PROOF. Since C* is the unique convex /-subgroup that covers C it
follows thatiV(C) QN(C*). Thus each a BN(C) induces an o-automorphism
a of C*/C

(C+z)d = C-a+z+a.

But C*jC is o-isomorphic to a naturally ordered additive group of real
numbers. Thus the o-automorphisms of C*/C are essentially multiplications
by positive real numbers, and hence ah = ha for all a, b eN(C), which is
equivalent to property (a).

(b) If z e C*\C and a1, • • •, aneN(C), then

(-a1+z+a1) + - • .+ (-«„+*+«„) $ C.
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PROOF. We may assume that C+z > C and thus it follows that
C-\-{—ai-\-x-\-ai) > C for i = 1, • • •, n, and hence

+ - • -+(-an+x+an) > C.
Note that (a) and (b) imply that C*/C is an N(C) -group such that the

elements of N(C) commute as operators and the total order on C*jC is an
2V(C)-order.

Let / \ = rx{G) be an index set for the set of all regular convex /-
subgroups Gy of G. We shall frequently identify this set with F1. Define
a 5S ft in F± if Ga Q Gf. Then / \ is a root system (that is, J \ is a partially
ordered set and for each y e Flt {a e .TJa 2: y} is a chain). Let G? be the
convex /-subgroup of G that covers Gy ( y e / \ ) . If geGy\Gy, then y is
said to be a aa/we of g, and if y is the only value of g in F1, then both y
and g are called special. It follows from Theorems 3.5 and 3.6 in [4] that
if y is special, then Gy < Gy. A subset A of / \ is called plenary if

(i) n { G r | y e Z l } = 0, and
(ii) if g e G\Gr ( y e J ) , then there exists a value a of g in zl that ex-

ceeds y.
If in addition, for each a e A and g e G

(iii) Ga < Ga, and
(iv) -g+Ga+ge{Gy\yeA},

then we shall call A a normal plenary subset of 7\ . Note that / \ satisfies
(i), (ii) and (iv) but that it need not satisfy (iii). We shall call the lattice-
order of G normal if 7\ contains a normal plenary subset. Let A be the set of
all special elements of 7^. Clearly for each y e A, (iii) and (iv) are satisfied.
Thus J is a normal plenary subset of 7\ provided that it is a plenary subset.

G is said to be representable if there exists an /-isomorphism of G into
a cardinal sum of o-groups. Byrd [1] has shown that G is representable if
and only if for each y e 7\ and g eG, —g+Gy+g and Gy are comparable,
and if G is representable, then 7\ is normal.

We shall call a subset {gA | X e A} of G disjoint if each gA > 0 and
£A A g\' = ° f°r ^ i=- %• A convex /-subgroup C of G is called £f-closed if
\J gKeC for each disjoint subset {gA | A e 1̂} of C for which V#A exists.

LEMMA 2.1. If y e 7\ is special, then Gy is SC-closed.

PROOF. Suppose (by way of contradiction) that 0 < g = V gA £ Gr,
where {gA | X e A} is a disjoint subset of Gr. Let a be the value of g such
that a ^ y, and pick a special element 0 < y e GT\GY. Let z = y Ag. Then
a; e Gy\Gy is special, and

« = g A g = (VgA) A * = V (gx A *)

where eachgA A a; belongs to Gy nG(z). But G(x) is a lexicographic extension
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of Gy n G(x) ([4] Theorem 3.6) and hence for each positive integer n,
x > n(g\ A x) an<i ^ follows that

x ^ V n{gK A a;) = n V {gx A *) = nx

for all n > 0 which is impossible.

L E M M A 2.2. If g = V « « = V fy, where {aa\ae A} and {bf\Pe B}
are disjoint sets of special elements, then {aa | a e A} = {bfi | /3 e S } .

PROOF. Let 8 be 2Ae value of bfi. It is easy to show that V A#^A exists
and is disjoint from bfi, and hence g = bf-\- V x^fi^x- Thus since Gs is prime,
V A^^^A e G* a n ( i hence g e Gs\Gt. Now by Lemma 2.1, there exists aa $ Gt

and since {aa\oceA} is a disjoint set this aa is unique. If y ^ 8,
then aa,bp$Gy, and hence VM^a

a/t a n d VA#^^A must belong to Gr.
Thus G r +« a = G r +g = Gy+^/j- If y $ 8, then aa,bfieGy. Therefore
G v +a . = Gv-\-bB for all y e F-, and hence aa = bB.

