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1. Introduction

In this paper we show that whether or not a group admits a lattice-
order often depends upon whether or not it possesses a set of subgroups
that satisfy certain algebraic conditions. Using these techniques we are
able to determine large classes of groups that can be lattice-ordered.

There are many places in the literature where a class of groups that
can be totally ordered has been characterized as those groups with a chain
of subgroups that satisfy certain restrictions — for example see Iwasawa
[6] and Neumann [8]. Malcev [7], Podderyugin [9] and Rieger [10] have
derived conditions on a chain of subgroups that are necessary and sufficient
for the ordering of a group (an account of part of their work can be found
in Fuchs [5]). In our theory we recover the results of Podderyugin and
Rieger.

In section 2 we recall some of the definitions and the theory of lattice-
ordered groups (‘‘/-groups”) that we need. Most of these results are from
[4]. We then prove the necessity of the conditions that are used in section 3
to characterize /-groups. Also we derive some new results. For example,
Theorem 2.1 has proven to be extremely useful in this paper and also in
other contexts.

In section 3 we determine all those groups that admit a lattice-order
which is finite valued. We also determine those groups that admit a normal
lattice-order. In fact, the techniques that we use can only describe normal
lattice-orders, but since this includes all representable /-groups as well as
all finite valued J-groups, this class is quite large.

The results in section 3 all have content if we restrict our attention
to abelian groups. In section 4 we show that our theory fits in nicely with
the representation theory for abelian /-groups that is developed in [2].

Throughout this paper we assume that the reader is familiar with the
results in [4].

1 This research was done while the author held a National Science Foundation senior

postdoctoral fellowship.
145

https://doi.org/10.1017/51446788700005528 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005528

146 Paul Conrad 2]

NotaTiON. If 4 and B are subgroups of a group G, then N(4) will
denote the normalizer of 4 in G, [4, B] will denote the subgroup of G that
is generated by all commutators —a—b-+a+b where ae A and be B,
A < B will denote that A4 is a normal subgroup of B, and 4\B will denote
the set of all elements in 4 but not in B. We shall denote the null set by .
We shall write /-group (o-group) for lattice-ordered group (totally ordered
group). If x belongs to an l-group, G, then G(x) will denote the subgroup
{y e G| ly| < n || for some n > 0}. We shall denote the fact that a, be G
are not comparable by « || & and also that subsets X and Y are not com-
parable with respect to the inclusion relation by X || Y.

2. Some properties of I-groups

Throughout this section G will denote an l-group. We first recall some
definitions and results from [4] that we need. A subgroup C of G is called a
convex l-subgroup if C is a sublattice of G such that 0 << g < ¢ € C implies
g € C. The set of all convex l-subgroups of G is a complete distributive
sublattice of the lattice of all subgroups of G. A convex l-subgroup C is
called prime (regular) if the convex l-subgroups of G that contain it form
a chain (if it is maximal without containing some element g € G). Theorem
3.2 in [4] establishes six equivalent definitions of a prime convex /-sub-
group. In particular, each regular convex /-subgroup is prime. If C is a
regular convex l-subgroup of G, then C is a proper subgroup of the inter-
section C* of all convex /-subgroups that properly contain C. In fact, this
property is equivalent to regularity. Also if C is a prime or a regular convex
l-subgroup of G, then so is —g+C—+g forall g e G.

Let C be a regular convex /-subgroup of G that is covered by the convex
l-subgroup C* and suppose that C < C*.

(a) [[N(C), N(C)], C*] CC.

ProorF. Since C* is the unique convex I-subgroup that covers C it
follows that N(C) C N(C*). Thus each a € N(C) induces an o-automorphism
d of C*/C

(C+zx)d = C—a+tz+ta.
But C*/C is o-isomorphic to a naturally ordered additive group of real
numbers. Thus the o-automorphisms of C*/C are essentially multiplications
by positive real numbers, and hence ¢ = b4 for all 4, b € N(C), which is

equivalent to property (a).
(b) If ze C*\C and a,, - -+, a, e N(C), then

(—a+x+a)+ -+ (—a,+z+a,) ¢C.
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Proor. We may assume that C+4x > C and thus it follows that
C+(—a,+z+a,) > Cfori=1,---, n, and hence

C+(—a,+z+a))+- -+ {(—a,+z+a,) > C.

Note that {a) and (b) imply that C*/C is an N (C)-group such that the
elements of N(C) commute as operators and the total order on C*/C is an
N(C)-order.

