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ON THE DISTRIBUTION OF ANGLES OF THE SALIE SUMS

IGOR E. SHPARLINSKI

For a prime p and integers a and b, we consider Salié sums

-1
Sp(a,b) = Z x2(z) exp(2mi(az + b%)/p),

=1

where x2(z) is a quadratic character and T is the modular inversion of z, that is, %

= 1 (mod p). One can naturally associate with Sy(a,b) a certain angle ¥,(a,b)
€ [0, 7]. We show that, for any fixed £ > 0, these angles are uniformly distributed in
(0, 7] when a and b run over arbitrary sets A, B C {0,1,...,p— 1} such that there are
at least p!*¢ quadratic residues modulo p among the products ab, where (a,b) € AxB.

1. INTRODUCTION
For a prime p > 3 and integers a and b, we consider Salié sums

p—1

Sp(a,8) = Y xa(z)ey(az + %),

z=1

where x2(z) is a quadratic character, T is the modular inversion of z, that is, 27 = 1
(mod p), and

ep(2) = exp(2miz/p).
One can naturally associate with Spy(a, b) a certain angle J,(a, b). It is known, see (7, 15|
that for integers a and b with ged(ab, p) = 1 we have

Sp(a,b) = Gy(a) i ep(u)

u=1
u?=4ab (mod p)

where

Gl) = 3" eplaz?)

z=0
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is the Gauss sum. Thus Sy(a, b) vanishes if y3(ab) = —1 and
_ 2mup(a,b)y 2muy(a, b)
Sp(a, b) = Gy(a) cos( > ) = Gp(b) cos(—-T—)

if x2(ab) = 1, where u,(a, b) is the smallest solution to the following congruence:

(1) u? = 4ab (mod p), 1€ugp-1
Thus it is natural to say that
2
Oy(a,t) = T2 0)

is the angle of the Salié sum Sp(a,b).

Duke, Friedlander and Iwaniec {4] and Téth [17] using very deep arguments, show
that if a and b are fixed integers, then the sequence of the angles 9,(a, b) is uniformly
distributed in the interval [0, 7] when p runs through the primes such that ab is a quadratic
residue modulo p.

Here we show that a similar result also holds for the case when a sufficiently large
prime p is fixed and a and b run through arbitrary sets of integers A and B which both
have some sufficiently many quadratic residues or non-residues. For example, A and B,
could consist of consecutive integers each (for arbitrary ¢ > 0).

It is useful to recall, that Kloosterman sums

p-1

Ky(a,b) =) ey(az +bZ),

z=1
which are very close relatives of Salié sums, exhibit a very different behaviour described
by the Sato-Tate conjecture. See [1, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16] for various
modifications and generalisations of this conjecture and further references.
Throughout the paper, the implied constants in the symbols ‘O’, and ‘<’ are ab-
solute. We recall that the notations U = O(V) and U « V are both equivalent to the
assertion that the inequality |U] € ¢V holds for some constant ¢ > 0.

2. DISTRIBUTION OF SQUARE ROOTS OF PRODUCTS

It is clear that the question of studying ¥,(a,b) with a € A and b € B is equivalent
to the question of studying the distribution of solutions to the congruence (1).

Given two sets A,B C {0,1,...,p — 1} we study the uniformity of distribution of
the sequence of fractions u/p, where u runs through all solutions to the congruence (1),
taken over all pairs (a,b) € A x B. That is, for a real 4 € [0, 1] we consider the counting

function
p-1

N dB) =YY T

a€A bdeB u=1
u?=4ab (mod p)
u/p<y
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and put for brevity
Ny(A,B) = N,,1(A, B).
One sees that N,(A, B) is twice the number of pairs (a,b) € A x B with x2(ab) = 1.
We now define the discrepancy of the sequence of solutions to the congruence (1) for
(a,b) € A X B:

(.A B) = p,’y(-A7 B) _ l

P(A7 B)
THEOREM 1. For any two sets A,BC {0,1,...,p— 1}, we have

p
Dy(A, B) <« ‘/N,,(.A, ) log p.

PROOF: We fix some v € [0, 1) and note that for h = |yp], we can write N, ,(A, B)

0<‘7<1

as
h 1 h
@ MuB=YY Y 1=YYY ¥ 1
. a€A beB 2 u=1 v=0 a€A, beB, 2 u=1
u’=4ab (mod p) u?=4ab (mod p)

where Ay, A, and By, B; are subsets of quadratic residues and non-residues among the
elements of A and B, respectively.

