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ON THE DISTRIBUTION OF ANGLES OF THE SALIE SUMS

IGOR E. SHPARLINSKI

For a prime p and integers o and 6, we consider Salie sums

p-i

Sp(a, b) - ^2 X2(x) exp(2ni{ax + bx)/p),

where X2(x) is a quadratic character and x is the modular inversion of x, that is, xx
= 1 (modp). One can naturally associate with Sp(a,b) a certain angle t?p(a,6)
e [0, IT]. We show that, for any fixed e > 0, these angles are uniformly distributed in
[0, TT] when a and 6 run over arbitrary sets A, B C {0,1,. . . ,p - 1} such that there are
at least p1 + e quadratic residues modulo p among the products ab, where (a, 6) 6 A x B.

1. INTRODUCTION

For a prime p ^ 3 and integers a and b, we consider Salie sums

P-I
sp(a>b) = 5Z X2(x)ep(ax + bx),

where X2(z) is a quadratic character, x is the modular inversion of x, that is, xx = 1
(mod p), and

ep(z) = exp(2niz/p).

One can naturally associate with Sp(a, b) a certain angle t?p(o, b). It is known, see [7, 15]
that for integers a and b with gcd(a&, p) = 1 we have

P-I

u=l
u2s4ab (mod p)

where
P-I

x=0
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is the Gauss sum. Thus Sp{a, b) vanishes if X2(ab) = - 1 and

Sp{a, b) = Gp{a) cos^ F\J_L j = Qp(b) cos^ pv ')

if X2{ab) = 1, where up(a, b) is the smallest solution to the following congruence:

(1) u2 = 4ab (modp), l ^ u ^ p - 1 .

Thus it is natural to say that

is the angle of the Salie sum Sp(a, b).

Duke, Friedlander and Iwaniec [4] and Toth [17] using very deep arguments, show
that if a and 6 are fixed integers, then the sequence of the angles •Op(a,b) is uniformly
distributed in the interval [0, n] when p runs through the primes such that ab is a quadratic
residue modulo p.

Here we show that a similar result also holds for the case when a sufficiently large
prime p is fixed and a and b run through arbitrary sets of integers A and B which both
have some sufficiently many quadratic residues or non-residues. For example, A and B,
could consist of consecutive integers each (for arbitrary e > 0).

It is useful to recall, that Kloosterman sums
p-i

Kp(a, b) = ^2 ep(ax + &*)-
i=i

which are very close relatives of Salie sums, exhibit a very different behaviour described
by the Sato-Tate conjecture. See [1, 3 , 5, 6, 8, 9, 10, 12, 13, 14, 16] for various
modifications and generalisations of this conjecture and further references.

Throughout the paper, the implied constants in the symbols 'O', and ' ^ ' are ab-
solute. We recall that the notations U = O(V) and U <S V are both equivalent to the
assertion that the inequality \U\ ^ cV holds for some constant c > 0.

2. DISTRIBUTION O F SQUARE R O O T S OF PRODUCTS

It is clear that the question of studying i?p(a,6) with ae A and b G B is equivalent
to the question of studying the distribution of solutions to the congruence (1).

Given two sets A, B C { 0 , 1 , . . . ,p — 1} we study the uniformity of distribution of
the sequence of fractions u/p, where u runs through all solutions to the congruence (1),
taken over all pairs (a, b) G A x B. That is, for a real 7 G [0,1] we consider the counting
function

a€A b£B u=l
u2=4ab (mod p)
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and put for brevity

Np{A,B) = NPtl{A,B).

One sees that NP(A, B) is twice the number of pairs (a,b) £ Ax B with X2{ab) = 1.

We now define the discrepancy of the sequence of solutions to the congruence (1) for

(a, b) € A x B:

AAB)Dp (A, B) = max - 7NP(A,B)

THEOREM 1 . For any two sets A, B C { 0 , 1 , . . . ,p - 1}, we have

PROOF: We fix some 7 e [0,1) and note that for h = |/ypj, we can write NPn(A, B)

as

h 1 h

(2) NPiy{A,B)--
a€A b€B u=l i/=0 a€Av b€Bv u=l

v?=4ab (mod p) u2=4o6 (mod p)

where Ao,Ai and BQ,BI are subsets of quadratic residues and non-residues among the

elements of A and B, respectively.

Let X be the set of all p — 1 multiplicative characters modulo p. We recall the

identity

if c = 1 (modp),

0 otherwise,

which holds for any integer c. Using (3), we write

h h

EE E
u=l a e ^ 6eB«, u=l

u2s4a* (mod p)

~ "c v n*zAv bEBv u=l

for 1/ = 0,1. Clearly for for x — Xo (the principal character) and also for x — X2 we have
x{4abu2) = 1 over the whole area of summation over a, b and u. Hence,

EE t >
aeAv bsMv u=l

u2=4o6 (mod p)
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If X 7̂  Xoi X2 then ip{u) = x("2) is a nonprincipal multiplicative character and by the
Polya-Vinogradov bound, see [7, Theorems 12.5], we obtain

u=l

Therefore,

h ,

(4) E E E l = 2#Av#Bv—— + O(Wvp-l/2logp),
v?=iab (mod p)

where

(5) Wv --

(Note that we have again extended the summation over all \ S X.)
Furthermore, using the Cauchy inequality, we obtain

xex aeA. xe* teB*

We recall that if gcd(c, q) = 1, then for the conjugated character x we have x(c) = x(c)-
Therefore, by (3)

= E E ^a^) = E E
and similarly

We now infer from (5) that

which after substitution into (4) leads to the bound

(6) EE E :
u2=4ab (mod p)

for J/ = 0,1. Furthermore, as we have mentioned,

NP(A, B) =
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Hence, after substituting (6) in (2) we obtain

NPJA, B) = NJA, B) 1-i
p- 1

Since

NP(A, B)-^- 7iVP(A B) « NP{A, B)(™ + °M - 7 )
P

NP{AB)p~l

the desired result follows.

3. ANGLES OF SALIE SUMS

Let for 0 ^ a ^ 7r and two sets A,B C { 0 , 1 , . . . ,p - 1}, we denote by Tp,a(A,

the number of (a, 6) G A x B with X2(a&) = 1 for which

and put for brevity

We now define the discrepancy of the sequence of solutions to the congruence (1) for
(a, b) e A x B:

AP{A,B)= max
TP(A,B)

THEOREM 2 . For any two sets A, B C { 0 , 1 , . . . , p - 1}, we have

P R O O F : Clearly

for 0 ^ a < 7T and also

P,W(A B) = Np,l/2(A, B) = l-Np{A, B).

Using Theorem 1 we immediately obtain the desired result. D
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4. COMMENTS

Clearly the asymptotic formulas of Theorems 1 and 2 are nontrivial under the con-

dition

for any e > 0 and sufficiently large p.

For example, if for some fixed e > 0, the sets A and B consist of at least pxli+e

consecutive integers each, then by the Burgess bound, see [7, Theorems 12.6],

Furthermore, it follows from [2] that if for some fixed e > 0, the sets A and B consist of
at least p1/iel/2+e consecutive integers each, then, for sufficiently large p,

where c(e) > 0 depends only on e. Thus, if in addition we also have # .A#B ^ p1 + e then
the condition (7) is satisfied.

On the other hand, an example of the sets

A = B = {a2 | 1 ̂  a ^ 0.5p1/2}

for which all solutions to (1) are outside of the interval [p/4,3p/4], shows the limitations
of what can be proven.
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