Let I'; = I';(G) be an index set for the set of all regular convex -
subgroups G, of G. We shall frequently identify this set with I'j. Define
« < pin I if G, C G4. Then I is a root system (that is, Iy is a partially
ordered set and for each y e I'}, {# € I';|« = y} is a chain). Let G” be the
convex l-subgroup of G that covers G, (y e I). If g€ G?\G,, then y is
said to be a value of g, and if y is the only value of g in I}, then both y
and g are called special. It follows from Theorems 3.5 and 3.6 in [4] that
if y is special, then G, < G7. A subset 4 of I, is called plenary if

(i) n{G,|yed} =0, and

(ii) if g € G\G” (y € 4), then there exists a value « of g in 4 that ex-
ceeds .

If in addition, foreachxed and ge G

(iii) G, < G% and

(iv) —g+G.+ge{G,|yed},
then we shall call 4 a normal plenary subset of I';. Note that I satisfies
(i), (ii) and (iv) but that it need not satisfy (iii). We shall call the lattice-
order of G normul if I'; contains a normal plenary subset. Let 4 be the set of
all special elements of I';. Clearly for each y € 4, (iii) and (iv) are satisfied.
Thus 4 is 2 normal plenary subset of I'} provided that it is a plenary subset.

G is said to be representable if there exists an l-isomorphism of G into
a cardinal sum of o-groups. Byrd [1] has shown that G is representable if
and only if for each y e I'; and g € G, —g+G,+¢ and G, are comparable,
and if G is representable, then I} is normal.

We shall call a subset {g, | 1€ A} of G disjoint if each g, > 0 and
gxngy =0 for 1#£4". A convex l-subgroup C of G is called P-closed if
V g, € C for each disjoint subset {g, | 2 € A} of C for which V g, exists.

LEMMA 2.1. If y € Iy is special, then G, is ZL-closed.

PrOOF. Suppose (by way of contradiction) that 0 <g = Vg, ¢G,,
where {g, | 4 € A} is a disjoint subset of G,. Let « be the value of g such
that « = y, and pick a special element O < y € G?\G,,. Let z = y A g. Then
z € G"\G,, is special, and

z=gnrx=(Va)rz= V(g rz)

where each g, A x belongs to G, n G(z). But G(z) is a lexicographic extension
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of G,n G(z) ([4] Theorem 3.6) and hence for each positive integer #,
x > n(g, A x) and it follows that

z= Va(garz)=nV(grz) =n

for all » > 0 which is impossible.

Lemma 2.2. If g= Va,= Vb,, where {a,|ac A} and {b;|f e B}
are disjoint sets of special elements, then {a, |« € A} = {b, | € B}.

PRrOOF. Let 8 be the value of b,. It is easy to show that V , b, exists
and is disjoint from b,, and hence g = b+ V 1, 4b,. Thus since G, is prime,
V 15461 € G, and hence g € G*\G;. Now by Lemma 2.1, there exists a, ¢ G,
and since {a,|axe A} is a disjoint set this @, is unique. If y <4,
then a,, b, ¢G,, and hence V , .4, and V,,.,b;, must belong to G,.
Thus G,+a, = G,+g = G,+bs. If y £, then a,, by eG,. Therefore
G,+a, = G,+b, for all y € I'; and hence 4, = b,.

COROLLARY. If b; € G*\G,, then g € G*\G,.

THEOREM 2.1. Let A be the set of special elements in I'y. Then the fol-
lowing are equivalent.

(@) Each 0 < g € G is the join of disjoint special elements in G.

(b) A4 is a plenary subset of I',.

If this is the case, then A is the set of all regular F-closed convex I-sub-
groups of G and A is a normal plenary subset of I'y. Moreover, the represen-
tation g = \ g, of g as the join of disjoint special elements is unique and the
values of g in A are precisely the values of the g, .

Proor. Consider O < g € G and let 4, be the set of all values of g in 4.

(a) - (b). g = Vg, where {g,|2eA} is a disjoint set of special
elements. If ¢ is the value of g,, then by the above corollary é € 4,. Thus
N{G,|yed}=0. If g¢G, (xed), then by Lemma 2.1 there exists
g ¢ G, and so the value of g, is = « and it is also a value of g. Thus disa
plenary subset of I7.

(b) = (a). Let 6 € 4, and pick O < z € G?\G, so that z is special and
Gytax>G;+g. 1fdF aed, thenxeG,andhence G, 4228 =G, +2AG,+g
= G,. If 6 == a € 4, then since the right cosets of G, are totally ordered
and Gy+z > Gs+g it follows that G,+x > G,+g. Thus G,txAg
= G,+x A G,4+g = G,+g. If we set g(6) = x A g, then we have shown that

_ [Gatgforall s =aed
Catg(0) = {Ga for all 6 & « € A.

