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Abstract In this paper the spectral properties of the abstract Klein–Gordon equation are studied. The
main tool is an indefinite inner product known as the charge inner product. Under certain assumptions on
the potential V , two operators are associated with the Klein–Gordon equation and studied in Krein spaces
generated by the charge inner product. It is shown that the operators are self-adjoint and definitizable in
these Krein spaces. As a consequence, they possess spectral functions with singularities, their essential
spectra are real with a gap around 0 and their non-real spectra consist of finitely many eigenvalues
of finite algebraic multiplicity which are symmetric to the real axis. One of these operators generates
a strongly continuous group of unitary operators in the Krein space; the other one gives rise to two
bounded semi-groups. Finally, the results are applied to the Klein–Gordon equation in Rn.
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1. Introduction

The Klein–Gordon equation((
∂

∂t
− ieq

)2

− ∆ + m2
)

ψ = 0 (1.1)

describes the motion of a relativistic spinless particle of mass m and charge e in an
electrostatic field with potential q (the velocity of light being normalized to 1); here ψ is
a complex-valued function of x ∈ R

n and of t ∈ R.
If in (1.1) we replace the uniformly positive self-adjoint operator generated by the

differential expression −∆ + m2 in the Hilbert space L2(Rn) by a uniformly positive
∗ Sadly, Professor Branko Najman died in August 1996.
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self-adjoint operator H0 in a Hilbert space H and the operator of multiplication with
the function eq by a symmetric operator V in H, we obtain the abstract Klein–Gordon
equation ((

d
dt

− iV
)2

+ H0

)
u = 0, (1.2)

where u is a function of t ∈ R with values in H. Equation (1.2) can be transformed into a
first-order differential equation for a vector function x in an appropriate space, formally
given by H ⊕ H, and a linear operator A therein:

dx

dt
= iAx. (1.3)

However, this is in general not possible with a self-adjoint operator A in a Hilbert space.
In the literature two inner products have been associated with the Klein–Gordon equa-

tion (1.1), one of them representing the charge and the other one representing the energy
of the particle. The energy inner product is used in numerous papers to study the spec-
tral and scattering properties of (1.1), see, for example, [5,11,12,16,20,28,29,35–37,
41,42,49,50]. The charge inner product has been suggested by the physics literature
(see [13]); it was first used in the pioneering work of Veselić [45–47] and subsequently
in the papers [34,38,48], the unpublished manuscript∗ [26], as well as in [9,17–19]. It
is also called the number norm since it is related to the number operator in the theory
of second quantization (see [3]).

The reason for the preference of the energy inner product 〈· , ·〉 may be that it is positive
definite and generates a Hilbert space if the potential V is small with respect to H

1/2
0 ;

this can be seen from its formal definition

〈x,x′〉 =

((
H0 − V 2 0

0 I

)
x,x′

)
= ((H0 − V 2)x, x′) + (y, y′) (1.4)

for suitable elements x = (x y)T, x′ = (x′ y′)T of H ⊕ H, where (· , ·) denotes the scalar
product in H. The charge inner product [· , ·], however, is always indefinite: it is defined
on elements x = (x y)T, x′ = (x′ y′)T of H ⊕ H by a relation of the form

[x,x′] =

((
0 I

I 0

)
x,x′

)
= (x, y′) + (y, x′). (1.5)

Therefore, it is negative on an infinite-dimensional subspace (if H is infinite dimensional)
and hence leads to a so-called Krein space. At first glance, these indefinite structures seem
to be less convenient from the mathematical point of view. However, they allow deeper
insight into the spectral properties of the Klein–Gordon equation, e.g. by providing a
classification of the points of the spectrum into points of positive, negative or neutral
type and sufficient conditions for the existence of corresponding strongly continuous
groups of operators which are unitary with respect to the indefinite inner product (1.5).

∗ This manuscript, dating back to the late 1980s, was the starting point for the present paper and
also for the papers [18,27].
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In this paper we associate two operators, A1 and A2, with the abstract Klein–Gordon
equation (1.2). Formally, both operators arise from the second-order differential equa-
tion (1.2) by means of the substitution

x = u, y =
(

− i
d
dt

− V

)
u, (1.6)

which leads to a first-order differential equation (1.3) of the form

dx

dt
= i

(
V I

H0 V

)
x (1.7)

for the vector function x = (x y)T. However, we consider the block operator matrix
in (1.7) in two different Krein spaces induced by the charge inner product (1.5), and
we prove the self-adjointness of the corresponding operators A1 and A2 in these Krein
spaces.

The main results of this paper concern the structure and classification of the spectrum
for A1 and A2, the existence of a spectral function with singularities, the generation of a
strongly continuous group of unitary operators, the existence of solutions of the Cauchy
problem for the abstract Klein–Gordon equation (1.2) and an application of these results
to the Klein–Gordon equation (1.1) in R

n. The main tools for this are techniques from
the theory of block operator matrices and results from the theory of self-adjoint operators
in Krein spaces.

The paper is organized as follows: in § 2 we present some basic notation and definitions
from spectral theory and we give a brief review of results from the theory of self-adjoint
and definitizable operators in Krein spaces. In § 3 we introduce the first operator, A1,
associated with (1.7), which acts in the Hilbert space G1 = H ⊕ H. Equipped with the
charge inner product (1.5), the space G1 becomes a Krein space, which we denote by K1.
The block operator matrix in (1.7) is formally symmetric with respect to the charge inner
product [· , ·] since, for x ∈ (D(V ) ∩ D(H0)) ⊕ D(V ), x′ ∈ H ⊕ H,[(

V I

H0 V

)
x,x′

]
=

((
H0 V

V I

)
x,x′

)
. (1.8)

We show that if V is relatively bounded with respect to H
1/2
0 , then the block operator

matrix in (1.7) is essentially self-adjoint in K1, and we denote its self-adjoint closure
by A1. Using a certain factorization of A1 − λ, λ ∈ C, we relate the spectral properties
of A1 to those of the quadratic operator polynomial L1 in H given by

L1(λ) = I − (S − λH
−1/2
0 )(S∗ − λH

−1/2
0 ), λ ∈ C,

where S is the bounded operator S = V H
−1/2
0 .

In § 4 we define the second operator, A2, associated with (1.7) in the more complicated
Hilbert space G2 = H1/4 ⊕ H−1/4; here Hα, −1 � α � 1, is a scale of Hilbert spaces
induced by the fractional powers Hα

0 of the uniformly positive operator H0. We equip G2
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with the charge inner product (1.5), where now the brackets on the right-hand side
of (1.5) denote the duality

(x, y) = (Hα
0 x, H−α

0 y), x ∈ Hα, y ∈ H−α,

between the spaces Hα and H−α for α = 1
4 and α = − 1

4 ; the corresponding space K2 is a
Krein space. An analogue of formula (1.8) in H1/4 ⊕H−1/4 shows that the block operator
matrix in (1.7), now considered as an operator in G2, is formally symmetric with respect
to the charge inner product [· , ·]. If the resolvent set ρ(L1) is non-empty, we associate a
self-adjoint operator A2 in the Krein space K2 with the block operator matrix in (1.7).

The operator A2 was first considered by Veselić [45] (see also [34,46,47]). He showed
that, under his assumptions, A2 is similar to a self-adjoint operator in a Hilbert space. The
operators A1 and A2 were also introduced by Jonas [18] using so-called range restriction
(see [17]). In [18] and in [45] it was supposed that V H

−1/2
0 is compact. The operator A2

was also studied in [9,34] for the cases when either V H
−1/2
0 is compact or ‖V H

−1/2
0 ‖ < 1.

The main results of the present paper are proved under the more general condition

S := V H
−1/2
0 = S0 + S1, ‖S0‖ < 1, S1 compact. (1.9)

Under this assumption, in § 5, we study and compare the spectral properties of the
operators A1 and A2. We show that A1 and A2 are definitizable (for the definition of
definitizability see § 2), that their spectra, essential spectra and point spectra coincide
and are symmetric to the real axis, that their essential spectra are real and have a
gap around 0, and that the non-real spectrum consists of a finite number of complex
conjugate pairs of eigenvalues of finite algebraic multiplicity; this number is bounded by
the number κ of negative eigenvalues of the operator I − S∗S in H. As a consequence
of the definitizability, the operators A1 and A2 possess spectral functions with at most
finitely many singularities.

At the end of § 5 we compare the results for A1 with results for another operator
associated with the Klein–Gordon equation in [27]. This operator, A, arises from the
second-order differential equation (1.2) by means of the substitution

x = u, y = −i
du

dt
, (1.10)

which leads to a first-order differential equation of the form

dx

dt
= i

(
0 I

H0 − V 2 2V

)
x. (1.11)

The operator A, formally given by the block operator matrix in (1.11), acts in the space
G = H1/2⊕H; it is defined if V is H

1/2
0 -bounded and 1 ∈ ρ(S∗S). These two assumptions

guarantee that a self-adjoint operator H = H
1/2
0 (I − S∗S)H1/2

0 can be associated with
the entry H0 − V 2 in (1.11). Under the additional assumption 1.9, the space K is a
Pontryagin space and A is a self-adjoint (and hence definitizable) operator in K. We
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prove that the spectra, essential spectra and point spectra of A and of A1 (and hence
also of A2) coincide.

In § 6 we show that A2 generates a strongly continuous group (eitA2)t∈R of unitary
operators in the Krein space K2. Hence, the Cauchy problem

dx

dt
= iA2x, x(0) = x0, (1.12)

has a unique classical solution given by

x(t) = eitA2x0, t ∈ R, (1.13)

if x0 ∈ D(A2); if only x0 ∈ K2, then (1.13) is a mild solution of (1.12). To this end, we
prove that ∞ is a regular critical point of A2, thus generalizing a result in [9] for the
special cases S0 = 0 and S1 = 0. The regularity of ∞ in fact implies that A2 is the sum
of a bounded operator and of an operator which is similar to a self-adjoint operator in a
Hilbert space (see § 2). For the operator A1, however, ∞ is in general a singular critical
point if H0 is unbounded; thus, A1 does not generate a group of unitary operators in K1.
In fact, the construction in [17] of the operator A2 from A1 is designed to make ∞ a
regular critical point.

In § 7, for bounded V , we show the existence of maximal non-negative and non-positive
invariant subspaces L+ and L−, respectively, for the definitizable self-adjoint operator A1.
These subspaces admit so-called angular operator representations, e.g.

L+ =

{(
x

Kx

)
: x ∈ D(K)

}

with a closed linear operator K in H. This yields solutions on the negative and positive
half-axes of the second-order initial-value problem((

d
dτ

+ V

)2

− H0

)
v = 0, v(0) = v0, (1.14)

which arises from (1.2) by means of the substitution τ = −it, v(τ) = u(t). The solutions
on the positive half-axis are given by

v(τ) = e−τ(K+V )v0, τ � 0,

and the admissible set of initial values v0 is the domain D((K + V )2), which in the
case when V = 0 amounts to v0 ∈ D(H0). The solution on the positive half-axis cor-
responds, roughly speaking, to the spectrum of positive type and the spectrum in the
upper (or lower) half-plane, whereas the solution on the negative half-axis corresponds
to the spectrum of negative type and the spectrum in the upper (or lower) half-plane
of A1.

Finally, in § 8, we apply the results of the previous sections to the Klein–Gordon
equation (1.1) in R

n. We prove that in the space W
−1/2
2 (Rn) it has a unique classical

solution if the initial values ψ0 = ψ(· , 0) and ψ1 = ∂ψ(· , 0)/∂t belong to W 1
2 (Rn) and

W
1/2
2 (Rn), respectively, and (−∆ − V 2)ψ0 ∈ W

−1/2
2 (Rn).
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2. Preliminaries

2.1. Notation and definitions from spectral theory

For Hilbert spaces H and H′, L(H,H′) denotes the space of bounded linear operators
from H to H′, and we write L(H) if H = H′.

For a closed linear operator A in a Hilbert space H with domain D(A), we denote by
ρ(A), σ(A) and σp(A) its resolvent set, spectrum and point spectrum or set of eigenvalues,
respectively. For λ ∈ σp(A) the algebraic eigenspace of A at λ is denoted by Lλ(A). The
operator A is called Fredholm if its kernel is finite dimensional and its range is finite
codimensional (and hence closed; see, for example, [15, Chapter IV, § 5.1]). The essential
spectrum of A is defined by

σess(A) := {λ ∈ C : A − λ is not Fredholm}.

An eigenvalue λ0 ∈ σp(A) is called of finite type if λ0 is isolated (i.e. a punctured
neighbourhood of λ0 belongs to ρ(A)) and A − λ0 is Fredholm or, equivalently, the
corresponding Riesz projection is finite dimensional. The set of all eigenvalues of finite
type is called the discrete spectrum of A and denoted by σd(A).