COROLLARY. / / i^ e G*\G,, <Ai?» g e G*\G,.

THEOREM 2.1. Zei zl be the set of special elements in J \ . TAe« <Ae fol-
lowing are equivalent.

(a) Each 0 < g e G is iAc /om o/ disjoint special elements in G.
(b) A is a plenary subset of Fx.
If this is the case, then A is the set of all regular ^-closed convex Usub-

groups of G and A is a normal plenary subset of Fx. Moreover, the represen-
tation g = \J gxof g as the join of disjoint special elements is unique and the
values of g in A are precisely the values of the gA.

PROOF. Consider 0 < geG and let At be the set of all values of g in A.
(a) -> (b). g = VgA. where {gA | XeA) is a disjoint set of special

elements. If 8 is the value of gx, then by the above corollary 8 e Ag. Thus
n {Gy | y BA) = 0. If g$Ga (<x.eA), then by Lemma 2.1 there exists
gA £ Ga and so the value of gA is ^ oc and it is also a value of g. Thus A is a
plenary subset of 7 \ .

(b) -> (a). Let 8 e Aa and pick 0 < x e G'\Gt so that x is special and
Gs-\-x> Gs-\-g. If 8 ^ ocezl, then a; eGa and hence Ga+a;Ag = Ga+a; A Ga-\-g
= Ga. li 8 ^ xe A, then since the right cosets of Ga are totally ordered
and Gi+a; > G,+g it follows that Ga+x > Ga+g. Thus Ga+a;Ag
= Ga+a; A Ga+g = Ga+g. If we set g{8) = x A g, then we have shown that

r _i_ (M | G a + g f o r aU 8^*eA
I Ga for all 8 ^ a e A.

Clearly 8 is the only value of g{8) in A and hence ([4] Proposition 3.11)
8 is the only value of g{8) in / \ . Thus g{8) is special. For each 8 e AQ define
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a g(d) as above. Then the g(d) are special and pairwise disjoint ([4] Proposi-
tion 3.10). In order to complete the proof it suffices to show that g = V g{d)
(deAg). Clearly g exceeds eachg((5). Suppose that heG and A 7^g(d) for all
d e Ag and let a be a value of g—h in A. IigeGa, thenGa+g—h = Ga—h<Ga

since h 2: 0, and if g<$Ga, then x^deAa and hence Ga#Ga+g—h —
Ga+g(d)-h < Ga. Thus g-h ^ 0 and hence g = Vg(d). Therefore (a)
and (b) are equivalent.

Now suppose that (a) and (b) hold and that y is a value of 0 < g eG
in F^\A. g = V g\, where {gA | A e .4} is a disjoint set of special elements.
If g\$Gy, then V A'#A£A' e Gy and thus y is a value of gx, but this means
that ye A, a contradiction. Therefore {gx\ Xe A}QGy and \/gx$Gy,
and hence Gr is not ^-closed. Thus by Lemma 2.1 A is the set of all =£?-
closed regular convex ^-subgroups of G. The rest of the theorem follows
from our previous results.

An element 0 < g e G is said to be irreducible if

g = a+b and a A 6 = 0 imply a = 0 or b = O.

If 0 < g e G is special with value y and g = a+6, where a A J = 0, then
one but not both of a and 6 must belong to Gy. For if a, b $Gy, then
0 = aAb $ Gy ([4] Theorem 3.2). If aeGy, then clearly y is the only
value of b—a and Gy+b—a = Gy+6 > Gy. Thus 6 > a and hence
0 = b A a = a. Therefore each special element of G is irreducible.

COROLLARY. / / the set A of all special elements of Fx is a plenary subset
of Fx, then 0 < g eG is special if and only if it is irreducible.

PROOF. If g is not special, then by our theorem g= Vgx, where
{gx | X e A} is a disjoint set of special elements. Therefore g = ga-\- V x*ag\,
and hence g is reducible.