Clearly 6 is the only value of g(é) in 4 and hence ([4] Proposition 3.11)
4 is the only value of g(8) in I';. Thus g(é) is special. For each é € 4, define
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a g(d) as above. Then the g(d) are special and pairwise disjoint ([4] Proposi-
tion 3.10). In order to complete the proof it suffices to show that g =V g(d)
(6e4,). Clearly g exceeds each g(d). Suppose that # € G and 4 = g () for all
ded,andletabeavalueofg—hind. Ilf geG,, thenG,+g—h=G,—h<G,
since A =0, and if g¢G,, then « < ded, and hence G, # G, +g—h =
G,+g(8)—h < G,. Thus g—h =< O and hence g = V g(d). Therefore (a)
and (b) are equivalent.

Now suppose that (a) and (b) hold and that yis a value of 0 < ge G
in I'\4. g = V g, where {g, | e A} is a disjoint set of special elements.
If g, ¢ G,, then V r.a8x€G, and thus y is a value of g,, but this means
that y €4, a contradiction. Therefore {g,|1€4}C G, and Vg ¢G,,
and hence G, is not Z-closed. Thus by Lemma 2.1 4 is the set of all Z-
closed regular convex l-subgroups of G. The rest of the theorem follows
from our previous results.

An element O < g € G is said to be ¢rreducible if

g=a+band aAndb =0 imply a=0 or b = 0.

If O < g € G is special with value y and g = a+5, where a A b = O, then
one but not both of ¢ and b must belong to G,. For if a, b ¢G,, then
O=anb¢G, ([4] Theorem 3.2). If a G, then clearly y is the only
value of b—a and G,+b—a =G,+b>G,. Thus b>a and hence
O = b A a = a. Therefore each special element of G is irreducible.

COROLLARY. If the set A of all special elements of I'y is a plenary subset
of I'y, then O < g € G is special if and only if it is trreducible.

Proor. If g is not special, then by our theorem g = \ g,, where
{gx | 4 € A} is a disjoint set of special elements. Therefore g = g,+ V 14281,
and hence g is reducible.

3. Characterizations of lattice-ordered groups

Throughout this section we shall assume that G is a group with a set
{G; | 6 € 4} of proper subgroups such that

(1) n{Gy|6ed} =0
and such that for each é € 4 the following properties are satisfied.

(2) {G, | xe€d and G, D G,} is a chain whose intersection G® properly
contains G,.

(3) If geG\G?, then there exists an a €4 such that G, 2 G? and
g € G°\G,.

(4) If (—ay+2x4a,)+ -+ +(—a,+z+a,) €G,, where zeG® and
a,,* ', a,eN(G),, then z e G,.

(6) —g+Gy+ge{Gs|ded}forallget.
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(6) [G°, G*1C Gy and [[N(Gy), N(G4)], G°]1 C G,

It follows from the material in the last section that if H is an l-group, then
each normal plenary subset 4 of I'y (H) satisfies (1) through (6).

If O # g € G, then by (1) and (3), g € G*\G,, for some o € 4 and hence
by (4), ng € G*\G, for each positive integer #». Thus G is torsion free, and
also if ng € Gy, then g € G,, and hence the G, and the G?® are pure subgroups
of G.

(@) If —g+Gy+g =Gy, them —g+GP+g = G, and hence
N(Gs) SN(G?).

PROOF. —g+G%+g = —g+ n {G,|G, D G,}+¢g
=N {—g+G,+g|G, DG} = {G4|G D —g+G,+g}

In particular, each element @ € N(G;) induces an automorphism 4 on
the group G?/G,
(Gs+=x)d = Gy—a-+z+-a.

(b) Each G®|G, is an abelian N(G,)-group and the elements of N(G,)
commute as operators. Also GG, is N (G,)-torsion-free.