For an analytic operator function F : C → L(H), the resolvent set and the spectrum
of F are defined by

ρ(F ) := {λ ∈ C : 0 ∈ ρ(F (λ))}, σ(F ) := C \ ρ(F ),

and the point spectrum or set of eigenvalues of F is the set

σp(F ) := {λ ∈ C : 0 ∈ σp(F (λ))}

(see [14,30]). The essential spectrum of F is given by

σess(F ) := {λ ∈ C : F (λ) is not Fredholm}.

An eigenvalue λ0 ∈ σp(F ) is called of finite type if λ0 is isolated (i.e. a punctured
neighbourhood of λ0 belongs to ρ(F )) and F (λ0) is Fredholm. If ρ0 ⊂ C is an open
connected subset of C \ σess(F ) such that ρ0 ∩ ρ(F ) 
= ∅, then ρ0 ∩ σ(F ) is at most
countable with no accumulation point in ρ0 and consists of eigenvalues of finite type
of F , and F (·)−1 is a finitely meromorphic operator function on ρ0. This means that
F (·)−1 is a meromorphic operator function from ρ0 to L(H) for which the coefficients of
the principal parts of the Laurent expansions at the poles of F (·)−1 are all operators of
finite rank (cf. [15, Corollary XI.8.4, Theorem XVII.2.1]). Conversely, if for some open
set ρ0 ⊂ C the operator function F (·)−1 is finitely meromorphic, then ρ0 ∩ σess(F ) = ∅.
The operator function F is called self-adjoint if

F (λ) = F (λ)∗, λ ∈ C;

in particular, for λ ∈ R the values F (λ) are self-adjoint operators. The spectrum of a
self-adjoint operator function is symmetric with respect to the real axis.
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2.2. Self-adjoint operators in Krein spaces

For the definition and simple properties of Krein spaces and the linear operators therein
we refer the reader to [4,7,25]. In the following we recall some of the basic notions. A
Krein space (K, [· , ·]) is a linear space K which is equipped with an (indefinite) inner
product [· , ·] such that K can be written as

K = G+[�]G−, (2.1)

where (G±,±[· , ·]) are Hilbert spaces and [�] means that the sum of G+ and G− is direct
and [G+,G−] = {0}. The norm topology on a Krein space K is the norm topology of
the orthogonal sum of the Hilbert spaces G± in (2.1). It can be shown that this norm
topology is independent of the particular decomposition (2.1); all the topological notions
in K refer to this norm topology.

Krein spaces often arise as follows: in a given Hilbert space (G, (· , ·)) any bounded
self-adjoint operator G in G with 0 ∈ ρ(G) induces an inner product

[x, y] := (Gx, y), x, y ∈ G,

such that (G, [· , ·]) becomes a Krein space. In the particular case where G has the addi-
tional property G2 = I, that is, G is the difference of two complementary orthogonal
projections P and Q, G = P − Q with P + Q = I, one often writes G = J and in the
decomposition (2.1) one can choose G+ = PG, G− = QG.

For a closed linear operator A in a Krein space K with dense domain D(A), the (Krein
space) adjoint A+ of A is the densely defined operator in K with

D(A+) = {y ∈ K : [A· , y] is a continuous linear functional on D(A)}

and
[Ax, y] = [x, A+y], x ∈ D(A), y ∈ D(A+).

The operator A is called symmetric in K if A ⊂ A+, and self-adjoint if A = A+. A self-
adjoint operator A in a Krein space K may have a non-real spectrum, which is always
symmetric with respect to the real axis, and both the spectrum σ(A) and the resolvent
set ρ(A) may be empty.

An element x ∈ K is called positive (respectively, non-positive, neutral, etc.) if [x, x] > 0
(respectively, [x, x] � 0, [x, x] = 0, etc.), a subspace of K is called positive (respectively,
non-positive, neutral, etc.) if all its non-zero elements are positive (respectively, non-
positive, neutral, etc.). If for a self-adjoint operator A in a Krein space K with λ0 ∈
σp(A) all the eigenvectors at λ0 are positive (respectively, negative), then λ0 is called
an eigenvalue of positive type (respectively, negative type). An eigenvector x0 of A at λ0

that is positive or negative does not have any associated vectors.

2.3. Definitizable operators in Krein spaces

A self-adjoint operator A in a Krein space K is called definitizable if ρ(A) 
= ∅ and
there exists a polynomial p such that

[p(A)x, x] � 0, x ∈ D(p(A)).
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The spectrum of a definitizable operator A is real with the possible exception of finitely
many pairs of eigenvalues λ, λ, which are necessarily zeros of each definitizing polynomial
p; at such an eigenvalue λ or λ the resolvent of A has a pole of order not greater than
the order of λ as a zero of the polynomial p. The closed linear span of all the algebraic
eigenspaces Lλ(A) corresponding to the eigenvalues λ of A in the open upper (or lower)
half-plane is a neutral subspace of K. The algebraic eigenspaces Lλ(A),Lλ(A) corre-
sponding to non-real λ, λ ∈ σp(A) are skewly linked, that is, to each non-zero x ∈ Lλ(A)
there exists a y ∈ Lλ(A) such that [x, y] 
= 0 and to each non-zero y ∈ Lλ(A) there exists
an x ∈ Lλ(A) such that [x, y] 
= 0.

If λ ∈ σp(A), the maximal dimension (up to ∞) of a non-negative (non-positive,
respectively) subspace of Lλ(A) is denoted by κ+

λ (A) (κ−
λ (A), respectively), and the

dimension of the so-called isotropic subspace Lλ(A) ∩ Lλ(A)[⊥] of Lλ(A) is denoted
by κo

λ(A). Observe that if, for example, Lλ(A) is one-dimensional and neutral, then
κ+

λ (A) = κ−
λ (A) = κo

λ(A) = 1; for a non-real eigenvalue λ of A the number κo
λ(A) coin-

cides with the dimension of Lλ(A).
A definitizable operator A with definitizing polynomial p has a spectral function with

critical points. To introduce it, we call a bounded real interval Γ admissible for the
operator A if some definitizing polynomial p of A does not vanish at the end points of
Γ . Then, for each admissible bounded interval Γ , there exists an orthogonal projection
E(Γ ) in K such that the range E(Γ )K is invariant under A, the spectrum of the restric-
tion A|E(Γ )K is contained in Γ , and the real spectrum of the restriction A|(I−E(Γ ))K is
contained in R \ Γ .

A real spectral point λ ∈ σ(A) is called of positive type if there exists an admissible
open interval Γ such that λ ∈ Γ and (E(Γ )K, [· , ·]) is a Hilbert space; this is equivalent
to the fact that [x, x] � 0, x ∈ E(Γ )K (which implies that [x, x] > 0 if x 
= 0). The set of
all spectral points of positive type of A is denoted by σ+(A). Clearly, if (E(Γ )K, [· , ·]) is
a Hilbert space, the restriction A|E(Γ )K has the same spectral properties as a self-adjoint
operator in a Hilbert space. If a definitizing polynomial p is positive on an admissible
interval Γ , then Γ ∩ σ(A) consists only of spectral points of positive type. Similarly, a
real point λ ∈ σ(A) for which there exists an open admissible interval Γ such that λ ∈ Γ

and (E(Γ )K,−[· , ·]) is a Hilbert space is called a spectral point of negative type of A; the
set of all spectral points of negative type of A is denoted by σ−(A). Finally, λ0 ∈ R is
called a critical point of A if, for each admissible open interval Γ with λ0 ∈ Γ , the range
E(Γ )K contains both positive and negative elements. The set of all critical points of A

is denoted by σcrit(A); it is always finite. In fact, each critical point is a zero of every
definitizing polynomial p. From these definitions it follows that

σ(A) ∩ R = σ+(A) ∪ σ−(A) ∪ σcrit(A).

A real eigenvalue of A with a neutral eigenvector is always a critical point of A. An
eigenvalue λ of positive type is a critical point of A if in each neighbourhood of λ there
are spectral points of negative type of A. If, however, the eigenvalue λ of positive type is
an isolated spectral point, then it is a spectral point of positive type.

Similarly, ∞ is called a critical point of A if, outside of each compact real interval,
there are spectral points of positive and of negative type of A. If ∞ is a critical point
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of the self-adjoint operator A, it is called a regular critical point of A if there exists a
constant γ > 0 such that ‖E(Γ )‖ � γ for all sufficiently large intervals Γ centred at 0;
otherwise, ∞ is called a singular critical point ; here ‖ · ‖ denotes the operator norm
corresponding to the norm in K induced by any of the equivalent decompositions (2.1).
Note that the norm of a self-adjoint projection in a Krein space can be arbitrarily large.
If ∞ is a regular critical point of A, then outside of a sufficiently large compact interval
the operator A has the same spectral properties as a self-adjoint operator in a Hilbert
space; in particular, the bounded operators eitA, t ∈ R, can be defined and form a group
of unitary operators in K. Recall that a unitary operator U in a Krein space K is a
bounded operator such that

UU+ = U+U = I.

The operators occurring in this paper belong to a special class of definitizable opera-
tors: they are self-adjoint operators A in a Krein space K for which ρ(A) 
= 0 and the
sesquilinear form

[Ax, y], x, y ∈ D(A), (2.2)

has a finite number κ of negative squares; recall that the latter means that each subspace
L of K for which

[Ax, x] < 0, x ∈ L, x 
= 0, (2.3)

is of dimension less than or equal to κ and for at least one κ-dimensional sub-
space L the relation (2.3) holds. In this case the definitizing polynomial is of the form
p(λ) = λq(λ)q(λ) with some polynomial q of degree less than or equal to κ. Then all
the algebraic eigenspaces corresponding to non-real eigenvalues are finite dimensional,
the positive spectrum of A consists of spectral points of positive type with the possible
exception of a finite number of eigenvalues with a negative or neutral eigenvector, and
the negative spectrum of A consists of spectral points of negative type with the possible
exception of a finite number of eigenvalues with a positive or neutral eigenvector. If,
additionally, A is boundedly invertible, the following equality holds:

κ =
∑

λ∈σp(A)∩(0,+∞)

κ−
λ (A) +

∑
λ∈σp(A)∩(−∞,0)

κ+
λ (A) +

∑
λ∈σp(A)∩C+

κo
λ(A). (2.4)

The Krein space K is called a Pontryagin space with negative index κ if in one (and
hence in all) decompositions of the form (2.1) the space G− has finite dimension κ. Any
self-adjoint operator A in a Pontryagin space is definitizable and hence has a spectral
function with critical points. With the exception of finitely many points, the real spectral
points of A are of positive type; the exceptional points are eigenvalues with a negative
or neutral eigenvector and

κ =
∑

λ∈σp(A)∩R

κ−
λ (A) +

∑
λ∈σp(A)∩C+

κo
λ(A).
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3. Operators associated with the abstract Klein–Gordon equation:
A1 in H ⊕ H

Let (H, (· , ·)) be a Hilbert space with corresponding norm ‖·‖, let H0 be a uniformly pos-
itive self-adjoint operator in H, H0 � m2 > 0, and let V be a densely defined symmetric
operator in H.

By G1 we denote the orthogonal sum G1 := H ⊕ H with its inner product

(x,x′)G1 := (x, x′) + (y, y′), x = (x y)T, x′ = (x′ y′)T ∈ G1.

Equipped with the indefinite inner product

[x,x′] := (x, y′) + (y, x′), x = (x y)T, x′ = (x′ y′)T ∈ G1, (3.1)

the space K1 := (G1, [· , ·]) becomes a Krein space. This is clear since the inner product
[· , ·] can be defined by [x,x′] = (Gx,x′)G1 with the Gram operator

G =

(
0 I

I 0

)
.

In G1 = H ⊕ H, with the abstract first-order differential equation (1.7), we associate
the block operator matrix Â1 given by

Â1 :=

(
V I

H0 V

)
. (3.2)

With its natural domain D(Â1) := (D(V ) ∩ D(H0)) ⊕ D(V ), the operator Â1 need not
be densely defined nor closable. The main assumption here and below is as follows.

Assumption 3.1. D(H1/2
0 ) ⊂ D(V ).

Since V is closable (with closure denoted by V ), Assumption 3.1 is satisfied if and only
if V is H

1/2
0 -bounded (see [22, §§ IV.1.1, IV.1.3]). Since, in addition, H0 is assumed to

be boundedly invertible, Assumption 3.1 implies that the operator

S := V H
−1/2
0 (3.3)

is defined on all of H and bounded in H. Together with

H
−1/2
0 V ⊂ H

−1/2
0 V ∗ ⊂ (V H

−1/2
0 )∗ = S∗, (3.4)

this shows that H
−1/2
0 V = S∗.

Under Assumption 3.1, the domain of Â1 takes the form

D(Â1) =
{(

x

y

)
∈ H ⊕ H : x ∈ D(H0), y ∈ D(V )

}
. (3.5)
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Theorem 3.2. If D(H1/2
0 ) ⊂ D(V ), then Â1 is essentially self-adjoint in the Krein

space K1. Its closure is the self-adjoint operator A1 = (Â1)+ given by

D(A1) =
{(

x

y

)
∈ H ⊕ H : x ∈ D(H1/2

0 ), H
1/2
0 x + S∗y ∈ D(H1/2

0 )
}

,

A1

(
x

y

)
=

(
V x + y

H
1/2
0 (H1/2

0 x + S∗y)

)
.