3. Characterizations of lattice-ordered groups

Throughout this section we shall assume that G is a group with a set
{Gg | <5 e A} of proper subgroups such that

(1) n{G, \6eA} = 0
and such that for each d e A the following properties are satisfied.

(2) {Ga | a e A and Ga D Gt} is a chain whose intersection G* properly
contains Gt.

(3) If g e G\G*, then there exists an a. e A such that Ga 2 G* and
geG*\Ga.

(4) If (-a1+x+a1)+ '••+ {~an+x+an) e Gs, where x e G' and
«i, •••,«„ eiV(G),, then ajeG,.

(5) -
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(6) [G», G>] C Gs and [[N(Gt), N(GS)], G»] Q G,.

It follows from the material in the last section that if H is an /-group, then
each normal plenary subset A of rx(H) satisfies (1) through (6).

If 0 ^ g e G, then by (1) and (3), g e Ga\Ga for some a e A and hence
by (4), ng e G"\Ga for each positive integer n. Thus G is torsion free, and
also if ng eG3, then g e G,, and hence the Gs and the G* are pure subgroups
of G.

(a) If —g+Gt+g = Gs, then —g+Gs+g = G", and hence

PROOF. -g+G'+g = -g+ n {Ga | Ga D G,}+g
= n {-g+Ga+g\GaDGs} = n {Gfi\GfiD -g+Gs+g}
= n{G/>\G/1DGi} = G>.

In particular, each element a eN(Gt) induces an automorphism a on
the group GsjGs

{G,+x)d = G,-a+x+a.

(b) Each G'/Gg is an abelian N(Gi)-group and the elements of N(Gt)
commute as operators. Also GtjGt is N(Gs)-torsion-free.

PROOF. By the first part of (6), G'IGS is an abelian group, and it is
an immediate consequence of the second half of (6) that the elements in
N(GS) commute as operators on GsjGs (see for example [5] p. 51). The
content of (4) is that G'/Gg is 2V(Ga)-torsion-free.

Thus by a theorem of Podderyugin [9] any partial 2V(G4)-order of
GsjG6 can be extended to a total iV^G^-order. In particular, the trivial
partial order can be so extended and hence there exists a total N{GS)-order
for GSIGS. Now define a. and /? in A to be equivalent if G a = — g+Gfi-\-g
for some g e G, and in each equivalence class pick a group Gi}Gt and give
it a total iV(G,)-order &t. Next define X = —g+Y+ge {-g+G'+g)l
(~g+Gg+g) to be positive if Y e 0>g. Using the fact that 0>, is an N{GS)-
order it follows that this definition is independent of the particular choice of
g, andthatthisisatotaliV(-g+G,+g)-orderof (-g+Gs+g)l{-g+Gs+g).

Define a < /? in A if Ga C Gfi or equivalently if Ga C Gfi. lige G^G,,
then we shall say that d is a value of g. Note that each O ^ g e G has at least
one value and that the set of all values of g is a trivially ordered subset
of A which we shall denote by Ag. Define 0 =£g e G to be strictly positive
(notation g > 0) if G,+g > Gs in G'lG, for aHdeAt.

PROPOSITION 3.1. G is a semiclosed po-group and the Gs and the G*
are pure convex subgroups of G. We shall call a partial order of G that is
defined in this way a A-order.
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PROOF. Let P = {g e G \ g > 0}, and consider a,beP and a e Aa.
Then a e A_a and G a - a < Ga, and so P n — P = • • If a+6 = 0, then
I E J , and Ga-\-a = Ga—b < Ga, which contradicts the fact that ae P.
Thus a+6 ^ 0 and hence there exists a value y oi a-\-b. Clearly y e Aa u Ab

and a, b e G?. Thus G y +«+6 = Gy+a+Gy+b > Gy and hence P+PQP.
If - g + a + g e G ^ G j , thenae (g+G^-g)\(g+Gfi-g) and hence (g+Gij-g)+a
is positive. Thus Gfi— g+a+g = — g+fe+G^—g)+<*+g is positive and
hence —g-\-a+g e P. Therefore G is a ̂ >o-group.

If ngeP, where geG and n > 0, and y e J p i then y e z l , , and
M(Gy+g) = Gy+ng > GY in the o-group Gy\Gy. Thus Gy+g > Gy and
it follows that g e P and thus the po is semiclosed.