ProoF. By the first part of (6), G?/G, is an abelian group, and it is
an immediate consequence of the second half of (6) that the elements in
N(G;) commute as operators on G?/G; (see for example (5] p. 51). The
content of (4) is that G®/G, is N(G,)-torsion-free. _

Thus by a theorem of Podderyugin [9] any partial N(G,)-order of
G’|Gs can be extended to a total N(G,)-order. In particular, the trivial
partial order can be so extended and hence there exists a total N(G,)-order
for G*/G,. Now define « and 8 in 4 to be equivalent if G, = —g+Gs+¢
for some g € G, and in each equivalence class pick a group G*/G, and give
it a total N(Gs)-order #;. Next define X = —g+Y-+4ge (—g+G*+g)/
(—g+Gs+g) to be positive if Y € ;. Using the fact that £, is an N(G,)-
order it follows that this definition is independent of the particular choice of
&, and that thisis a total N(—g+G,--g)-order of (—g+G®+g)/(—g+Gs+8)-

Define a < g in 4 if G* C G, or equivalently if G, C G,. If g € G*\G,,
then we shall say that d is a value of g. Note that each 0 3 g € G has at least
one value and that the set of all values of g is a trivially ordered subset
of A which we shall denote by 4,. Define O # g € G to be strictly positive
(notation g > 0) if G,+g > G, in GG, for all 6 e 4,.

PROPOSITION 3.1. G is a semiclosed po-group and the G, and the G°
are pure convex subgroups of G. We shall call a partial order of G that is
defined in this way a A-order.
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ProoF. Let P = {geG|g> 0}, and consider 4,be P and ae4,.
Then ae4d_, and G,—a < G,, and so Pn —P = []. If a+b=0, then
aed, and G,+a = G,—b < G,, which contradicts the fact that a e P.
Thus a+b # O and hence there exists a value y of a+4b. Clearly y e 4, U 4,
and a, b € G?. Thus G, +a+b = G,+a-+G,+b > G, and hence P+PC P.
If —g+a+geGP\G,, thenae (g+GP—g)\(g+G,—g) and hence(g+G,—g)+a
is positive. Thus Gy—g+a+g = —g+(g+G,—g)+a+g is positive and
hence —g+a-+g € P. Therefore G is a po-group.

If nge P, where geG and # >0, and yed,, then yed,, and
n(G,+g) = G,+ng > G, in the o-group G?/G,. Thus G,+g > G, and
it follows that g € P and thus the po is semiclosed.

If 0 <z < gebG, and x ¢ G4, then there exists 8 < § e 4, and since
geGy, ped, ,. Thus G; < Gy4x—g < Gy, which is impossible. Therefore
z € G, and hence G, is convex. Moreover, since G® is the intersection of
convex subgroups it must also be convex.

We have not yet made use of our hypothesis that 4 is a root system,
but we shall make repeated use of it in determining when a A-order is a
lattice-order. Note that if A4 is a chain, then each A-order of G is a total
order. Thus a group H can be totally ordered if and only if it contains a chain
of subgroups {H, | 6 € A} that satisfy (1) through (6). This is entirely similar
to the results of Podderyugin [9] and Rieger [10] about o-groups.

We shall say that é € 4, is a positive (negative) value of g if G,+g > G,
(Gs+g < G,). For each subset IT of A let IT’ be the ideal determined by I7,

II'={6ed|6 <y for some yell}

PRrROPOSITION 3.2. If IT s the set of positive values of g € G in a A-order
of Gandifhen G, (yeA\Il'),and h—gen G, (yell') then h =g v O.

Proor. We first show that IT = A4,. If 6 € I1, then Gy +4 = Gy+g > G,
and hence % e G?\G,. Conversely suppose that d e 4,. If 6 € A\IT’, then
heG, and if elII'\ll, then 6 <y e I C A4,, both of which are impossible.
Thus 6 e IT and hence II = 4,. In particular, 4 has only positive values
and hence 2 = O. In order to prove that 4 = g we must show that each
value y of h—g is positive. If y e IT’, then h—g € G,,, a contradiction. If
yed\IT', then heG, and G,+h—g = G,—¢g > G, (because y must be a
negative value of g). Therefore 2 = g and O.

Finally suppose that c € G and # # ¢ = g and O, and consider ye4,_,.
If heG,, then G, +c—h =G, +c>G,. If h ¢ G,, then there exists
y < fed,=II and hence y e IT". Thus G,+h—c = G,+g—c and hence
Gy—i—c—h = GY—}—c—g > Gy because ¢ = g. Thus all the values of c—#% are
positive and hence ¢ = 4. Therefore » = g v O.

In more detail the hypothesis of this proposition is
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() 4,C 4,,
(ii) if o is a negative value of g, then ke G, forall y = « € 4, and
(iii) if y is a positive value of g, then h—g e G, forally = a € 4.

Proposition 3.9 in [4] is the corresponding result for I-groups.