Proof. First we show that

(Â1)+ = A1. (3.6)

In order to prove the inclusion (Â1)+ ⊂ A1, let x = (x y)T ∈ D((Â1)+). Then, for
(Â1)+x =: u = (u v)T ∈ G1 = H ⊕ H, we have

[Â1x
′,x] = [x′,u], x′ = (x′ y′)T ∈ D(Â1),

that is,

(V x′ + y′, y) + (H0x
′ + V y′, x) = (x′, v) + (y′, u), x′ ∈ D(H0), y′ ∈ D(V ). (3.7)

Choosing y′ = 0, we conclude that for all x′ ∈ D(H0) we have the equality

(V x′, y) + (H0x
′, x) = (x′, v)

⇐⇒ (V H
−1/2
0 (H1/2

0 x′), y) + (H1/2
0 (H1/2

0 x′), x) = (H−1/2
0 (H1/2

0 x′), v)

⇐⇒ (H1/2
0 x′, S∗y) + (H1/2

0 (H1/2
0 x′), x) = (H1/2

0 x′, H
−1/2
0 v)

⇐⇒ (H1/2
0 (H1/2

0 x′), x) = (H1/2
0 x′, H

−1/2
0 v − S∗y)

⇐⇒ (H1/2
0 w′, x) = (w′, H

−1/2
0 v − S∗y)

with w′ := H
1/2
0 x′ being an arbitrary element of D(H1/2

0 ). Hence, x ∈ D(H1/2
0 ) and

H
1/2
0 x = H

−1/2
0 v − S∗y,

that is,

H
1/2
0 x + S∗y = H

−1/2
0 v ∈ D(H1/2

0 )

and

v = H
1/2
0 (H1/2

0 x + S∗y).

Choosing x′ = 0 in (3.7) and using the symmetry of V , we obtain that, for all y′ ∈ D(V ),

(y′, y) + (V y′, x) = (y′, u).

Since x ∈ D(H1/2
0 ) ⊂ D(V ) and D(V ) is dense in H, we see that u = V x + y.
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The inclusion A1 ⊂ (Â1)+ follows if we observe that, for arbitrary x = (x y)T ∈ D(A1)
and x′ = (x′ y′)T ∈ D(Â1),

[Â1x
′,x] = (V x′, y) + (y′, y) + (H0x

′, x) + (V y′, x)

= (H1/2
0 x′, S∗y) + (y′, y) + (H1/2

0 x′, H
1/2
0 x) + (V y′, x)

= (H1/2
0 x′, H

1/2
0 x + S∗y) + (y′, V x + y)

= [x′, A1x].

By the definition of Â1 and A1 and by (3.6), we have Â1 ⊂ A1 = (Â1)+. Thus, Â1 is
symmetric in K1 and hence closable. Since (Â1)+ is closed, it follows that

Â1 ⊂ (Â1)+ = A1,

and the theorem is proved if we show that A1 ⊂ Â1.
To this end, let (x y)T ∈ D(A1). Then x ∈ D(H1/2

0 ) and y ∈ H are such that z :=
H

1/2
0 x + S∗y ∈ D(H1/2

0 ). Since D(V ) is dense in H, there exists a sequence (yn) ⊂ D(V )
with yn → y and, since S is bounded, H

−1/2
0 V yn = S∗yn → S∗y. If we define

x̃n := z − H
−1/2
0 V yn ∈ D(H1/2

0 ) and xn := H
−1/2
0 x̃n ∈ D(H0),

then we have, for n → ∞,

xn = H
−1/2
0 z − H

−1/2
0 H

−1/2
0 V yn → H

−1/2
0 (H1/2

0 x + S∗y) − H
−1/2
0 S∗y = x,

H
1/2
0 xn = x̃n → z − S∗y = H

1/2
0 x.

Since V is H
1/2
0 -bounded by Assumption 3.1, this implies that also (V xn) and hence

(V xn + yn) converges. Finally,

H0xn + V yn = H
1/2
0 (H1/2

0 xn + H
−1/2
0 V yn) = H

1/2
0 (x̃n + H

−1/2
0 V yn) = H

1/2
0 z,

and hence (H0xn + V yn) converges. This proves that (x y)T ∈ D(Â1). �

In order to ensure that the resolvent set of A1 is non-empty, an additional condition
is required in § 5. In this respect, the self-adjoint quadratic operator polynomial

L1(λ) := I − (S − λH
−1/2
0 )(S∗ − λH

−1/2
0 ), λ ∈ C, (3.8)

in the Hilbert space H is useful as it reflects the spectral properties of A1; note that,
according to Assumption 3.1, the values L1(λ) are bounded operators in H.

Proposition 3.3. If D(H1/2
0 ) ⊂ D(V ), then, for λ ∈ C,

A1 − λ =

(
I (S − λH

−1/2
0 )H1/2

0

0 H0

) (
0 L1(λ)
I H

−1/2
0 (S∗ − λH

−1/2
0 )

)
. (3.9)
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Proof. The formal equality in (3.9) follows immediately from formula (3.8). To prove
the equality of the domains, we observe that (S − λH

−1/2
0 )H1/2

0 = V − λ on D(H0). Then
the domain D1 of the product on the right-hand side of (3.9) is given by

D1 =
{(

x

y

)
∈ H ⊕ H : x + H

−1/2
0 (S∗ − λH

−1/2
0 )y ∈ D(H0)

}

=
{(

x

y

)
∈ H ⊕ H : x + H

−1/2
0 S∗y ∈ D(H0)

}

=
{(

x

y

)
∈ H ⊕ H : x ∈ D(H1/2

0 ), H
1/2
0 x + S∗y ∈ D(H1/2

0 )
}

,

which coincides with the domain of A1 by Theorem 3.2. �

Proposition 3.4. Let D(H1/2
0 ) ⊂ D(V ). Then ρ(L1) ⊂ ρ(A1) and, for λ ∈ ρ(L1),

(A1 − λ)−1

=

(
−H

−1/2
0 (S∗ − λH

−1/2
0 )L1(λ)−1 I

L1(λ)−1 0

) (
I −(S − λH

−1/2
0 )H−1/2

0

0 H−1
0

)

=

(
0 H−1

0

0 0

)
+

(
−H

−1/2
0 (S∗ − λH

−1/2
0 )

I

)
L1(λ)−1

(
I −(S − λH

−1/2
0 )H−1/2

0

)
.

Moreover,
σess(A1) ⊂ σess(L1). (3.10)

Proof. The first and the second claim are immediate consequences of the factoriza-
tion (3.9). If λ0 /∈ σess(L1), then L1(·)−1 is a finitely meromorphic operator function in
a neighbourhood of λ0 and hence so is (A1 − · )−1 by the second formula for (A1 − λ)−1

above. This shows that λ0 /∈ σess(A1). �

4. Operators associated with the abstract Klein–Gordon equation:
A2 in H1/4 ⊕ H−1/4

In order to associate a second operator A2 with the abstract Klein–Gordon equation (1.2),
we introduce a scale of Hilbert spaces (Hα, ‖ · ‖α), −1 � α � 1, induced by the operator
H0 as follows. If 0 � α � 1, we set

Hα := D(Hα
0 ), ‖x‖α := ‖Hα

0 x‖, x ∈ Hα, 0 � α � 1. (4.1)

Obviously, H0 = H. If −1 � α < 0, then Hα is defined to be the corresponding space with
negative norm (see [6]), which can also be considered as the completion of D(Hα

0 ) = H
with respect to the norm

‖x‖α := ‖Hα
0 x‖, x ∈ H, −1 � α < 0.
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All powers of H0 extend in a natural way to operators between the spaces of the scale
Hα, −1 � α � 1; in particular, Hβ

0 ∈ L(Hα,Hα−β) for α, β, α − β ∈ [−1, 1]. The duality
between Hα and H−α is again denoted by (· , ·):

(x, y) := (Hα
0 x, H−α

0 y), x ∈ Hα, y ∈ H−α. (4.2)

Let G2 be the orthogonal sum G2 := H1/4 ⊕ H−1/4 with its inner product

(x,x′)G2 = (H1/4
0 x, H

1/4
0 x′) + (H−1/4

0 y, H
−1/4
0 y′)

for x = (x y)T, x′ = (x′ y′)T ∈ G2. In addition, we equip the space G2 with the indefinite
inner product

[x,x′] := (H1/4
0 x, H

−1/4
0 y′) + (H−1/4

0 y, H
1/4
0 x′)

for x = (x y)T, x′ = (x′ y′)T ∈ G2, that is,

[x,x′] = (x, y′) + (y, x′); (4.3)

the brackets on the right-hand side of (4.3) denote the duality (4.2) between H1/4 and
H−1/4 and vice versa.

The space K2 := (G2, [· , ·]) is a Krein space. To see this, we observe that H
−1/2
0 is a

unitary mapping from G−1/4 onto G1/4, H
1/2
0 is a unitary mapping from G1/4 onto G−1/4,

and that

[x,x′] = (y, x′) + (x, y′) =

((
H

−1/2
0 y

H
1/2
0 x

)
,

(
x′

y′

))
G2

= (Jx,x′)G2 ;

here the operator J in G2 = H1/4 ⊕ H−1/4 is given by

J :=

(
0 H

−1/2
0

H
1/2
0 0

)
(4.4)

and satisfies J = J∗ as well as J2 = I (see § 2.2).
Imposing Assumption 3.1, that is, D(H1/2

0 ) ⊂ D(V ), we may consider the symmetric
operator V also as an operator in the scale of spaces Hα, −1 � α � 1.

Remark 4.1. Assumption 3.1 is equivalent to the boundedness of V regarded as an
operator from H1/2 to H, that is, V ∈ L(H1/2,H). Due to its symmetry, V then admits an
extension as a bounded operator from H to H−1/2; by interpolation, it can also be defined
as a bounded operator from Hα into Hα−1/2 for all α ∈ [0, 1

2 ], see [39, Chapter IX.4,
Appendix, Example 3]. All these extensions and restrictions of the operator V , originally
given in H, which act between the spaces of the scale Hα, are also denoted by V :

V ∈ L(Hα,Hα−1/2), α ∈ [0, 1
2 ]. (4.5)

As a consequence of (4.5), for the corresponding extensions and restrictions of the oper-
ators S = V H

−1/2
0 and the adjoint S∗ = (V H

−1/2
0 )∗ of S in H, we have

S = V H
−1/2
0 ∈ L(Hα), α ∈ [− 1

2 , 0],
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and

S∗ = H
−1/2
0 V ∈ L(Hα), α ∈ [0, 1

2 ].

Note that in § 3 the operator S∗ had to be written as S∗ = H
1/2
0 V since there V acts

only within H and thus requires the domain D(V ) ⊂ H; observe also that in Hα, α 
= 0,
the operator S∗ is not the adjoint of S.

Under Assumption 3.1, we now consider the operator A2 in G2 given by

D(A2) :=
{(

x

y

)
∈ H1/4 ⊕ H−1/4 : x ∈ D(H1/2

0 ), y ∈ H,

V x + y ∈ H1/4, H0x + V y ∈ H−1/4

}
,

A2

(
x

y

)
:=

(
V x + y

H0x + V y

)
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.6)

Remark 4.2. The domain of A2 can also be written as

D(A2) =
{(

x

y

)
∈ H1/4 ⊕ H−1/4 : y ∈ H, V x + y ∈ H1/4, H0x + V y ∈ H−1/4

}
;

in fact, if y ∈ H, then H0x + V y ∈ H−1/4 automatically implies x ∈ D(H1/2
0 ).

In the following, we first show that A2 is a symmetric operator in the Krein space K2.
In the theorem below we give a sufficient condition for the self-adjointness of A2 in K2.

Proposition 4.3. If D(H1/2
0 ) ⊂ D(V ), then A2 is symmetric in K2.

Proof. Let x = (x y)T ∈ D(A2) ⊂ D(H1/2
0 ) ⊕ H. Then, according to the formula (4.3)

for the inner product [· , ·],

[A2x,x] = (V x + y, y) + (H0x + V y, x) = (V x, y) + (y, y) + (H0x, x) + (V y, x).

Note that the first two terms are the inner products in H, whereas the last two terms
denote the duality between G−1/2 and G1/2. Since

(V y, x) = (H−1/2
0 V y, H

1/2
0 x) = (S∗y, H

1/2
0 x) = (y, SH

1/2
0 x) = (y, V x) = (V x, y),

it follows that [A2x,x] ∈ R. �

Theorem 4.4. Suppose that D(H1/2
0 ) ⊂ D(V ). Then

ρ(L1) ⊂ ρ(A2),

the operator A2 is self-adjoint in K2 if ρ(L1) 
= ∅ and, for λ ∈ ρ(L1),

(A2 − λ)−1

=

(
0 H−1

0

0 0

)
+

(
−H

−1/2
0 (S∗ − λH

−1/2
0 )

I

)
L1(λ)−1

(
I − (S − λH

−1/2
0 )H−1/2

0

)
.