If 0 < x < g e G, and x$Gs, then there exists (5 sS /3 e Ax and since
g e Gp, fl e Ax_g. Thus Gfi < Gfi-\-z—g < G ,̂ which is impossible. Therefore
a e G , and hence Gt is convex. Moreover, since G* is the intersection of
convex subgroups it must also be convex.

We have not yet made use of our hypothesis that A is a root system,
but we shall make repeated use of it in determining when a A -order is a
lattice-order. Note that if A is a chain, then each A -order of G is a total
order. Thus a group H can be totally ordered if and only if it contains a chain
of subgroups {Hg | <5 e A} that satisfy (1) through (6). This is entirely similar
to the results of Podderyugin [9] and Rieger [10] about o-groups.

We shall say that d e Aa is a positive (negative) value of g if Gt+g > G,
(Gs-{-g < Gt). For each subset II of A let 77' be the ideal determined by II,

II' = {deA\d-g*y for some y e 77}.

PROPOSITION 3.2. If II is the set of positive values oi geG in a A-order
of G and if h e n Gy (y e A\II'), and h—g e n Gy (ye 77') then h = gv O.

PROOF. We first show that 77 = Ah. If d e II, then Gg+h = Gg+g > G,
and hence heG'\Gs. Conversely suppose that 6 e Ah. If 6eA\II', then
h e Gs and if deII'\II, then d < y e nQAh, both of which are impossible.
Thus d e II and hence 77 = Ah. In particular, h has only positive values
and hence h^O. In order to prove that h ]> g we must show that each
value y of A—g is positive. If yell', then h—geGy, a contradiction. If
y G A\nr, then h eGy and Gr+A—g = Gy—g > Gy (because y must be a
negative value of g). Therefore h 2j g and 0.

Finally suppose that c e G and h =£c ^ g and 0, and consider y eAc_h.
If heGy, then Gy+c—A = Gy+c > Gy. If h$Gy, then there exists
y ^ P e Ah = II and hence y e 77'. Thus Gy+A—c = Gy-\-g—c and hence
Gr-|-c—h = Gy-\-c— g > Gy because c ^ g. Thus all the values of c—h are
positive and hence c 2: h. Therefore h = g v 0.

In more detail the hypothesis of this proposition is
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(ii) if y is a negative value of g, then heGa for all y ^ a e J , and
(iii) if y is a positive value of g, then h—g e Ga for all y 2> a 6 A.

Proposition 3.9 in [4] is the corresponding result for /-groups.

THEOREM 3.1. A A-order of G is a lattice-order and the Gs are prime
convex l-subgroups if and only if

(7) for each g eG, there exists henGy (y e A\II') such that h—genGy

(y e 77'), where II is the set of positive values of g.

If this is the case, then A = gvO.

PROOF. First suppose that (7) is satisfied. Then by Proposition 3.2,
h = gvO exists for each g eG and so G is an /-group. Also if g e Gs, then no
value of g v 0 exceeds 6 and so gvOeGs. Therefore Gs is an /-subgroup of
G and hence by Proposition 3.1, Gt is a convex /-subgroup of G. Suppose
(by way of contradiction) that Gs is not prime. Then there exists a, b e G+\Gt

such that ahb = O. Let a(/9) be the value of a(b) that is ^ 6 and without loss
of generality assume that a ^ /?. If a = /?, then Ga+a and Ga+b are strictly
positive in the o-group Ga}Ga and hence Ga = Ga-\-ahb = Ga+«AGa+&
= min [Ga+a, Ga+b] > Ga, a contradiction. If a > /3, then a is a positive
value of a~—b and hence by Proposition 3.2, Gfi+a—b = Gfi+ (a—b) vO>Gfi

in the po set of right cosets of Gfi. Thus Gfi-\-a > Gf+b and hence
Gf = Gp+a A b = G^+« A G ^ + 6 = G^+6 > G ,̂ a contradiction. Therefore
each G, is a prime convex /-subgroup of G.

Conversely suppose that G is an /-group and the Gs are prime convex /-
subgroups of G. Then it follows from the proof of Proposition 3.9 in [4]
that (7) is satisfied.