THEOREM 3.1. A A-order of G is a lattice-order and the G, are prime
convex l-subgroups if and only if

(7) for each g € G, there exists he n G, (ye A\IT') such that h—genG,
(y € IT"), where II is the set of positive values of g.

If this is the case, then h =g v O.

Proor. First suppose that (7) is satisfied. Then by Proposition 3.2,
h = gv O exists for each g € G and so G is an /-group. Also if g € G4, then no
value of g v O exceeds d and so gv O €G,. Therefore G, is an /-subgroup of
G and hence by Proposition 3.1, G, is a convex /-subgroup of G. Suppose
(by way of contradiction) that G, is not prime. Then there exists a, b € Gt\G,
such that a A b = 0. Let a(8) be the value of a(b) that is = 4 and without loss
of generality assume that « = 8. If « =, then G,+a and G,+b are strictly
positive in the o-group G*/G, and hence G, = G,+arb=G,+anG,+b
= min [G,+a, G,+b] > G,, a contradiction. If « > §, then « is a positive
value of a—b& and hence by Proposition 3.2, Gy+a—b =G4+ (a—b) vO > G,
in the po set of right cosets of G;. Thus Gs+4a > G,+b and hence
Gy = Gptanb=GgtanGytb=Gz+b > G4, a contradiction. Therefore
each G, is a prime convex /-subgroup of G.

Conversely suppose that G is an /-group and the G, are prime convex /-
subgroups of G. Then it follows from the proof of Proposition 3.9 in [4]
that (7) is satisfied.

COROLLARY. If for each g€ G and each subset II of A, there exists
henG, (ye A\II') such that h—gen G, (yell'), then every A-order of G
is a lattice order for which the G, are prime convex l-subgroups.

Theorem 3.6 provides a converse to this corollary. It is easy to show
that a wreath product G of one torsion free abelian group by another has a
natural set of subgroups {G; | 4 € 4} that satisfy (1) through (6) and also
satisfy the hypothesis of this corollary. Thus each A-order of G is a lattice-
order. However, since G contains elements ¢ and b such that —a+b4-a =—b,
it is clear that G does not admit a total order.

Suppose that we have a A-order for G that satisfies (7) and let 4 be
the set of all regular convex /-subgroups M of G such that M 2 G, for some
8 € A. Then it is easy to verify that A is a normal plenary subset of I} (G).
and hence the A-order is a normal lattice order. We have proven the fol-
lowing theorem.
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THEOREM 3.2. A group H admits a normal lattice-order if and only if
there exists a set {H,|6 € A} of proper subgroups of H that satisfy (1) through
(7).

This result is not too satisfactory because whether or not (7) is satis-
fied depends upon the particular choice of the total order for the G?/G,.
For the remainder of this section we derive conditions that insure that all
the A-orderings of G satisfy (7). Note that the Corollary to Theorem 3.1
provides one such condition.

An element 6 € 4 will be called special if there exist g € G*\G, whose
only value is 4. In this case g will be called 4-special. Note that the
hypothesis in the Corollary to Theorem 3.1 forces each 8 € 4 to be special.

LeMMA 3.1. If a and b are A-special with values o || § respectively,
then a+b = b+a and 4,,, = {«, f}.

ProoF. Let C=nG, (y <«) and D=nG, (y < ). Then since b has
only the value g it follows that b € C, and similarly @ € D. Since G, < G*
it follows that an inner automorphism of G by an element in G* must induce
a permutation on {y e 4|y < a}. Therefore C < G* and similarly D < G4.
D+4g = D+a+b = Db, where g = a+b, and hence a+b =g = b4-4d,
where d € D.

Ify<pg thenG,+a=6G,=G,+d. If 6 £, then beG,. Ilf ae Gy,
then d = —b+a+b € G; and hence Gy;+-a = G; = G,-+-d. If a ¢ G, then
8 < « and hence C C G;. But then C+a = C+a+d = C+b+d=C+d
and hence G,+a = G,+d. Therefore G;+a = G,+d for all 6 € 4 and hence
a=d.

Since a € G4, it follows that fe A, and similarly « € 4,. Consider
yed, lfa,b¢G,, then o, f = y and « || B, but this contradicts the fact
that 4 is a root system. Thus exactly one of @ and & belongs to G, and it
follows that y = « or y = §.

THEOREM 3.3. If A, is finite for each ge G, then the following are
equivalent. :

(8) Each O # ge G has a representation g = g+ -+ - +8&,, where g,
1s A-special with value 8, and 8, || 8, if + # 1.

(b) Each A-order of G is a lattice-order for which the G, are prime convex
l-subgroups.