(4.7)
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For the proof of Theorem 4.4, we use the following simple lemma.

Lemma 4.5. If A is a symmetric operator in a Krein space K such that there exists
a point λ ∈ C with λ, λ ∈ ρ(A), then A is self-adjoint in K.

Proof. Let λ ∈ C with λ, λ ∈ ρ(A). Then λ ∈ ρ(A) ∩ ρ(A+) and the symmetry of A

implies that
(A+ − λ)−1 ⊃ (A − λ)−1.

Since λ ∈ ρ(A), the right-hand side is defined on all of K. Hence, the last inclusion is in
fact an equality and so A = A+. �

Proof of Theorem 4.4. First we prove that ρ(L1) ⊂ ρ(A2). Let λ0 ∈ ρ(L1) and
let u = (u v)T ∈ H1/4 ⊕ H−1/4 be arbitrary. We have to show that there exists a unique
element x = (x y)T ∈ D(A2) ⊂ D(H1/2

0 ) ⊕ H such that (A2 − λ0)x = u or, equivalently,

(V − λ0)x + y = u, (4.8)

H0x + (V − λ0)y = v. (4.9)

Since V ∈ L(H1/2,H), we have u − (V − λ0)H−1
0 v ∈ H and thus

y := L1(λ0)−1(u − (V − λ0)H−1
0 v) ∈ H, (4.10)

x := H−1
0 (v − (V − λ0)y) ∈ D(H1/2

0 ). (4.11)

Then, by the definition of x, (4.9) holds. Relation (4.8) follows since

(V − λ0)x + y = (V − λ0)H−1
0 (v − (V − λ0)y) + y

= (V − λ0)H−1
0 v + (I − (V − λ0)H−1

0 (V − λ0))y

= (V − λ0)H−1
0 v + (I − (V H

−1/2
0 − λ0H

−1/2
0 )(H−1/2

0 V − λ0H
−1/2
0 ))y

= (V − λ0)H−1
0 v + L1(λ0)y

= u;

here we have used the fact that H
−1/2
0 V = S∗ according to Remark 4.1. This proves

that A2 − λ0 is surjective. In order to show that A2 − λ0 is injective, let x = (x y)T ∈
D(A2) ⊂ D(H1/2

0 ) ⊕ H be such that (A2 − λ0)x = 0 or, equivalently,

(V − λ0)x + y = 0,

H0x + (V − λ0)y = 0.

The second relation yields x = −H−1
0 (V − λ0)y. Inserting this into the first relation, we

obtain L1(λ0)y = 0. Now y ∈ H implies that y = 0 and hence also that x = 0.
Since L1 is a self-adjoint operator function in H, its resolvent set ρ(L1) is symmetric

to R. Hence, ρ(L1) 
= ∅ implies that A2 is self-adjoint in K2 by Lemma 4.5.
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It remains to prove the representation for (A2 − λ)−1. From (4.10), (4.11) it follows
that, for λ ∈ ρ(L1),

(A2 − λ)−1 =

(
−H−1

0 (V − λ)L1(λ)−1 H−1
0 + H−1

0 (V − λ)L1(λ)−1(V − λ)H−1
0

L1(λ)−1 −L1(λ)−1(V − λ)H−1
0

)
.

Using the identities

(V − λ)H−1
0 = (S − λH

−1/2
0 )H−1/2

0 , H−1
0 (V − λ) = H

−1/2
0 (S∗ − λH

−1/2
0 ),

we arrive at (4.7). Finally, we observe that the operators

(
I −(S − λH

−1/2
0 )H−1/2

0

)
: H1/4 ⊕ H−1/4 → H,

L1(λ)−1 : H → H,(
−H

−1/2
0 (S∗ − λH

−1/2
0 )

I

)
: H → H1/4 ⊕ H−1/4

are bounded and so the right-hand side of (4.7) is a bounded operator in the space
G2 = H1/4 ⊕ H−1/4. �

Corollary 4.6. If D(H1/2
0 ) ⊂ D(V ), we have ρ(L1) ⊂ ρ(A1)∩ρ(A2) and the resolvents

of A1 and A2 coincide on the dense subset K1 ∩ K2 = H1/4 ⊕ H of K1 and K2:

(A1 − λ)−1x = (A2 − λ)−1x, x ∈ K1 ∩ K2, λ ∈ ρ(L1) ⊂ ρ(A1) ∩ ρ(A2). (4.12)

Proof. The claim follows easily from the formulae for the resolvents of A1 and A2 in
Proposition 3.4 and Theorem 4.4. �

5. Spectral properties of the operators A1 and A2

In this section we investigate the spectral properties of the self-adjoint operators A1 and
A2 in the respective Krein spaces K1 and K2.

We recall that under Assumption 3.1, that is, D(H1/2
0 ) ⊂ D(V ), the operator A1 in

K1 = H ⊕ H is given by (see Theorem 3.2)

D(A1) =
{(

x

y

)
∈ H ⊕ H : x ∈ D(H1/2

0 ), H
1/2
0 x + S∗y ∈ D(H1/2

0 )
}

,

A1

(
x

y

)
=

(
V x + y

H
1/2
0 (H1/2

0 x + S∗y)

)
.
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Under the assumption that ρ(L1) 
= ∅, the operator A2 in K2 = H1/4 ⊕ H−1/4 is given
by (see (4.6) and Remark 4.2)

D(A2) =
{(

x

y

)
∈ H1/4 ⊕ H−1/4 : x ∈ D(H1/2

0 ), y ∈ H,

V x + y ∈ H1/4, H0x + V y ∈ H−1/4

}

=
{(

x

y

)
∈ H1/4 ⊕ H−1/4 : y ∈ H, V x + y ∈ H1/4, H0x + V y ∈ H−1/4

}
,

A2

(
x

y

)
=

(
V x + y

H0x + V y

)
.

The definitions of A1 and A2 imply that, for x = (x y)T ∈ D(Aj) ⊂ D(H1/2
0 ) ⊕ H,

[Ajx,x] = ‖y + Sx̂‖2 + ((I − S∗S)x̂, x̂), j = 1, 2, (5.1)

with x̂ := H
1/2
0 x in H. Indeed, using Sx̂ = V x, we obtain

[A2x,x] = (V x + y, y) + (H0x + V y, x)

= ‖H
1/2
0 x‖2 + ‖y‖2 + (V x, y) + (y, V x)

= ‖H
1/2
0 x‖2 + ‖y‖2 + (Sx̂, y) + (y, Sx̂)

= ‖y + Sx̂‖2 + ((I − S∗S)x̂, x̂);

the proof for A1 is similar.
Relation (5.1) shows that the number of negative squares of the Hermitian forms

[Ajx,y],x,y ∈ D(Aj), j = 1, 2, coincides with the dimension of the spectral subspace
of the self-adjoint operator I − S∗S in H corresponding to the negative half-axis. The
following assumption is crucial for the remaining part of this paper; it guarantees that
this number is finite.

Assumption 5.1. S = V H
−1/2
0 = S0 + S1 with ‖S0‖ < 1 and S1 compact in H.

Obviously, such a decomposition of S is not unique, and the operator S1 can be chosen
to have some more particular properties.

Lemma 5.2. In Assumption 5.1, without loss of generality, we can suppose that
S1 =

∑n
i=1(· , wi)vi with vi ∈ H and wi ∈ D(H1/2

0 ), i = 1, . . . , n.

Proof. Since a compact operator is the sum of an operator with arbitrarily small
norm and an operator of finite rank, S1 can be chosen to be of finite rank, say
S1 =

∑n
i=1(· , wi)vi with vi, wi ∈ H, i = 1, . . . , n. Moreover, by means of an additive

perturbation of arbitrarily small norm, the elements wi can be chosen in the dense sub-
set D(H1/2

0 ) of H. �

Lemma 5.3. If D(H1/2
0 ) ⊂ D(V ) and S = V H

−1/2
0 can be decomposed as S = S0+S1

with ‖S0‖ < 1 and S1 compact, then ρ(L1) 
= ∅.
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Proof. According to the assumption on S, for µ ∈ R the operator L1(iµ) can be
written as

L1(iµ) = (I + µ2H−1
0 )1/2(F (µ) + K(µ) + iG(µ))(I + µ2H−1

0 )1/2 (5.2)

with the bounded self-adjoint operators

F (µ) := I − (I + µ2H−1
0 )−1/2S0S

∗
0 (I + µ2H−1

0 )−1/2,

K(µ) := −(I + µ2H−1
0 )−1/2(S0S

∗
1 + S1S

∗
0 + S1S

∗
1 )(I + µ2H−1

0 )−1/2, (5.3)

G(µ) := µ(I + µ2H−1
0 )−1/2(SH

−1/2
0 + H

−1/2
0 S∗)(I + µ2H−1

0 )−1/2.

By (5.2), iµ ∈ ρ(L1) if and only if 0 ∈ ρ(F (µ) + K(µ) + iG(µ)). Since ‖S0‖ < 1 and
0 � (I + µ2H−1

0 )−1 � I, we have F (µ) � I − S0S
∗
0 � γ with some γ > 0 for all µ ∈ R.

The self-adjointness of G(µ) implies that 0 ∈ ρ(F (µ) + iG(µ)) for all µ ∈ R, and the
claim now follows if we show that ‖K(µ)‖ < γ for µ ∈ R sufficiently large.

To this end we observe that, for x ∈ H,

‖(I + µ2H−1
0 )−1/2x‖2 =

∫ ‖H−1
0 ‖

0

1
1 + µ2t

d(E(t)x, x) → 0, µ → ∞,

where E is the spectral function of H−1
0 . Hence, the rightmost factor in (5.3) tends to 0

strongly for µ → ∞. The middle factor in (5.3) is compact since S1 is compact and the
leftmost factor is uniformly bounded for all µ. Therefore, ‖K(µ)‖ → 0 for µ → ∞ (see,
for example, [51, § 6.1]). �

Lemma 5.4. Suppose that D(H1/2
0 ) ⊂ D(V ) and S = V H

−1/2
0 can be decomposed as

S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Then the number of negative squares of
the Hermitian form [A1x,y], x,y ∈ D(A1), in H1 and of the Hermitian form [A2x,y],
x,y ∈ D(A2), in H2 is finite; it is equal to the number κ of negative eigenvalues of
I − S∗S counted with multiplicities.

Proof. Both claims follow from relation (5.1) and from the fact that, due to the
assumption on S,

I − S∗S = I − S∗
0S0 + K

with a compact operator K. Observe that Lemma 5.3 implies that ρ(L1) 
= ∅ so that A2

is self-adjoint by Theorem 4.4. �

In the following, we first consider the particular case ‖S‖ < 1, which means that the
operator I − S∗S is uniformly positive. Recall that m > 0 is such that H0 � m2.

Lemma 5.5. If D(H1/2
0 ) ⊂ D(V ) and ‖S‖ < 1, then

σ(L1) ⊂ R \ (−α, α),

where α := (1 − ‖S‖)m.
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Proof. In the proof we use the numerical range W (L1) of the operator polynomial L1

in (3.8). By definition, W (L1) consists of all points λ ∈ C for which there exists an element
x ∈ H, x 
= 0, such that (L1(λ)x, x) = 0. Since 0 ∈ ρ(L1), we have σ(L1) ⊂ W (L1)
(see [30, Theorem 26.6]). Hence, it is sufficient to show that W (L1) is real and does
not contain points of the interval (−α, α). The first claim follows from the fact that, for
arbitrary x ∈ H with ‖x‖ = 1, the quadratic polynomial

(L1(λ)x, x) = ‖x‖2 − ((S∗ − λH
−1/2
0 )x, (S∗ − λH

−1/2
0 )x)

is positive at λ = 0 since ‖S‖ < 1 and tends to −∞ if λ → ±∞. For the second claim,
using ‖H

−1/2
0 ‖ � 1/m, we obtain that, for |λ| < α,

|(L1(λ)x, x)| � ‖x‖2 − ‖(S∗ − λH
−1/2
0 )x‖2

� 1 −
(

‖S‖ +
|λ|
m

)2

> 1 −
(

‖S‖ +
α

m

)2

� 0,

and hence λ /∈ W (L1). �

The above lemma can be used to obtain information about the essential spectrum of
L1 in the more general situation of Assumption 5.1.

Lemma 5.6. If D(H1/2
0 ) ⊂ D(V ) and S = V H

−1/2
0 can be decomposed as S = S0+S1

with ‖S0‖ < 1 and S1 compact, then

σess(L1) ⊂ R \ (−α, α)

where α := (1 − ‖S0‖)m.