COROLLARY. If for each geG and each subset II of AB there exists
her\Gy (yeA\II') such that h—ger\Gy (ye77'), then every A-order of G
is a lattice order for which the Gs are prime convex l-subgroups.

Theorem 3.6 provides a converse to this corollary. It is easy to show
that a wreath product G of one torsion free abelian group by another has a
natural set of subgroups {Gs \d e A) that satisfy (1) through (6) and also
satisfy the hypothesis of this corollary. Thus each A -order of G is a lattice-
order. However, since G contains elements a and b such that — a+b-\-a = —b,
it is clear that G does not admit a total order.

Suppose that we have a A -order for G that satisfies (7) and let A be
the set of all regular convex /-subgroups M of G such that M 2 G, for some
<5 e A. Then it is easy to verify that A is a normal plenary subset of 7\(G)
and hence the A -order is a normal lattice order. We have proven the fol-
lowing theorem.
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THEOREM 3.2. A group H admits a normal lattice-order if and only if
there exists a set {Hs\d eA} of proper subgroups of H that satisfy (1) through
(7).

This result is not too satisfactory because whether or not (7) is satis-
fied depends upon the particular choice of the total order for the GsIGt.
For the remainder of this section we derive conditions that insure that all
the .d-orderings of G satisfy (7). Note that the Corollary to Theorem 3.1
provides one such condition.

An element d eA will be called special if there exist g e G'\Gt whose
only value is <5. In this case g will be called A-special. Note that the
hypothesis in the Corollary to Theorem 3.1 forces each 6 e A to be special.

LEMMA 3.1. / / a and b are A-special with values a || /? respectively,
then a-\-b = b-\-a and Aa+b = {a, /3}.

PROOF. Let C = n Gy (y ^ a) and D = n Gy (y ^ /S). Then since b has
only the value /3 it follows that b e C, and similarly a e D. Since Ga <\ Ga

it follows that an inner automorphism of G by an element in G" must induce
a permutation on {y e A \y ^ a}. Therefore C < Ga and similarly D < Gfi.
D+g = D+a+b = D+b, where g = a+b, and hence a+b = g = b+d,
where d e D.

If y ^ /S, then G7+a = Gy = G7+d. If <5 ^ /?, then beG,.IiaeGt,
then d = — b+a+b e Gt and hence Gs+a = Gs = Gg-j-d. If a # Gt, then
6 ^ a and hence C Q Gs. But then C-\-a = C-\-a+b = C-\-b+d = C-\-d
and hence Gt-\-a = Gt-\-d. Therefore Gt-\-a = Gt-\-d for all b e A and hence
a = d.

Since aeGf, it follows that fieAg and similarly a.eAg. Consider
y e zl,. If a, b $ Gy, then a, /? ^ y and a 11 /?, but this contradicts the fact
that A is a root system. Thus exactly one of a and b belongs to Gy and it
follows that y = a. or y = /?.

THEOREM 3.3. 7/ ^la is finite for each g eG, then the following are
equivalent.

(8) Each 0 ^ g eG has a representation g = gt-{- • • • +g n , where gt

is A-special with value dt and dt \\ 6S if i =/= /.
(b) Each A-order of G is a lattice-order for which the Gs are prime convex

l-subgroups.
(c) There exists a A-order of G that is a lattice-order and such that the

Gs are prime convex l-subgroups.

PROOF. (8) -> (b). Select a J-order for G and consider 0 i^geG.
Then g = gt-\- • • • -\-gn, where gt is A -special with value di and 6( || dt if
i ^ j . By Lemma 3.1 A, = du • • -,6n and g,+g, = g,+gi- Thus we may
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assume that 77 = 81, • • •, 8k (k ^ n) is the set of positive values of g. To
complete the proof it suffices to show that h = gt + • • • +gk e n Gy

(y e A\II'). and h—g e n Gy (y e 77'). But this follows at once from the
fact that ft/",&enGr (yeA\II') and gk+1, ••-,gnersGy (yell').

(c) -»• (8). Select a J-order for G that is a lattice-order and such that
each G} is a prime convex /-subgroup of G. Let A be the set of regular convex
/-subgroups M of G such that M 2G« for some 6 e zl. Then /I is a plenary
subset of Ft (G) and each g eG has at most a finite number of values in A.
(8) is now an immediate consequence of Theorem 3.7 in [4].