(c) There exists a A-order of G that is a lattice-order and such that the
G; are prime convex l-subgroups.

PROOF. (8) —> (b). Select a A-order for G and consider O # geG.
Then g = g,+ - - - +g,, where g, is A-special with value 8, and §, || 4, if
1 #4. By Lemma 3.1 4, =4,,---, 6, and g,+g, = g,-+&;. Thus we may
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assume that I7 = 4;, - -+, 6, (8 = n) is the set of positive values of g. To
complete the proof it suffices to show that h=g+ - +gengG,
(yed\II'). and h—gen G, (y eIl'). But this follows at once from the
fact that g, -, g, €nG, (yed\IIl') and g4, ", 8, €0 G, (yell').

(c) = (8). Select a Ad-order for G that is a lattice-order and such that
each G, is a prime convex l-subgroup of G. Let A be the set of regular convex
l-subgroups M of G such that M 2 G, for some é € 4. Then 4 is a plenary
subset of I;(G) and each g € G has at most a finite number of values in 4.
(8) is now an immediate consequence of Theorem 3.7 in [4].

REMARK. Suppose that G satisfies (8) and that we have selected a
A-order for G. Then from the theory in [4], Theorem 2.1 and Theorem 3.3
we have the following results. The representation of g given in (8) is unique
and gv O is just the sum of the positive g,. I';(G) = A and the lattice
A of all convex l-subgroups of G is freely generated by A.

It is easy to show by an example that even if G is abelian and generated
by its 4-special elements, (8) need not be satisfied.

THEOREM 3.4. There exists a lattice-ordering of a group H such that
each element has at most a finite number of values if and only if there exists
a set {H,|6 € A} of proper subgroups of H that satisfy properties (1) through
(6) and (8). If this is the case, then each A-order of H 1is a lattice-order.

ProoF. Suppose there exists a lattice-order for H such that each
element has at most a finite number of values. Then each element in I';(H)
is special ([4] Theorem 3.9) and hence H, < H? for all y e I'}(H). Thus
{H,|y e I'i(H )} satisfies (1) through (6), and (8) follows from Theorem 2.1
or from Theorem 3.7 in [4]. The converse is an immediate consequence of
Theorem 3.3.

THEOREM 3.5. If there exists a A-order of G that is a lattice-order and for

which the Gy are prime convex I-subgroups, then the following are equivalent.
(@) G is representable (as a subdirect sum of a cardinal sum of 0-groups).
(b) For each e d and ge G, —g+G,+gC Gy or 2 Gy.

Proor. Byrd [1] has shown that if M is a prime convex /-subgroup of
a representable /-group H, then —A+4M+A is comparable with M for all
h e H, and hence it follows that (a) implies (b). Conversely suppose that
(b) is satisfied. Let Ny = n {—g+G;+g|g € G}. Then N; < G and since
N, is the intersection of a chain of prime convex /-subgroups, N, is a prime
convex /-subgroup ([4] Theorem 3.2). Thus G/N, is an o-group. The natural
homomorphism of G into the large cardinal sum of the G/N, is a representa-
tion of G.

THEOREM 3.6. If for each ded and ge G, —g+Gs+£C Gy or 2 Gy,
then the following are equivalent.
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(@) Each A-order of G is a lattice-order for which the Gy are prime convex
l-subgroups.

(b) If ge G"\G, for all yeIIC A, then there exists he n G, (yeA\IT')
such that h—ge o G, (y e Il').

(c) If Qy and Q4 are dual ideals of A such that Q; U Q, = 4, then

N Gy = ﬂ G, & ﬂ Gs.
Q1" Q,

ProOF. (a) — (b). If « and g are values of g, then G, || G4 and hence
G, and G, are not conjugate. Thus we can choose a A-order for G so that
G,+g > G, for all yelI C 4, and G,+g < G, for all other values y of g.
Then by Theorem 3.1, & = g v O satisfies (b).

(b) > (c). Since @; n @, C Q, and @,

N GaDﬂGa and nGa
Q;"Q.
and since

A {Gilded = Q0 Q) =0
(NGs) n(NGy) =0
Q, Qs

In order to show that n G, (6€Q,) is normal in NG, (6 € Q; N Q,) it suf-
fices to show that if gen G, (6 € Q; N @,), then the inner automorphism
of G determined by g induces a mapping of Q, into itself. If there exists
3 € Q, such that —g+G,;+g = G,, where ¢ Q,, then feQ, and é > .
Thus 6 € @; n Q, and hence g € G,, but then —g+G;+g = G,, a contra-
diction. Thus in general

we have

N G2 ﬂ Gy & ﬂ Gs.
@,nQ,
Consider gen G, (6 € Q; N Q,) and let IT,(I1,) be the set of all values of g
in Q,(Q,), and let II; and II, be the corresponding ideals in 4. Since
Q1 v @, = A,1I1, Ui, is the set of all values of g.