Proof. By the assumption on S, the operator function L1 can be written as

L1(λ) = L0(λ) − K(λ), λ ∈ C; (5.4)

here the operator function L0 is given by

L0(λ) := I − (S0 − λH
−1/2
0 )(S∗

0 − λH
−1/2
0 ), λ ∈ C, (5.5)

and
K(λ) := S1(S∗

0 − λH
−1/2
0 ) + (S0 − λH

−1/2
0 )S∗

1

is compact for all λ ∈ C since S1 is compact. By Lemma 5.5 applied to L0, we have
σ(L0) ⊂ R \ (−α, α). Hence, σ(L0) has empty interior as a subset of C and C \ σ(L0)
consists of only one component. By the proof of Lemma 5.3, this component contains
points iµ ∈ ρ(L1) for µ ∈ R sufficiently large. Now [40, Lemma XIII.4] shows that

σess(L1) = σess(L0) ⊂ R \ (−α, α). (5.6)

�
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Theorem 5.7. Suppose that D(H1/2
0 ) ⊂ D(V ) and that the operator S = V H

−1/2
0

can be decomposed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Let m > 0 be such
that H0 � m2 and let κ be the number of negative eigenvalues of I − S∗S counted with
multiplicities. Then the following statements hold.

(i) The self-adjoint operator A1 is definitizable in the Krein space K1.

(ii) The non-real spectrum of A1 is symmetric to the real axis and consists of at most
κ pairs of eigenvalues λ, λ of finite type; the algebraic eigenspaces corresponding to
λ and λ are isomorphic.

(iii) For the essential spectrum of A1 we have, with α := (1 − ‖S0‖)m,

σess(A1) ⊂ R \ (−α, α).

(iv) If V is H
1/2
0 -compact, then

σess(A1) = {λ ∈ R : λ2 ∈ σess(H0)} ⊂ R \ (−m, m).

(v) If ‖V H
−1/2
0 ‖ < 1, then the operator A1 is uniformly positive in the Krein space K1

and, with α := (1 − ‖V H
−1/2
0 ‖)m,

σ(A1) ⊂ R \ (−α, α).

Corollary 5.8. If, in addition to the assumptions of Theorem 5.7, 1 /∈ σp(S∗S) or,
equivalently, 0 /∈ σp(A1), then

κ =
∑

λ∈σp(A1)∩(0,+∞)

κ−
λ (A1) +

∑
λ∈σp(A1)∩(−∞,0)

κ+
λ (A1) +

∑
λ∈σp(A1)∩C+

κo
λ(A1) (5.7)

(see (2.4)). As a consequence, the following are true.

(i) The number of positive eigenvalues of A1 that have a non-positive eigenvector plus
the number of negative eigenvalues of A1 that have a non-negative eigenvector plus
the number of all eigenvalues of A1 in the open upper half-plane C

+ is at most κ.

(ii) With the exception of the real eigenvalues in (i), the spectrum of A1 on the positive
half-axis is of positive type and the spectrum of A1 on the negative half-axis is of
negative type.

(iii) If ‖V H
−1/2
0 ‖ < 1, that is, κ = 0, then all the spectrum of A1 on the positive half-

axis is of positive type and all the spectrum of A1 on the negative half-axis is of
negative type.

(iv) If κ � 1, there exists at least one eigenvalue with the properties mentioned in (i)
and, in particular, A1 has at least one eigenvalue.

Proof of Theorem 5.7. (i) We have ρ(L1) 
= ∅ by Lemma 5.3, and ρ(L1) ⊂ ρ(A1) by
Proposition 3.4. Thus, ρ(A1) 
= ∅ and hence the claim follows from Lemma 5.4 and [24,
Chapter I.3] (see § 2.3).

(ii) All claims follow from the definitizability of A1 (see (i) and § 2.3).
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For the proof of the remaining statements, we observe that, by (ii), σ(A1) has empty
interior as a subset of C. From Proposition 3.4 it follows that

(L1(λ)−1x, y) =
[
(A1 − λ)−1

(
x

0

)
,

(
0
y

)]
, x, y ∈ H, λ ∈ ρ(L1). (5.8)

This shows that the analytic operator function L1(·)−1 on ρ(L1) can be continued ana-
lytically to ρ(A1) and hence ρ(A1) ⊂ ρ(L1). Since ρ(L1) ⊂ ρ(A1) by Proposition 3.4, we
arrive at

ρ(A1) = ρ(L1). (5.9)

The relation (5.8) also implies that if λ0 /∈ σess(A1), and hence (A1 − · )−1 is a finitely
meromorphic operator function in a neighbourhood of λ0, then so is L1(·)−1, that is,
λ0 /∈ σess(L1). Since σess(A1) ⊂ σess(L1) by (3.10), we obtain

σess(A1) = σess(L1). (5.10)

(iii) By (5.10) and Lemma 5.6 we have

σess(A1) = σess(L1) ⊂ R \ (−α, α).

(iv) If V is H
1/2
0 -compact, we can choose S0 = 0, and so (5.4) and (5.5) yield that

L1(λ) = L0(λ) + K(λ), where K(λ) is compact and L0 is now given by

L0(λ) := I − λ2H−1
0 , λ ∈ C.

Together with (5.10) and (5.6), we obtain that

σess(A1) = σess(L1) = σess(L0) = {λ ∈ R : λ2 ∈ σess(H0)}.

(v) If ‖S‖ = ‖V H
−1/2
0 ‖ < 1, then equality (5.9) and Lemma 5.5 show that

σ(A1) = σ(L1) ⊂ R \ (−α, α).

�

Theorem 5.9. Suppose that D(H1/2
0 ) ⊂ D(V ) and that the operator S = V H

−1/2
0

can be decomposed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Let m > 0 be such
that H0 � m2 and let κ be the number of negative eigenvalues of I − S∗S counted with
multiplicities. Then the following statements hold.

(i) The self-adjoint operator A2 is definitizable in the Krein space K2.

(ii) The spectrum, essential spectrum and point spectrum of A1 and A2 coincide:

σ(A1) = σ(A2), σess(A1) = σess(A2), σp(A1) = σp(A2); (5.11)

moreover, A1 and A2 have the same Jordan chains and their spectral points are of
the same (positive or negative) type.

(iii) The statements (ii)–(v) of Theorem 5.7 continue to hold for A2.
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Remark 5.10. Although A1 and A2 have the same spectra, there is an essential
difference in the behaviour of their spectral functions at ∞ (see § 6).

Proof of Theorem 5.9. (i) We have ρ(L1) 
= ∅ by Lemma 5.3, and ρ(L1) ⊂ ρ(A2)
by Theorem 4.4. Thus, ρ(A2) 
= ∅ and hence the claim follows from Lemma 5.4 and [24,
Chapter I.3] (see § 2.3).

(ii) First we observe that, by (5.9) and Theorem 4.4, we have

ρ(A1) = ρ(L1) ⊂ ρ(A2) (5.12)

and that for λ ∈ ρ(A1), by (4.12),

[(A1 − λ)−1x,y] = [(A2 − λ)−1x,y], x,y ∈ K1 ∩ K2 = H1/4 ⊕ H. (5.13)

If λ0 is an eigenvalue of finite type of A1, that is, λ0 ∈ σd(A1), then it is either an isolated
eigenvalue of A2 or it belongs to ρ(A2) by (5.12). Then, for j = 1, 2, the corresponding
Riesz projection is

Pλ0,j := − 1
2πi

∫
Cλ0

(Aj − z)−1 dz,

where Cλ0 is a closed Jordan curve in ρ(A1) surrounding λ0 and no other point of the
spectra of A1 and A2. Its range is the algebraic eigenspace of Aj at λ0 and the Jordan
structure of Aj in λ0 is determined by the coefficients of the principal part of the Laurent
series of (Aj − λ)−1, given by

1
λ − λ0

Pλ0,j +
pj−1∑
k=1

1
(λ − λ0)k+1 Bk

j ,

where pj ∈ N ∪ {∞} and Bj := (Aj − λ0)Pλ0,j (see [15, Chapter XV.2]). Since λ0 was
assumed to be an eigenvalue of finite type of A1, the projection Pλ0,1 is finite dimensional,
p1 is finite and B1 is a finite rank operator. By (5.13), we have

[Ak
1Pλ0,1x,y] = [Ak

2Pλ0,2x,y], x,y ∈ K1 ∩ K2. (5.14)

Since K1 ∩ K2 = H1/4 ⊕ H is dense in K1 = H ⊕ H and in K2 = H1/4 ⊕ H−1/4, the
coefficients of the principal parts in the Laurent expansions of (A1 − λ)−1 and (A2 − λ)−1

at λ0 coincide. Hence, we have shown that

σd(A1) ⊂ σd(A2). (5.15)

Since A1 and A2 are definitizable, we have

ρ(Aj) ∪ σd(Aj) ∪ σess(Aj) = C, j = 1, 2.

This, together with (5.12) and (5.15), implies that σess(A2) ⊂ σess(A1) ⊂ R. It remains
to be shown that

σess(A1) ⊂ σess(A2). (5.16)
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Since the essential spectra of A1 and A2 are both real, the spectral projections Ej of Aj

can be represented by means of contour integrals over the resolvent as follows (see [24,
Chapter I.3]): for j = 1, 2 and a bounded interval Γ ⊂ R which is admissible for Aj and
has end points a, b, a � b, consider the operator

Êj(Γ ) := − 1
2πi

∫ ′

CΓ

(Aj − z)−1 dz.

Here CΓ is the positively oriented rectangle with corners a+iε, b+iε, b− iε and a− iε for
ε > 0 so small that CΓ does not surround any non-real spectral points of A1 and A2, and
the prime denotes the Cauchy principal value of the integral at a and b. If the end points
a, b of Γ are not eigenvalues of Aj , then Êj(Γ ) = Ej(Γ ); if a is an eigenvalue of Aj and
b is not an eigenvalue of Aj , then Êj(Γ ) = Ej(Γ ) + 1

2Ej({a}), and similarly in all other
cases for a and b. In any case, the operators Êj(Γ ) determine the spectral projections of
Aj , whence

[E1(Γ )x,y] = [E2(Γ )x,y], x,y ∈ K1 ∩ K2.

In particular, dimE1(Γ )(K1 ∩ K2) = dimE2(Γ )(K1 ∩ K2) and, consequently, E1(Γ ) and
E2(Γ ) have the same rank, which proves (5.16).

It remains to be shown that the Jordan chains of A1 and A2 coincide. If λ0 ∈ σp(A1)
with Jordan chain (xk)r

k=0 ⊂ D(A1) ⊂ D(H1/2
0 ) ⊕ H, r ∈ N ∪{∞}, then, with x−1 := 0,

(A1 − λ0)xk = xk−1, k = 0, 1, . . . , r.

Hence, for xk =: (xkyk)T, we have yk ∈ H and

V xk + yk = xk−1 + λ0xk ∈ D(H1/2
0 ) ⊂ H1/4,

H
1/2
0 xk + S∗yk = H

−1/2
0 (yk−1 + λ0yk) ∈ D(H1/2

0 ) ⊂ H1/4,

}
(5.17)

and thus H0xk + V yk ∈ H−1/4. This shows that (xk)r
k=0 ⊂ D(A2) and so (xk)r

k=0 is a
Jordan chain of A2 at λ0. Conversely, if (xk)r

k=0 ⊂ D(A2) ⊂ D(H1/2
0 ) ⊕ H is a Jordan

chain of A2 at λ0, then, in (5.17), the element V xk + yk belongs to D(H1/2
0 ) ⊂ H and

the element H
1/2
0 xk + S∗yk belongs to D(H1/2

0 ). Thus, (xk)r
k=0 ⊂ D(A1) and so (xk)r

k=0
is a Jordan chain of A1 at λ0. �

To conclude this section, we compare the spectral properties of A1 with those of the
operator A associated with the abstract Klein–Gordon equation in [27]. This operator
acts in the space G := H1/2 ⊕ H; if Assumption 3.1 holds and if 1 ∈ ρ(S∗S), it is defined
as

A =

(
0 I

H 2V

)
, D(A) = D(H) ⊕ D(H1/2

0 ), (5.18)

with H := H
1/2
0 (I − S∗S)H1/2

0 . The operator A is related to the operator A1 introduced
in § 3 by the formula

A = WA1W
−1, (5.19)
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where W acts from G1 = H ⊕ H to G = H1/2 ⊕ H,

W :=

(
I 0
V I

)
, D(W ) := H1/2 ⊕ H.