REMARK. Suppose that G satisfies (8) and that we have selected a
zl-order for G. Then from the theory in [4], Theorem 2.1 and Theorem 3.3
we have the following results. The representation of g given in (8) is unique
and g v 0 is just the sum of the positive g(. /\(G) = A and the lattice
^ of all convex /-subgroups of G is freely generated by A.

It is easy to show by an example that even if G is abelian and generated
by its J-special elements, (8) need not be satisfied.

THEOREM 3.4. There exists a lattice-ordering of a group H such that
each element has at most a finite number of values if and only if there exists
a set {Ht\S e A} of proper subgroups of H that satisfy properties (1) through
(6) and (8). If this is the case, then each A-order of H is a lattice-order.

PROOF. Suppose there exists a lattice-order for H such that each
element has at most a finite number of values. Then each element in FX(H)
is special ([4] Theorem 3.9) and hence Hy < Hy for all yeF^H). Thus
{Hy\y eF^H)} satisfies (1) through (6), and (8) follows from Theorem 2.1
or from Theorem 3.7 in [4]. The converse is an immediate consequence of
Theorem 3.3.

THEOREM 3.5. If there exists a A-order of G that is a lattice-order and for
which the Gs are prime convex l-subgroups, then the following are equivalent.

(a) G is representable (as a subdirect sum of a cardinal sum of 0-groups).
(b) For each d e A and g eG, —g+Gg+g QGS or^Gg.

PROOF. Byrd [1] has shown that if M is a prime convex /-subgroup of
a representable /-group H, then — h-\-M-{-h is comparable with M for all
heH, and hence it follows that (a) implies (b). Conversely suppose that
(b) is satisfied. Let Nt = n {—g-\-Gs-\-g\g e G}. Then Ns < G and since
Ns is the intersection of a chain of prime convex /-subgroups, Ng is a prime
convex /-subgroup ([4] Theorem 3.2). Thus G/Ng is an o-group. The natural
homomorphism of G into the large cardinal sum of the G/Ng is a representa-
tion of G.

THEOREM 3.6. If for each 6 e A and g eG, —g+Gs+g QGe or DG»,
then the following are equivalent.
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(a) Each A-order of G is a lattice-order for which the G) are prime convex
l-subgroups.

(b) / / geGr\GY for all yellQA, then there exists he nGy(yeA\II')
such that h—g e n Gy (y e 77').

(c) / / Q1 and Q2 are dual ideals of A such that ^ u Q2 — A, then

n c, = nc,®nci.

PROOF, (a) -> (b). If a and P are values of g, then Ga\\Gfi and hence
Ga and Gff are not conjugate. Thus we can choose a J-order for G so that
Gy+g > Gy for all y e77 Q AB and G7-\-g < Gy for all other values y of g.
Then by Theorem 3.1, h = g v 0 satisfies (b).

(b) -* (c). Since Qx n Q2 Q Qx and Qs

PI G, 2 D G, and 0 G,

and since

we have
(D Gt) n (n G,) = 0.

In order to show that nGs (de Qx) is normal in r\Gs (deQ^^n Q2) it suf-
fices to show that if ge n Gs {d eQxr\ Q2), then the inner automorphism
of G determined by g induces a mapping of Qt into itself. If there exists
b e Qx such that —g+Gs+g = Gp, where p i Qx, then p e Q2 and d > p.
Thus i e f t n f t and hence g eG}, but then — g+Gj+g = Gt, a contra-
diction. Thus in general

n G,2nG,eric,.
«i"0i «i «i

Consider genGt (6 eQ1r\ Q2) and let 771(772) be the set of all values of g
in (?i((?2).

 a n ( i l e t ̂ i a n ( i n'z be the corresponding ideals in A. Since
(?! u Q2 = J , 77X u 772 is the set of all values of g.

and 77̂  C Qt Q

For if a e77(, then a ̂  p ell1 C Qlt and if a.$Q1, then a.eQ2 and hence
P eQ1nQ2. But then g eG0 which contradicts the fact that /? is a value
of g. If y e @! n772, then 7 5g ^ e772 C Q2 and hence ^ e Qx n ^2, which is
impossible.