Let X be the set of all p — 1 multiplicative characters modulo p. We recall the
identity

) ——ZX()—{l ife=1 (mod p),

xex otherwise,

which holds for any integer ¢. Using (3), we write

)P DIED DREEED 3) 3p Py pHITEy

a€A, beB, u=1 a€A, beB, u=1 xex

u?=4ab (mod p)
YTy S xtdab),

xEX a€A, beB, u=1

for v =0,1. Clearly for for x = xo (the principal character) and also for x = x2 we have
x(4ab?) = 1 over the whole area of summation over a, b and u. Hence,

$Y S o

a€A, bEB, u=1
u’=4ab (mod p)

h

=2AB o T X T x@ T xO) L x@)

XE€X acA, beB, u=1
x#xmz
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If x # Xxo, X2 then ¥(u) = x(u?) is a nonprincipal multiplicative character and by the
Polya-Vinogradov bound, see [7, Theorems 12.5], we obtain

h
> x(@) < p*'*logp.

u=1

Therefore,

h h
(4) D0 XY 1=2#A#B—— +O0(W.p~logp),

a€ A, beB, u=1 p
u?=4ab (mod p)
where
(5) W, =35 x| x(b)|-
XEX'aEA, beB,

(Note that we have again extended the summation over all x € X.)
Furthermore, using the Cauchy inequality, we obtain
2

W2< 1D x@) Y130 x0)

XEX 'a€EA, XEX'bEB,

2

We recall that if ged(c,q) = 1, then for the conjugated character X we have X(c) = x(2).
Therefore, by (3)

> 1D xla)

XEX'acA,

=3 Y x@ma)= Y Y x(@m@m) = (p- D#A.,

X€AX a1,a2€A, ay,62€A, xX€X

and similarly

2
= (p— 1)#B..

2

X€EX

> x(®)

beBy

W, K py#A#B,

which after substitution into (4) leads to the bound

We now infer from (5) that

h
® S > 1= 2#&#&}% +0(VEAABplogs),

a€A, beB, u=1
u?z4ab (mod p)

for v = 0,1. Furthermore, as we have mentioned,

Ny (A, B) = 2(#Ac# By + #A:1#B,).

https://doi.org/10.1017/50004972700039150 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039150

5] Angles of the Salié sums 225

Hence, after substituting (6) in (2) we obtain

h
Npa(A, B) = Ny( A, B) = + O(/ Ny (4, B)plogp).

Since
h vp + O(1)
Np(A, B)ﬁ — YNp(A, B) < Np(A4, 3)(7_—1 - ’Y)
<< NP('A'» B)p_l << V NP(A1 B)pa
the desired result follows. 0

3. ANGLES OF SALIE SuMs

Let for 0 < a < 7 and two sets A,B C {0,1,...,p — 1}, we denote by Ty (A, B)
the number of (a,b) € A x B with x2(ab) = 1 for which

ﬂp(aﬂ b) S Q,
and put for brevity ,
T,(A, B) =T, (A, B).
We now define the discrepancy of the sequence of solutions to the congruence (1) for
(a,b) € A x B:
Ap(A,B) = max

0ga<ln

TP,G(A’ B) _ al
TP(Aa B) .
THEOREM 2. For any two sets A,B C {0,1,...,p— 1}, we have

p
Ap(A,B) K "T,,(.A, B) log p.

Tp,a(A, B) = Np,a/Zr(A) B)

PrROOF: Clearly

for 0 € a < 7 and also
1
Tp.n(A, B) = Npap2(A, B) = 5Np(A, B).

Using Theorem 1 we immediately obtain the desired result. 0
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4. COMMENTS

Clearly the asymptotic formulas of Theorems 1 and 2 are nontrivial under the con-
dition

(7) Ny(A, B) > p'**

for any £ > 0 and sufficiently large p.

For example, if for some fixed € > 0, the sets A and B consist of at least p'/4*¢
consecutive integers each, then by the Burgess bound, see {7, Theorems 12.6],

N,(A,B) = (-;- + o(l))#A#B.

Furthermore, it follows from {2] that if for some fixed € > 0, the sets A and B consist of
at least p'/ 4e!/?+e consecutive integers each, then, for sufficiently large p,

Np(A, B) 2 c(e)#A#B,

where c(¢) > 0 depends only on £. Thus, if in addition we also have #A#B > p**¢ then
the condition (7) is satisfied.
On the other hand, an example of the sets

A=B={a?|1<a<0.5p/?}

for which all solutions to (1) are outside of the interval [p/4, 3p/4], shows the limitations
of what can be proven.
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