It was shown in [27] that the operator A is self-adjoint in K := (G, 〈· , ·〉) with inner
product

〈x,x′〉 = ((I − S∗S)H1/2
0 x, H

1/2
0 x′) + (y, y′), x = (x y)T, x′ = (x′ y′)T ∈ G,

which is a Pontryagin space due to Assumption 5.1. Note that the negative index of this
Pontryagin space equals the number κ of negative eigenvalues of I − S∗S counted with
multiplicities (cf. Lemma 5.4). Between the indefinite inner products 〈· , ·〉 of K and [· , ·]
of K1 we have the relation (see [27, Proposition 4.4 (i)])

〈x,x′〉 = [A1W
−1x, W−1x′], x ∈ WD(A1), x′ ∈ G. (5.20)

Theorem 5.11. Suppose that D(H1/2
0 ) ⊂ D(V ), that the operator S = V H

−1/2
0 can

be decomposed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact, and that 1 ∈ ρ(S∗S).
Then

σ(A) = σ(A1) = σ(A2), σess(A) = σess(A1) = σess(A2), σp(A) = σp(A1) = σp(A2).

Proof. By [27, Theorem 5.2 (iii)] and Theorem 5.7 (iii), the non-real spectra of A

and A1 consist of finitely many eigenvalues of finite type. If λ ∈ ρ(A) ∩ ρ(A1), then for
w,x′ ∈ G we obtain, from (5.20) with x = (A − λ)−1w ∈ D(A) ⊂ WD(A1) and (5.19),

〈(A − λ)−1w,x′〉 = [A1W
−1(A − λ)−1w, W−1x′]

= [A1(A1 − λ)−1W−1w, W−1x′]

= [W−1w, W−1x′] + λ[(A1 − λ)−1W−1w, W−1x′].

In a similar way as in the proof of Theorem 5.9, observing that the range of W−1, which
is given by D(W ) = H1/2 ⊕H, is dense in G1 = H⊕H, one can show that all eigenvalues
of finite type of A1 and A and also their essential spectra coincide.

The equality of the point spectra of A and A1 follows from (5.19): if λ is an eigenvalue
of A with eigenvector x ∈ D(A), then W−1x ∈ D(A1) and W−1x is an eigenvector
of A1 corresponding to the eigenvalue λ. Conversely, if λ is an eigenvalue of A1 with
eigenvector x ∈ D(A1), then Wx ∈ D(A) and Wx is an eigenvector of A corresponding
to the eigenvalue λ.

The equalities with the various parts of σ(A2) follow from Theorem 5.9. �

6. The critical point ∞: A2 as a generator of a strongly continuous
unitary group

Although the spectra of A1 and A2 coincide, their spectral functions E1 and E2 behave
differently at ∞ if H0 is unbounded. This will be proved first for the case V = 0; for
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V 
= 0 satisfying Assumption 5.1, a perturbation theorem due to Ćurgus (see [8]) applies
and shows that ∞ is a regular critical point for A2.

The unperturbed operators A1,0 in G1 = H ⊕ H and A2,0 in G2 = H1/4 ⊕ H−1/4 are
given by

A1,0 :=

(
0 I

H0 0

)
, D(A1,0) := D(H0) ⊕ H,

A2,0 :=

(
0 I

H0 0

)
, D(A2,0) := D(H3/4

0 ) ⊕ D(H1/4
0 ).

In fact, if V = 0, then the operators A1 in G1 and A2 in G2 coincide with the operators
A1,0 and A2,0.

Lemma 6.1. If H0 is unbounded, then ∞ is a regular critical point of A2,0, whereas
it is a singular critical point of A1,0.

Proof. The resolvents of A1,0 and A2,0 are defined for λ ∈ C such that λ2 /∈ σ(H0);
they are of the form

(Aj,0 − λ)−1 =

(
λ(H0 − λ2)−1 (H0 − λ2)−1

I + λ2(H0 − λ2)−1 λ(H0 − λ2)−1

)
, j = 1, 2.

Denote the spectral function of H
1/2
0 in H by E0 and let Γ ⊂ R be a bounded interval

with Γ > 0 or Γ < 0. Using the equality

(H0 − λ2)−1 = (H1/2
0 − λ)−1(H1/2

0 + λ)−1 =
1
2λ

((H1/2
0 − λ)−1 − (H1/2

0 + λ)−1)

and observing that (H1/2
0 − · )−1 is holomorphic on Γ if Γ < 0 and (H1/2

0 + · )−1 is
holomorphic on Γ if Γ > 0, we find that the spectral projection Ej(Γ ) of Aj,0 in Kj for
j = 1, 2 is given by

Ej(Γ ) = ±1
2

(
E0(Γ ) H

−1/2
0 E0(Γ )

H
1/2
0 E0(Γ ) E0(Γ )

)
.

Hence, for elements x = (x0)T ∈ G1 = H ⊕ H, we have

‖E1(Γ )x‖2
G1

= 1
4 (‖E0(Γ )x‖2 + ‖H

1/2
0 E0(Γ )x‖2).

If H0 is unbounded, the last term does not remain bounded if Γ > 0 extends to ∞ and
x /∈ D(H1/2

0 ).
On the other hand, for every x = (x y)T ∈ G2 = H1/4 ⊕ H−1/4,

‖E2(Γ )x‖2
G2

= 1
4‖H

1/4
0 (E0(Γ )x + H

−1/2
0 E0(Γ )y)‖2

+ 1
4‖H

−1/4
0 (H1/2

0 E0(Γ )x + E0(Γ )y)‖2

� ‖H
1/4
0 x‖2 + ‖H

−1/4
0 y‖2

= ‖x‖2
G2

,

and therefore ‖E2(Γ )‖ � 1. �
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Since for the operator A1 already in the unperturbed situation (that is, V = 0 and
A1 = A1,0) the point ∞ is a singular critical point if H0 is unbounded, it will remain a
singular critical point for large classes of perturbations (e.g. for bounded perturbations).

For A2, however, in the unperturbed situation (that is, V = 0 and A2 = A2,0) the
point ∞ is a regular critical point. Due to Assumptions 3.1 and 5.1, we may apply
a perturbation result of Ćurgus (see [8, Corollary 3.6]), which guarantees that under
certain additive perturbations the critical point ∞ remains regular.

In order to see this, we introduce sesquilinear forms h0 and v in the Hilbert space
G2 = H1/4 ⊕ H−1/4 on D(h0) = D(v) = D(H1/2

0 ) ⊕ H by

h0(x,y) := (H1/2
0 x1, H

1/2
0 y1) + (x2, y2),

v(x,y) := (V x1, y2) + (x2, V y1)

for x = (x1, x2)T, y = (y1, y2)T ∈ D(H1/2
0 ) ⊕ H. It is not difficult to see that the form h0

is closed, symmetric and uniformly positive. Moreover, for x ∈ D(A2,0), y ∈ D(h0), we
have

h0(x,y) = [A2,0x,y] = (JA2,0x,y)G2 , (6.1)

where J is defined as in (4.4), [· , ·] is the indefinite inner product of K2 = H1/4 ⊕ H−1/4

(see (4.3)) and (· , ·)G2 is the corresponding Hilbert space inner product.

Lemma 6.2. Let D(H1/2
0 ) ⊂ D(V ) and suppose that S = V H

−1/2
0 can be decomposed

as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Then

(i) the form v is h0-bounded with h0-bound less than 1,

(ii) the form h := h0 + v defined on D(h0) = D(H1/2
0 ) ⊕ H is closed, symmetric and

bounded from below.

Proof. (i) By the assumption on S and Lemma 5.2, we may choose the operator S1

to be of the form S1 =
∑n

i=1(· , wi)vi with vi ∈ H and wi ∈ D(H1/2
0 ), i = 1, . . . , n. Then

the operator S1H
1/2
0 in H is bounded on D(H1/2

0 ):

‖S1H
1/2
0 x‖ �

n∑
i=1

|(x, H
1/2
0 wi)| ‖vi‖ �

( n∑
i=1

‖H
1/2
0 wi‖ ‖vi‖

)
‖x‖ =: a‖x‖

for x ∈ D(H1/2
0 ). If we set b := ‖S0‖ < 1, we obtain that

‖V x‖ = ‖(S0 + S1)H
1/2
0 x‖ � a‖x‖ + b‖H

1/2
0 x‖, x ∈ D(H1/2

0 ), (6.2)

that is, V is H
1/2
0 -bounded with relative bound less than 1. It is not difficult to check

(see [21, § V4.1]) that (6.2) implies that there exist constants a′, b′ � 0, b′ < 1, such that

‖V x‖2 � a′2‖x‖2 + b′2‖H
1/2
0 x‖2, x ∈ D(H1/2

0 ). (6.3)

Now let x = (x1, x2)T ∈ D(v) = D(H1/2
0 ) ⊕ H. Using (6.3) and the inequality

‖H
1/4
0 x1‖2 = |(H1/2

0 x1, x1)| � m‖x1‖2,
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we obtain the estimate

v(x,x) = 2 Re(V x1, x2)

� 2‖V x1‖‖x2‖

� 1
b′ ‖V x1‖2 + b′‖x2‖2

� 1
b′ (a

′2‖x1‖2 + b′2‖H
1/2
0 x1‖2) + b′‖x2‖2

� a′2

b′ ‖x1‖2 + b′(‖H
1/2
0 x1‖2 + ‖x2‖2)

� a′2

b′m
(‖H

1/4
0 x1‖2 + ‖H

−1/4
0 x2‖2) + b′(‖H

1/2
0 x1‖2 + ‖x2‖2)

=
a′2

b′m
(x,x)G2 + b′

h0(x,x).

(ii) It is easy to see that h is symmetric since h0 and v are also symmetric. All other
claims follow from the perturbation result [21, Theorem VI.1.33]. �

Theorem 6.3. Let D(H1/2
0 ) ⊂ D(V ) and suppose that S = V H

−1/2
0 can be decom-

posed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Then ∞ is a regular critical point
of A2.

Proof. According to Lemma 6.2, Assumptions (A) and (B) of [9, § 2] are satisfied.
By (6.1) and the first representation theorem (see [21, Theorem VI.2.1]), the operator
JA2,0 is the self-adjoint operator associated with the closed form h0 in H2. Analogously, it
follows that JA2 is the self-adjoint operator associated with the perturbed form h = h0+v

in H2. Since A2 is definitizable by Theorem 5.9 and ∞ is a regular critical point for A2,0

by Lemma 6.1, it is also a regular critical point for A2 by [9, Proposition 2.1]. �

Remark 6.4. Theorem 6.3 was proved in [9, Theorem 3.5] for the particular cases
when either S0 = 0 or S1 = 0.

An important consequence of the regularity of the critical point ∞ is that A2 is the
generator of a unitary group in K2 and thus we obtain information on the solvability of
the Cauchy problem for the differential equation

dx

dt
= iA2x.

A function x : R → K2 is called a classical solution of this differential equation if

x ∈ C1(R,K2), x(t) ∈ D(A2),
dx

dt
(t) = iA2x(t), t ∈ R.

Theorem 6.5. Let D(H1/2
0 ) ⊂ D(V ) and suppose that S = V H

−1/2
0 can be decom-

posed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. Then the operator A2 is the
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infinitesimal generator of a strongly continuous group (eitA2)t∈R of unitary operators
in K2. If x0 ∈ D(A2), the Cauchy problem

dx

dt
= iA2x, x(0) = x0, (6.4)

has a unique classical solution given by

x(t) = eitA2x0, t ∈ R. (6.5)

Proof. The regularity of the critical point ∞ by Theorem 6.3 implies that A2 is
the sum of a bounded operator and an operator similar to a self-adjoint operator. As
a consequence, the operators eitA2 , t ∈ R, are defined and form a strongly continuous
group of unitary operators in K2. The last claim follows in a similar way as corresponding
results for semi-groups (see, for example, [23, Theorem 1.1]). �

Remark 6.6. If only x0 ∈ K2, then (6.5) is the unique mild solution of (6.4), that is,

x ∈ C(R,K2),
∫ t

s

x(τ) dτ ∈ D(A2), x(t) = x(s) + iA2

∫ t

s

x(τ) dτ, s, t ∈ R

(see the analogous definitions and results for semi-groups, e.g. in [1, § 1.2], [2, 3.1.12]).

7. Semi-groups associated with A1

In this section we restrict ourselves to the case that the symmetric operator V in H is
everywhere defined and hence bounded. Then Assumption 3.1 used in § 3 is automatically
satisfied and the operator Â1 in G1 = H ⊕ H defined in (3.2) is already closed:

A1 = Â1 =

(
V I

H0 V

)
, D(A1) = D(H0) ⊕ H.

Moreover, Assumption 5.1 used in § 5 holds if V can be decomposed as V = V0 +V1 such
that ‖V0‖ < m and V1H

−1/2
0 is compact.

Then, according to Theorem 5.7, the operator A1 is definitizable in K1 and the interval
(−(m−‖V0‖), m−‖V0‖) contains only eigenvalues of finite type; in particular, there exists
a real point µ ∈ ρ(A1).

Lemma 7.1. Assume that V is bounded and can be decomposed as V = V0 +V1 such
that ‖V0‖ < m and V1H

−1/2
0 is compact. Let κ be the number of negative eigenvalues of

I − S∗S counted with multiplicities and let µ ∈ ρ(A1) ∩ R. There then exists a maximal
non-negative subspace L+ ⊂ K1 that is invariant under (A1 − µ)−1 and such that

Im σ((A1 − µ)−1|L+) � 0.