By (b) there exist elements h and & in G such that

* e 0 Gy £ fl Gr and h-g ef]GY

*e PI GyQ^Gy and H e f l C , -
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To complete the proof it suffices to show that g = k+h. If y ell'x, then
k, h—g e Gy and if y ell'z, then h, k—g eGy. If y $n[ u/Z^, then h,keGy,
and if g $ Gy, then there exists a value ft of g such that y ^ /? ell1 u/72 and
so y e/7[ KJII'2, a contradiction. Thus using the fact that h+k = k+h we
have that h+k— g e n Gy = 0 (y e A) and hence g = k+h.

(c) -> (a). We assume that G has a J-order and pick 0 ^ g e G. Let
77 be the set of all positive values of g. By Theorem 3.1 it suffices to show
that there exists h e n Gy (y e A\II') such that A—g e n Gy (y e/7'). Let

& = {<5 e J | a ^ y for some y e/7'} D77' and (?2 =

Then ^x and (?2
 a r e dual ideal ideals of A and QXKJ Q2 = A.

Suppose (by way of contradiction) that g $Gy for some y e Qt n Q2.
Then there exists a value /? of g such that 07^ y- Since y &Q%,y$II' and
hence /? is a negative value of g. Since y eQx, /?2Sy2; 5 e77' and hence /S
is a positive value of g, which is impossible. Therefore

g = k+he f) Gy = r\Gr®r\Gr>

where kenGy{yeQx) and henGy(yeQ2 = A\II'). If ye77', then AeGy

and hence A— g e nGy (y e77'). This completes the proof of Theorem 3.6.
We can use Theorems 3.5 and 3.6 to characterize a class of groups that

admit a representable lattice-order, but instead we shall only apply
Theorem 3.6 to representable /-groups. Let H be a representable /-group
and let A be a normal plenary subset of F^H). Then {Hy\y eA) satisfies
properties (1) through (7) and — h+Hy+h is comparable with Hy for all
y eA and h e H. Also since the given lattice-order is a J-order, we have the
equivalence of (a), (b) and (c) in Theorem 3.6.

THEOREM 3.7. If H is a representable l-group and A is a normal plenary
subset of rx(H), then each of (a), (b) and (c) is equivalent to

(d) each be A is special and if \Jaa exists, where {aa\xeA} is a disjoint
set of positive elements of H, then \/afi exists for each set {afi\fi e B) Q {aja eA}.

PROOF, (b) -+ (d). Consider 0 ^ h e H"\Ht, where 8 e A. By (b) there
exists k e n Hy (y % d) such that k—h e n Hy (y ^ 8). In particular 8 is
the only value of k, and hence each 8 e A is special. By Theorem 2.1,
h = V^A, where {hx\X eA} is a set of disjoint special elements. Moreover,
the values of h in A are precisely the values of the hx. Let 0 be a subset of
A and let 77 be the set of all the values of the hx for X e 0. Then by (b) there
exists kenHy (yeA\II') such that k—h enHy(y e/7'). Now by Theorem
2.1, k has a unique representation as the join of disjoint special elements.
Thus it follows that k = \JhK (X e0), and hence it is clear that (d) is satis-
fied.
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(d) ->• (a). By Theorem 2.1, each positive element in H has a unique
representation as the join of a set of disjoint special elements. Consider
heH.

h = hvO-(-hvO) =Vaa-\Jb,
A B

where {aa | a 6 A} and {bfi\ ft e B} are sets of disjoint special elements and
h v 0 = V «« and —A v 0 = V V (If h v 0 = 0, then we let A = • and
V^aa = 0.) Without loss of generality we may assume that a is the value
of aa in A for each a e A and that /3 is the value of bfi in A for each j3eB.
In particular, A u B is the set of values oihinA.

Let 77 be the set of positive values of A in a new id-order of H. Then
77 = A* u B*, where -4* C .4 and B* Q B. It follows by an easy computa-
tion that

satisfies property (7). Thus the new A -order of H is a lattice-order and the
Ht are prime convex /-subgroups. Therefore (a) is satisfied.

In the proof that (d) implies (a) we did not use the fact that if is a
representable /-group, hence we have the following corollary.