I Co.C A\Hé and 1T, C Q, C A\IT;

For if a €ll;, then « < Bell, C Q,, and if «¢(Q,, then « €@, and hence
B €0, n Q;. But then g € G, which contradicts the fact that § is a value
of g. If yeQ,nII;, then y < dell, C Q, and hence é € Q; N Q,, which is
impossible.
By (b) there exist elements % and % in G such that
€N G,,gﬂ(},, and h—geﬂG,,
ar,

ke N G, CﬂG and k~geﬂG

am,
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To complete the proof it suffices to show that g = k+A. If y elI;, then
k, h—geG, and if y ell;, then h, k—g € G,,. If y ¢II; UII,, then h, keG,,
and if g ¢ G, then there exists a value § of g such that y =< fell, I, and
so y ell; UIT;, a contradiction. Thus using the fact that A4k = k+4 we
have that A+k—gen G, = 0 (y € 4) and hence g = k+4.

(c) - (a). We assume that G has a 4d-order and pick 0 5= g e G. Let
IT be the set of all positive values of g. By Theorem 3.1 it suffices to show
that there exists A e n G, (y € A\IT') such that h—ge n G, (y ell'). Let

Q. ={8ed|8=y for some y elI'} QIT’ and Q, = A\IT'.

Then @, and Q, are dual ideal ideals of 4 and Q, U Q, = 4.

Suppose (by way of contradiction) that g ¢ G, for some y € Q; N Q,.
Then there exists a value 8 of g such that = y. Since y € Q,, y ¢II' and
hence g is a negative value of g. Since y € @y, 8= y = 8 €II’ and hence 8
is a positive value of g, which is impossible. Therefore

g=kt+he N G,=NG,ONG,,
QNnQs < Qs
where ke n G, (yeQ,) and hen G, (yeQyu=4\IT"). If yell’, then keG,
and hence A—g e n G, (y eII’). This completes the proof of Theorem 3.6.

We can use Theorems 3.5 and 3.6 to characterize a class of groups that
admit a representable lattice-order, but instead we shall only apply
Theorem 3.6 to representable /-groups. Let H be a representable /-group
and let 4 be a normal plenary subset of I'y(H). Then {H,|y € 4} satisfies
properties (1) through (7) and —A+H,+h is comparable with H, for all
y € 4 and h € H. Also since the given lattice-order is a 4-order, we have the
equivalence of (a), (b) and (c) in Theorem 3.8.

THEOREM 3.7. If H is a representable l-group and A is a normal plenary
subset of I'y(H), then each of (a), (b) and (c) is equivalent to

(d) each & € A is special and if \a, exists, where {a,|a € A} is a disjoint
set of positive elements of H, then \/ a, exists for each set {az|p € B} C {a,|aec 4}.

ProOF. (b) — (d). Consider 0 < s € H*\H,, where 6 € 4. By (b) there
exists ke n H, (y £ d) such that k—hen H, (y < 8). In particular ¢ is
the only value of %, and hence each 8 € 4 is special. By Theorem 2.1,
h =V h,, where {h;|A € A} is a set of disjoint special elements. Moreover,
the values of 4 in 4 are precisely the values of the 4,. Let @ be a subset of
A and let IT be the set of all the values of the 4, for A € @. Then by (b) there
exists ke n H, (y e A\II') such that k—hen H, (yell'). Now by Theorem
2.1, k has a unique representation as the join of disjoint special elements.
Thus it follows that 2= V&, (A€®), and hence it is clear that (d) is satis-
fied.
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(d) — (a). By Theorem 2.1, each positive element in H has a unique
representation as the join of a set of disjoint special elements. Consider
heH.

h=hvO0—(—hvO0)=Va,—V\Vb
4 B

where {a, | x € A} and {b; | § € B} are sets of disjoint special elements and
hvo=Va, and —AvO0=Vb,. (If Av0=0, then welet 4 =[] and
V 44, = 0.) Without loss of generality we may assume that « is the value
of a, in 4 for each « € 4 and that f is the value of b, in 4 for each § € B.
In particular, 4 U B is the set of values of 4 in 4.