The subspace L+ can be chosen so that it contains all the algebraic eigenspaces of A1

corresponding to the eigenvalues in the open upper half-plane, all the positive spectral
subspaces and a non-negative eigenvector of A1 at all real eigenvalues of A1 that are not of
negative type; the negative spectral subspaces of A1 are orthogonal to L+. Furthermore,

dim L+ ∩ L[⊥]
+ � κ. (7.1)
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Remark 7.2. For z in a complex neighbourhood of µ, the relation

(A1 − z)−1 =
∞∑

j=0

(z − µ)j(A1 − µ)−j−1

holds and implies that the subspace L+ from Lemma 7.1 is also invariant under (A1−z)−1.
Since ρ(A1) is connected, an analytic continuation argument shows that this continues
to hold for all z ∈ ρ(A1).

Proof of Lemma 7.1. Since (A1 − µ)−1 is a bounded definitizable operator, the
existence of a maximal non-negative invariant subspace L0

+ for (A1 − µ)−1 follows from
[24, Satz 3.2]. If λ0 ∈ C

+ is an eigenvalue of A1 with algebraic eigenspace Lλ0(A1), then,
together with L0

+, the subspace

L1
+ := L0

+ ∩ (Lλ0(A1) + Lλ0
(A1))[⊥] � Lλ0(A1)

is also a maximal non-negative invariant subspace for (A1 − µ)−1 and it contains Lλ0(A1).
Since A1 has only a finite number of non-real eigenvalues, after repeating this argument a
finite number of times, the new subspace L+ := Ln

+ contains all the algebraic eigenspaces
of A1 corresponding to eigenvalues in the open upper half-plane. If L+ does not contain
all positive subspaces of the form E1(Γ )K1, adding such a subspace to L+ would still
give a non-negative invariant subspace, a contradiction to the maximality of L+. In a
similar way, it can be shown that it contains non-negative eigenelements of A1 at all real
eigenvalues of A1 that are not of negative type. Finally, the subspace on the left-hand
side of (7.1) is neutral with respect to the inner product [A1· , ·] and hence of dimension
less than or equal to κ. �

Lemma 7.3. If L+ is a maximal non-negative subspace as in Lemma 7.1, then(
0
y

)
∈ L+ =⇒ y = 0. (7.2)

Proof. It is easy to see that the resolvent of A1 admits the representation

(A1 − z)−1 =

(
−D(z)−1(V − z) D(z)−1

I + (V − z)D(z)−1(V − z) −(V − z)D(z)−1

)
, z ∈ ρ(A1),

where D(z) := H0 − (V − z)2, z ∈ C. For any z ∈ ρ(A1), we have (A1 − z)−1L+ ⊂ L+

which implies that (A1 − z)−1L[⊥]
+ ⊂ L[⊥]

+ . Hence,

(A1 − z)−1(L+ ∩ L[⊥]
+ ) ⊂ L+ ∩ L[⊥]

+ , z ∈ ρ(A1),

that is, (A1 − z)−1 maps the isotropic subspace of L+ into itself. Since an element
x = (0y)T ∈ L+ as in (7.2) is neutral in K1, we have x ∈ L+ ∩ L[⊥]

+ and so

0 = [(A1 − z)−1x, (A1 − z)−1x] = −2((V − Re z)D(z)−1y, D(z)−1y).

Choosing z ∈ C such that V − Re z > 0, we obtain y = 0. �

https://doi.org/10.1017/S0013091506000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000150


Klein–Gordon equation in Krein spaces 741

Lemma 7.3 shows that L+ is the graph of a closed linear operator K in H,

L+ =
{(

x

Kx

)
: x ∈ D(K)

}
. (7.3)

Since for x = (x y)T ∈ K1 we have [x,x] = 2 Re(x, y), the non-negativity of L+ yields
that the operator K is accretive in H, that is, Re(Kx, x) � 0, x ∈ D(K) (see [21,
Chapter V.3.10]). The fact that the subspace L+ is maximal non-negative implies that
the operator K in (7.3) is maximal accretive in H, that is, it admits no proper accretive
extension.

Remark 7.4. For a general definitizable operator in a Krein space, the maximal non-
negative invariant subspace L+ is not uniquely determined, and so we do not have a
uniqueness result for L+ in Lemma 7.1. However, if V = 0, uniqueness can be proved
and the maximal non-negative invariant subspace is of the form

L+ =
{(

x

H
1/2
0 x

)
: x ∈ H

}
,

which shows that in this case K = H
1/2
0 .

In the following we consider the operator K+V which is, in general, only quasi-accretive
(see [21, Chapter V.3.10]). Therefore, we define

ν := min
{

0, inf
x�=0

(V x, x)
(x, x)

}
� 0. (7.4)

Then the operator K+V −ν is maximal accretive in H and thus generates the contractive
strongly continuous semi-group

S(τ) := e−τ(K+V −ν), τ � 0.

As a consequence, the operator K + V generates the quasi-bounded strongly continuous
semi-group

T (τ) := e−τ(K+V ), τ � 0, (7.5)

in H such that ‖T (τ)‖ � eτν (cf. [10, Theorem 3.1]).
The next theorem establishes the existence of solutions of the abstract differential

equation (1.14).

Theorem 7.5. Suppose that V is bounded and that the operator S = V H
−1/2
0 can

be decomposed as S = S0 + S1 with ‖S0‖ < 1 and S1 compact. There then exists a
maximal accretive operator K in H such that, with the semi-group (T (τ))τ�0 given by
T (τ) := e−τ(K+V ), τ � 0, for any initial value v0 ∈ D((K + V )2), the function

v(τ) := T (τ)v0, τ � 0, (7.6)

is a classical solution of the Cauchy problem

v̈(τ) + 2V v̇(τ) + V 2v(τ) − H0v(τ) = 0, τ � 0, v(0) = v0. (7.7)
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The spectrum of the infinitesimal generator K +V of the semi-group (T (τ))τ�0 contains
the eigenvalues of A1 in the open upper half-plane, the spectral points of positive type
of A1 and the real eigenvalues of A1 that are not of negative type.

Proof. By Theorem 5.7 (ii), the non-real spectrum of A1 consists only of finitely many
points. Thus, we can choose β ∈ ρ(A1) such that Re β < ν, where ν is given by (7.4).
Then, according to Lemma 7.1 and Remark 7.2, there exists at least one maximal non-
negative subspace L+ in K1 such that (A1 − β)−1L+ ⊂ L+, and hence

L+ ⊂ (A1 − β)(L+ ∩ D(A1)). (7.8)

According to Lemma 7.3 and the remarks following its proof, there exists a maximal
accretive operator K in H so that L+ is the graph of K, that is, (7.3) holds. For the
function v defined in (7.6) we have v(τ) ∈ D((K + V )2), since v0 ∈ D((K + V )2) and
thus the derivatives v̇(τ), v̈(τ) exist in the norm topology of H:

v̇(τ) = −(K + V )v(τ), v̈(τ) = (K + V )2v(τ), τ � 0. (7.9)

We introduce the function

w(τ) := (K + V − β)v(τ), τ � 0. (7.10)

Then w(τ) ∈ D(K + V ) = D(K) and (w(τ)Kw(τ))T ∈ L+ for all τ � 0. According
to (7.8), there exists an element (v̂(τ)Kv̂(τ))T ∈ L+ ∩ D(A1) such that(

w(τ)
Kw(τ)

)
= (A1 − β)

(
v̂(τ)
v̂(τ)

)
, τ � 0.

This equation is equivalent to the system

(K + V − β)v̂(τ) = w(τ), (7.11)

(H0 + (V − β)K)v̂(τ) = Kw(τ) (7.12)

for all τ � 0. Since Re β < ν and K is maximal accretive, we have β ∈ ρ(K + V ). Thus,
(7.11) and (7.10) yield v̂(τ) = v(τ), τ � 0. Now (7.11) and (7.12) imply that

(H0 + (V − β)K)v(τ) = K(K + V − β)v(τ), τ � 0,

or, equivalently,

H0v(τ) + 2V (K + V )v(τ) − V 2v(τ) = (K + V )2v(τ), τ � 0.

From this we obtain (7.7) using (7.9).
To prove the last claim, we first consider a point λ0 that is either an eigenvalue of A1

in the open upper half-plane or a real eigenvalue of A1 that is not of negative type. In
both cases, Lemma 7.1 shows that there exists an eigenvector x0 of A1 at λ0 that belongs
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to L+. This means that there exists an x0 ∈ D(K) = D(K +V ) so that x0 = (x0 Kx0)T

and (
V I

H0 V

) (
x0

Kx0

)
= λ0

(
x0

Kx0

)
.

Comparing the first components, we find (K + V )x0 = λ0x0, i.e. λ0 ∈ σp(K + V ).
Finally, we consider a spectral point λ0 of positive type of A1. In this case, there
exists a bounded admissible open interval Γ ⊂ R such that λ0 ∈ Γ and E(Γ )K1 is
a positive subspace, which is contained in L+ by Lemma 7.1. Then λ0 is an eigenvalue
or approximate eigenvalue of the restriction of A1 to E(Γ )K1; hence, there exists a
sequence (xn) ⊂ E(Γ )K1 ⊂ L+ such that ‖xn‖ = 1 and (A1 − λ0)xn → 0, n → ∞. As
above, it is easy to see that, with xn = (xn Kxn)T, we have lim infn→∞ ‖xn‖ > 0 and
(K + V )xn − λ0xn → 0, n → ∞, and hence λ0 ∈ σ(K + V ). �

Remark 7.6. Using the spectral mapping theorem, it can be shown that the spectrum
of K + V consists exactly of the points described in the last sentence of the theorem.

Remark 7.7. The function v(τ) = T (τ)v0, τ � 0, is defined for arbitrary elements
v0 ∈ H. However, if H0 is unbounded, it does not necessarily have a second derivative,
and hence v is only a solution in some weaker sense.

Similar considerations as in this section apply to a maximal non-positive invariant
subspace of A1, which leads to a semi-group and also to a solution of the differential
equation (1.14) for τ � 0.

8. Application to the Klein–Gordon equation in R
n

In this section we consider the Klein–Gordon equation (1.1) in R
n. Here H = L2(Rn)

with corresponding inner product (· , ·)2 and norm ‖·‖2, H0 = −∆+m2, and V = eq is the
maximal multiplication operator by the real-valued measurable function eq : R

n → R.
In the following we formulate necessary and sufficient conditions for Assumptions 3.1
and 5.1 and we apply the results of the previous sections to the Klein–Gordon equation
in R

n.
Many different sufficient conditions for the relative boundedness and for the relative

compactness of a multiplication operator with respect to H
1/2
0 = (−∆ + m2)1/2 have been

established (see, for example, [22,39,43] and the more specialized references therein).
Examples considered in [27, § 6] include Rollnik potentials, which are (−∆ + m2)1/2-
bounded, and potentials belonging to Lp(Rn) with n � p < ∞, which are (−∆+m2)1/2-
compact. The most general description in terms of necessary and sufficient conditions,
which we present here, has been given by Maz′ya and Shaposhnikova in [31,33].

8.1. Assumptions 3.1 and 5.1

It is well known (see [44, §§ 1.3.1, 1.3.2]) that, for H0 = −∆ + m2, the spaces Hα =
D(Hα

0 ), α ∈ [0, 1], introduced in (4.1) are the Sobolev spaces of order 2α associated with
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L2(Rn) (see the definition given below):

Hα = W 2α
2 (Rn), α ∈ [0, 1].

Hence, Assumption 3.1, which reads H1/2 = D(H1/2
0 ) ⊂ D(V ), now becomes

Assumption 8.1. W 1
2 (Rn) ⊂ D(V ).

This is equivalent to V ∈ L(W 1
2 (Rn), L2(Rn)) or to the fact that V is (−∆ + m2)1/2-

bounded; the latter means that there exist constants a, b � 0 such that

‖V u‖2 � a‖u‖2 + b‖(−∆ + m2)1/2u‖2, u ∈ W 1
2 (Rn). (8.1)

Therefore, Assumption 5.1 (and hence Assumption 3.1) is satisfied if the restriction of V

to W 1
2 (Rn) can be decomposed as follows.

Assumption 8.2. V = V0 + V1 such that V0 is (−∆ + m2)1/2-bounded and satisfies
(8.1) with a/m + b < 1 and V1 is (−∆ + m2)1/2-compact.

Before we formulate abstract necessary and sufficient conditions for Assumptions 8.1
and 8.2, we consider an example for which both assumptions may be checked directly
using Hardy’s inequality and Sobolev’s embedding theorems (see [27, Theorem 6.1,
Proposition 6.4 and Example 6.5]).