COROLLARY. / / H is an l-group with a normal plenary subset A of PX(H)
that satisfies (d), then each A-order of H is a lattice-order for which the Ht

are prime convex l-subgroups.

4. Lattice-orderings of an abelian group

If G is an abelian group, then conditions (5) and (6) used in the
definition of a J-order of G are trivially satisfied and condition (4) simply
states that each group G*\Gt is torsion free. The latter is equivalent to the
hypothesis that G is torsion free and each of the G, is a pure subgroup of
G. Thus for the remainder of this section we shall assume that G is a torsion
free abelian group with a set {Gs \ d e A} of proper pure subgroups of G that
satisfies the conditions (1), (2) and (3) from section 3.

Using the fact that the set consisting only of the zero subgroup satis-
fies our hypothesis, Theorem 3.2 simply states that an abelian group admits
a lattice-order if and only if it is torsion free, and Theorem 3.5 states that
each lattice-ordered abelian group is representable. The other theorems all
establish significant relationships between a lattice-order for G and the
subgroup structure of G.

Let V = V(A, G'jGs) be the set of all zl-vectors v = (• • •, vit • • •),
where vg e GsjGs, for which the support Sv = {<5 e A \ vs ^ Gs} contains
no infinite ascending chains. Choose a zd-order for G and define 0 ^ v eV
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to be positive if vy > Gy for every maximal element y of Sv (such a vy will
be called a maximal component of v). Then V is an /-group ([2] Theorem
2.2).

THEOREM 4.1. If G is divisible, then there exists an o-isomorphism /j,
of G into V(A, Gs/Gs) such that 6 is a value ofgif and only if (gfi)g is a maximal
component of g/u and if this is the case (gfi)s = Gs-\-g.

PROOF. G is a ./""-group, with F = A (see [3] p. 3) and hence by the
embedding theorem in [3], there exists an isomorphism fj, of G into V with
the above property. It follows from the definition of the /d-order for G and
the lattice order for V that for 0 ^ g eG the following are equivalent.

(a) g is positive in G.
(b) Gs+g > Gs for each deAa.
(c) All maximal components of gfj, are positive.
(d) gp is positive in V.

Therefore /J, is an o-isomorphism of G into V, and we shall call such an o-
isomorphism a A-isomorphism.

If we remove from (2) the assumption that {Ga | a e A and Ga D Gg}
is a chain, then V(A, GlIGs) is a.po-growp and Theorem 4.1 together with its
proof remains valid.

As is usual when dealing with abelian po-gronps we can dispense with
the devisibility assumption. For let G be the d-closure of G (that is, the
minimal divisible abelian group that contains G) and let Gs (Gg) be the
i-closure of Gs {Gg) in G. Then G+ = {g e & \ ng e G+ for some n > 0} is
the minimal semiclosed po of 0 that contains the given -d-order of G. The
mapping r of Gt+g upon Qt+g is an isomorphism of G'jGg into 0'l0t

and G'l&g is the rf-closure of {GsjGs)x. Thus there is a unique extension of
the total order of {GslGs)x to a total order of G'/Gg and it is easy to verify
that

G+ = {g e G | G7+g > Gy for a U y e Ag}.

COROLLARY I. There exists a A-isomorphism of G into V(A, G'/Gg).

COROLLARY II. / / G satisfies (7), then each A-isomorphism of G into
V(A, G'/Gg) is necessarily and l-isomorphism.

PROOF. Let fi be a A -isomorphism of G into V and consider g eG.
It suffices to show that (gvO)fi = gfivO. Let 77 be the set of positive values
of g in A and let h = g v 0. If y e A\II', then (by (7)) h e Gy and hence
{hfi)y = Gy. For if (h/u)y ^ Gy, then there exists a maximum component
(h/i)fi of h[j, such that /3 ^ y and hence A e Gfi\Gfi, a contradiction. If y e/7'
then A—g e Gy and so (hfi)y—(g/Li)y = ((A—g),«)r = <3y. Thus we have
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[ (fi«)y if y ^ 0,
(hfi)Y = ( where (g/j.)^ is a maximal positive component of g/j,

y GY otherwise,

but this means that (g v O)/JL = hfi = g/xv 0.
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