Let IT be the set of positive values of 4 in a new A-order of H. Then
Il = A* v B*, where A* C A and B*_ B. It follows by an easy computa-
tion that

k=Va,— Vb
yQ Bs

satisfies property (7). Thus the new A-order of H is a lattice-order and the
H, are prime convex l-subgroups. Therefore (a) is satisfied.

In the proof that (d) implies (a) we did not use the fact that H is a
representable l-group, hence we have the following corollary.

COROLLARY. If H s an l-group with a normal plenary subset A of I'y(H)
that satisfies (d), then each A-order of H is a lattice-order for which the H,
are prime convex l-subgroups.

4. Lattice-orderings of an abelian group

If G is an abelian group, then conditions (5) and (6) used in the
definition of a A-order of G are trivially satisfied and condition (4) simply
states that each group G?\G, is torsion free. The latter is equivalent to the
hypothesis that G is torsion free and each of the G; is a pure subgroup of
G. Thus for the remainder of this section we shall assume that G ¢s a forsion
free abelian group with a set {G, | 8 € A} of proper pure subgroups of G that
satisfies the conditions (1), (2) and (3) from section 3.

Using the fact that the set consisting only of the zero subgroup satis-
fies our hypothesis, Theorem 3.2 simply states that an abelian group admits
a lattice-order if and only if it is torsion free, and Theorem 3.5 states that
each lattice-ordered abelian group is representable. The other theorems all
establish significant relationships between a lattice-order for G and the
subgroup structure of G.

Let V =V (4, G*|G,) be the set of all A-vectors v = (---,vs, "),
where v, € G/G,, for which the support S, = {6 € 4 | v; % G,} contains
no infinite ascending chains. Choose a 4-order for G and define 0 ZveV
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to be positive if v, > G, for every maximal element y of S, (such a v, will
be called a maximal component of v). Then V is an l-group ([2] Theorem
2.2).

THEOREM 4.1. If G is divisible, then there exists an o-isomorphism u
of Ginto V (4, G*|G,) such that 8 is a value of g if and only if (gu), is @ maximal
component of gu and if this is the case (gu); = Gy+g.

ProoF. G is a I-group, with I"= A (see [3] p. 3) and hence by the
embedding theorem in [3], there exists an isomorphism yx of G into V with
the above property. It follows from the definition of the A-order for G and
the lattice order for V that for O # g e G the following are equivalent.

(a) gis positive in G.

(b) Gy-+g > G, for each 6 e 4,.

(c) All maximal components of gu are positive.

(d) gu is positive in V.

Therefore u is an o-isomorphism of G into V, and we shall call such an o-
isomorphism a A-isomorphism.

If we remove from (2) the assumption that {G, |« €4 and G, D G,}
is a chain, then V' (4, G%/G,) is a po-group and Theorem 4.1 together with its
proof remains valid.

As is usual when dealing with abelian po-groups we can dispense with
the devisibility assumption. For let G be the d-closure of G (that is, the
minimal divisible abelian group that contains G) and let @ (G,) be the
d-closure of G® (G,;) in @. Then G* = {§ e G | ng € G+ for some n > 0} is
the minimal semiclosed po of @ that contains the given A-order of G. The
mapping t of G,-+g upon G;+g is an isomorphism of G?/G, into G¢/G,
and @?|@, is the d-closure of (G?/G,)r. Thus there is a unique extension of
the total order of (G%/G,)7 to a total order of G?/@, and it is easy to verify
that

G+={geQ@ |G, +§> G, for all y e 4;).

COROLLARY 1. There exists a A-isomorphism of G into V (4, G*|Gy).

CorOLLARY II. If G satisfies (7), then each A-isomorphism of G into
V (4, G*|Gy) is necessarily and l-isomorphism.

PrOOF. Let u be a A-isomorphism of G into V and consider g e G.
It suffices to show that (gv O)u = gu v O. Let IT be the set of positive values
of gin 4 and let & =gv 0. If y e A\IT", then (by (7)) ke G, and hence
(hu), = 677. For if (hu), # G’.,,, then there exists a maximum component
(hp) s of hu such that = y and hence % € G#\G,, a contradiction. If y eIl
then h—g e G, and so (hu),—(gu), = ((k—g)u), = @,. Thus we have

https://doi.org/10.1017/51446788700005528 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700005528

[18] A characterization of lattice-ordered groups by their convex L-subgroups 159

(gu)y it y = 6,
(), = where (gu), is a maximal positive component of gu

G, otherwise,

but this means that {(gv O)u = hu = gu v O.
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