Example 8.3. Let n � 3. Assumption 8.2 is satisfied for

V (x) =
γ

|x| + V1(x), x ∈ R
n \ {0},

with γ ∈ R, |γ| < (n − 2)/2, and V1 ∈ Lp(Rn), n � p < ∞.

Instead of the Coulomb part V0(x) = γ/|x|, we could also assume that V0 is bounded,
V0 ∈ L∞(Rn) with ‖V0‖∞ < m, or that V 2

0 is a so-called Rollnik potential (see [39,43])
with Rollnik norm ‖V 2

0 ‖R < 4π (see [27, Theorem 6.2]).
Note that the admission of the relatively compact part V1 of V , which is not subject

to any relative norm bound, may give rise to complex eigenvalues, even if V is a bounded
potential. This was observed in [42] for potentials represented by a sufficiently deep well.

In general, the property that V0 is (−∆+m2)1/2-bounded means that V0 belongs to the
space M(W 1

2 (Rn), L2(Rn)) of bounded multipliers from the Sobolev space W 1
2 (Rn) into

L2(Rn), the property that V1 is (−∆+m2)1/2-compact means that V1 belongs to the space
M◦(W 1

2 (Rn), L2(Rn)) of compact multipliers from W 1
2 (Rn) into L2(Rn) (see [33]). Neces-

sary and sufficient conditions for functions V to belong to a space M(Wm
2 (Rn), W l

2(R
n))

of bounded multipliers or the corresponding space of compact multipliers have been
established by Maz′ya and Shaposhnikova for integer m and l in [31] and for fractional
m and l in [32] (see [33]). In view of Assumption 3.1, we restrict ourselves to the case
l = 0. In the following we introduce all necessary definitions to formulate these criteria
in Theorem 8.4, below.
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If S1 and S2 are Banach spaces of functions on R
n, then a function γ : S1 → S2 is

called a bounded multiplier from S1 into S2, γ ∈ M(S1,S2), if

‖γ‖M(S1,S2) := sup{‖γu‖S2 : u ∈ S1, ‖u‖S1 = 1} < ∞.

With any Banach space S of functions on R
n, we associate the space

Sloc := {u : R
n → C : for all η ∈ C∞

0 (Rn) and ηu ∈ S}.

For s > 0, we denote by [s] and {s} the integer and fractional part, respectively, of s,
i.e. s = [s] + {s} with [s] ∈ N and 0 � {s} < 1. For k ∈ N, we denote by ∇k the gradient
of order k, that is,

∇k =
(

∂k

∂xα1
1 · · · ∂xαn

n

)
α1+···+αn=k

.

For s > 0 and 1 � p < ∞, the fractional derivative Dp,s of order s in Lp(Rn) of a function
u on R

n is given by

(Dp,su)(x) :=
( ∫

Rn

|(∇[s]u)(x + h) − (∇[s]u)(x)||h|n−p{s} dh

)1/p

.

The fractional Sobolev space W s
p (Rn) is defined as the closure of C∞

0 (Rn) with respect
to the norm

‖u‖p,s := ‖Ds,pu‖p + ‖u‖p, u ∈ W s
p (Rn); (8.2)

henceforth ‖ · ‖p denotes the standard norm in Lp(Rn). For integer s = k ∈ N, the space
W s

p (Rn) coincides with the classical Sobolev space

W k
p (Rn) := {u ∈ Lp(Rn) : ∇ju ∈ Lp(Rn), j = 1, 2, . . . , k}

and the norm (8.2) is equivalent to

‖u‖p,k :=
( k∑

j=0

‖∇ju‖2
p

)1/2

, u ∈ W k
p (Rn).

Finally, for a compact subset e ⊂ R
n, we define the (p, s)-capacity of e by

cap(e, W s
p (Rn)) := inf{‖u‖p,s : u ∈ C∞

0 (Rn), u|e � 1}.

In the following, if ω varies in some set Ω and a, b depend on ω, we write a(ω) ∼ b(ω) if
there exist constants c1, c2 > 0 such that c1b(ω) � a(ω) � c2b(ω) for all ω ∈ Ω.

Theorem 8.4. Let V : R
n → C be a measurable function, m ∈ N, and p ∈ (1,∞).

Then V ∈ M(Wm
p (Rn), Lp(Rn)) (the space of bounded multipliers) if and only if there

exists a constant c > 0 such that, for any compact subset e ⊂ R
n,

‖V ; e‖p
p :=

∫
e

|V (x)|p dx � c cap(e, Wm
p (Rn)),

https://doi.org/10.1017/S0013091506000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506000150


746 H. Langer, B. Najman and C. Tretter

and

‖V ‖M(W m
p (Rn),Lp(Rn)) ∼ sup

e⊂R
n compact,

diam e�1

‖V ; e‖p

cap(e, Wm
p (Rn))1/p

.

Furthermore, V ∈ M◦(Wm
p (Rn), Lp(Rn)) (the space of compact multipliers) if and only

if

lim
δ→0

sup
e⊂R

n compact,
diam e�δ

‖V ; e‖p

cap(e, Wm
p (Rn))1/p

= 0.

The proof of this theorem may be found in [33, § 2.1.4 and Lemma 2.2.2/1].

8.2. Application of Theorems 5.7, 5.9 and 6.5

If the potential V satisfies Assumption 8.2 (and hence Assumptions 3.1 and 5.1), then
all results of the previous sections apply to the Klein–Gordon equation in R

n and we
obtain the following statements.

Recall that, by Assumption 8.1, the operator V maps the space W k
2 (Rn) boundedly

onto W k−1
2 (Rn) for all k ∈ [0, 1] (see Remark 4.1, (4.5)).

Theorem 8.5. Suppose that W 1
2 (Rn) ⊂ D(V ) and that V = V0 + V1, where V0 is

(−∆+m2)1/2-bounded satisfying (8.1) with a/m+b < 1 and V1 is (−∆+m2)1/2-compact.

(i) The operator A2 given by

D(A2) :=
{(

x

y

)
∈ W

1/2
2 (Rn) ⊕ W

−1/2
2 (Rn) : x ∈ W 1

2 (Rn), y ∈ L2(Rn),

V x + y ∈ W
1/2
2 (Rn), (−∆ + m2)x + V y ∈ W

−1/2
2 (Rn)

}
,

A2

(
x

y

)
:=

(
V x + y

(−∆ + m2)x + V y

)

is a self-adjoint and definitizable operator in the Krein space given by K2 =
W

1/2
2 (Rn) ⊕ W

−1/2
2 (Rn) with indefinite inner product

[x,x′] := ((−∆+m2)1/4x, (−∆+m2)−1/4y′)2+((−∆+m2)−1/4y, (−∆+m2)1/4x′)2,

for x = (x y)T, x′ = (x′ y′)T ∈ W
1/2
2 (Rn) ⊕ W

−1/2
2 (Rn).

(ii) The non-real spectrum of A2 is symmetric to the real axis and consists of at most
finitely many pairs of eigenvalues λ, λ of finite type; the algebraic eigenspaces cor-
responding to λ and λ are isomorphic. There are no complex eigenvalues if

‖V (−∆ + m2)−1/2‖ < 1.

(iii) The essential spectrum of A2 is real and has a gap around 0; more precisely,

σess(A2) ⊂ R \ (−α, α), α :=
(

1 −
(

a

m
+ b

))
m.
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(iv) The operator A2 is generates a strongly continuous group (eitA2)t∈R of unitary
operators in the Krein space K2 = W

1/2
2 (Rn) ⊕ W

−1/2
2 (Rn).

(v) For every initial value x0 ∈ D(A2), the Cauchy problem

dx

dt
= iA2x, x(0) = x0,

has a unique classical solution x ∈ C1(R, W
1/2
2 (Rn) ⊕ W

−1/2
2 (Rn)) given by x(t) =

eitA2x0, t ∈ R.

The Cauchy problem for A2 is equivalent to an initial-value problem for the Klein–
Gordon equation (1.1). This leads to the following consequence of Theorem 8.5 (v).

Theorem 8.6. Suppose that the potential V satisfies the assumptions of Theorem 8.5.
Then the initial-value problem((

∂

∂t
− ieq

)2

− ∆ + m2
)

ψ = 0, ψ(· , 0) = ψ0,
∂ψ

∂t
(· , 0) = ψ1, (8.3)

in the space W
−1/2
2 (Rn) has a unique classical solution ψs if ψ0 ∈ W 1

2 (Rn), ψ1 ∈
W

1/2
2 (Rn) and (−∆ − V 2)ψ0 ∈ W

−1/2
2 (Rn), and the function t �→ ψs(· , t) belongs to

C1(R, W
1/2
2 (Rn)) ∩ C2(R, W

−1/2
2 (Rn)).

Proof. The Cauchy problem for A2 arises from (8.3) by means of the substitution

x(t) = ψ(· , t), y(t) =
(

− i
∂

∂t
− V

)
ψ(· , t), t ∈ R;

hence, the initial value for the Cauchy problem for A2 is given by

x0 =
(

x(0)
y(0)

)
=

⎛
⎝ ψ(· , 0)

−i
∂ψ

∂t
(· , 0) − V ψ(· , 0)

⎞
⎠ =

(
ψ0

−iψ1 − V ψ0

)
.

Since V maps W 1
2 (Rn) boundedly in L2(Rn) by Assumption 8.1, the assumptions on

ψ0 and ψ1 guarantee that x0 ∈ D(A2). Hence, Theorem 8.5 (v) yields a unique solution
x = (x y)T ∈ C1(R, W

1/2
2 (Rn) ⊕ W

−1/2
2 (Rn)) satisfying the equations

dx

dt
= i(V x + y) in W

1/2
2 (Rn),

dy

dt
= i((−∆ + m2)x + V y) in W

−1/2
2 (Rn).

Differentiating the first equation and using the second one, we obtain that x ∈
C1(R, W

1/2
2 (Rn)) ∩ C2(R, W

−1/2
2 (Rn)) and that x satisfies (8.3) in W

−1/2
2 (Rn). �

Remark 8.7. If only ψ0 ∈ W
1/2
2 (Rn) and ψ1 ∈ W

−1/2
2 (Rn), then x0 ∈ W

1/2
2 (Rn) ⊕

W
−1/2
2 (Rn). In this case we only obtain mild solutions of the Cauchy problem for A2

(see Remark 6.6) and thus solutions of (8.3) in some weaker sense.
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If the potential V is (−∆ + m2)1/2-compact, a similar result was proved in [18, § 5],
also using the regularity of the critical point ∞ of A2.

The above theorem should also be compared with a corresponding result which can
be obtained using the operator A introduced in [27] (see § 5). Since A is a self-adjoint
operator in the Pontryagin space K = H1/2 ⊕ H = W 1

2 (Rn) ⊕ L2(Rn), it generates a
group (eitA)t∈R of unitary operators in this space. By means of the substitution

x(t) = ψ(· , t), y(t) = −i
∂ψ

∂t
(· , t), t ∈ R,

one can prove an existence and uniqueness result for classical solutions of (8.3) in L2(Rn).
Here, stronger assumptions on the initial values have to be imposed which ensure that

x(0) = (ψ0 − iψ1)T ∈ D(A) = D(H) ⊕ D(H1/2
0 ) ⊂ W 2

2 (Rn) ⊕ W 1
2 (Rn)

(H = H
1/2
0 (I − S∗S)H1/2

0 being the operator associated with the differential expression
−∆ + V 2).

Remark 8.8. Suppose that the potential V satisfies the assumptions of Theorem 8.5,
and that 1 ∈ ρ(S∗S). Then the initial problem (8.3) in L2(Rn) has a unique classical
solution ψs if ψ0 ∈ D(H) ⊂ W 2

2 (Rn), ψ1 ∈ W 1
2 (Rn), and the function t �→ ψs(· , t) belongs

to C1(R, W 1
2 (Rn)) ∩ C2(R, L2(Rn)).

This shows that, for smooth initial values as in Remark 8.8, the operator A studied
in [27] gives classical solutions of the Klein–Gordon equation (8.3) in L2(Rn); for less
smooth initial values as in Theorem 8.6, the operator A2 studied in the present paper
still gives classical solutions of the Klein–Gordon equation, but only in W

−1/2
2 (Rn).
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spaces, J. Operat. Theory 25 (1991), 183–211.

18. P. Jonas, On the spectral theory of operators associated with perturbed Klein–Gordon
and wave type equations, J. Operat. Theory 29 (1993), 207–224.

19. P. Jonas, On bounded perturbations of operators of Klein–Gordon type, Glas. Mat. Ser.
III 35 (2000), 59–74.

20. T. Kako, Spectral and scattering theory for the J-selfadjoint operators associated with
the perturbed Klein–Gordon type equations, J. Fac. Sci. Univ. Tokyo (1) A23 (1976),
199–221.

21. T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen
Wissenschaften, Volume 132 (Springer, 1966).

22. T. Kato, A short introduction to perturbation theory for linear operators (Springer, 1982).
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