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SINGER GROUPS 

MARSHALL D. HESTENES 

Interest in the Singer groups has arisen in various places. The name itself 
results from the connection Singer [7] made between these groups and perfect 
difference sets, and this is closely associated with the geometric property that 
a Singer group is regular on the points of a projective space. Some information 
about these groups appears in Huppert's book [3, p. 187]. Singer groups are 
frequently useful in constructing examples and counterexamples. Our aim in 
this paper is to make a systematic study of the Singer subgroups of the linear 
groups, with a particular view to analyzing the examples they provide of 
Frobenius regular groups. Frobenius regular groups are a class of permutation 
groups generalizing the Zassenhaus groups, and Keller [5] has shown recently 
that they provide a new characterization of AQ and Mn. 

In § 2 we study the properties of the Singer groups as subgroups of the linear 
groups. From these properties we will be able to see when the Singer sub­
groups may be used to obtain a representation of PSLn(ç) as a Frobenius 
regular group. Section 3 is devoted to the investigation of this representation 
in detail. In § 4 we determine all the cyclic self-centralizing trivial intersection 
(T.I.) sets in PSLw(g) in order to show that the Singer groups are essentially 
the only cyclic T.I. sets in PSLw(g) yielding a Frobenius regular representation. 
Then in § 5 we investigate the intersection of Singer groups with some of the 
other classical groups, and in particular we show that in some cases this 
intersection may be used to get a Frobenius regular representation of a unitary 
group. This result indicates that very considerable difficulties are to be 
expected in the problem of classifying the Frobenius regular groups. 

Acknowledgement. I wish to express my deep gratitude to Professor D. G. 
Higman for his careful guidance, advice, and encouragement during the 
preparation of this work. 

1. Preliminaries. Let F be a vector space of dimension n ^ 2 over the 
finite field Fq, where q = pm, p a prime. The group of all non-singular linear 
transformations of V is denoted by GL(F) , and the kernel of the determinant 
map GL(F) -> F* is denoted by SL(F) . Set PGL(F) = GL (F) /Z , where 
Z is the centre of GL(F) , and set PSL(F) = SL(F) /Zi , where 
Zi = ZC\ SL(F) is the centre of SL(F) . Let P(V) be the lattice of sub-
spaces of V, which we may regard as an (n — 1)-dimensional projective 
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space over Fq. Then there exists a natural homomorphism of GL(F) into 
Aut P(V), with kernel Z, so that the image of GL(F) is isomorphic to PGL(F) 
and the image of SL(F) is isomorphic to PSL(F). 

Now we choose for V the field FQn, regarded as a vector space of dimension n 
over Fq. For each a £ Fgn*, let Ta £ GL(F) be given by Ta: x —>ax, x £ F. 
Then T = { Ta £ GL(F) | a G ^V*} is a cyclic subgroup of GL(F) isomorphic 
to Fqn*, and T is regular on the vectors in V — {0}. 

Definition 1.1. The conjugates of T in GL(F) will be called Singer groups 
in GL(F) . The intersection of a Singer group in GL(F) with SL(F) will be 
called a Singer group in SL(F). The image in PGL(F) of a Singer group in 
GL(F) will be called a Singer group in PGL(F) . The image in PSL(F) of a 
Singer group in SL(F) will be called a Singer group in PSL(F). 

If M, SM, H, and K are Singer groups in GL(F) , SL(F) , PGL(F) , and 
PSL(F), respectively, then it is evident from the definitions that they are all 
cyclic with orders 

\M\ = g- - i, 
\SM\ = \H\ = (g» - l)/(q - 1), 

\K\ = (f-i)/(q-i)(n,q-l). 

Definition 1.2. A generator for a Singer group will be called a Singer cycle. 

It is also clear that M and SM are regular and semi-regular, respectively, on 
the vectors in V — {0}, and H and K are regular and semi-regular, respectively, 
on the points of P(V). The Singer groups in GL(F) are all conjugate as are 
those in PGL(F) . 

With respect to a fixed basis for V, we have isomorphisms of the groups 
GL(7) , SL(F) , PGL(F) , and PSL(F) onto their matrix versions GLn(q), 
SLn(q), PGLn(g), and PSLn(g), respectively. The image of a Singer group in 
GL(F) is referred to as a Singer group in GLw(g), and so on. 

In order to relate this study of Singer groups with Frobenius regular groups, 
we will need the following. 

Definition 1.3. A finite permutation group G acting transitively on a set Œ 
will be called a Frobenius regular group if for a G Œ 

(1) there exists a faithful Frobenius Ga-orbit, and 
(2) every non-Frobenius orbit different from {a} of Ga is regular. 

Definition 1.4. A Frobenius regular group G such that there are a Frobenius 
Ga-orbits and /3 regular Ga-orbits is called an [a, /3]-group. 

LEMMA 1.5. If a finite group G has a proper subgroup N satisfying: 
(1) N is a Frobenius group with kernel K and complement E, 
(2) N = N0(K), and 
(3) K and E are T.I. sets in G, 

then G is faithfully represented as a Frobenius regular group on the set 0 of left 
cosets of G (mod N). 
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LEMMA 1.6. Under the above hypotheses, N:E is one plus the number of 
Frobenius orbits of Ga, a Ç 0, and the number of self-paired Frobenius orbits of 
Ga is the number of involutions in N/E. 

2. Singer subgroups of the linear groups. Let us look at our field-
theoretic model of a Singer group in GL(F) , T = (7^), where J is a primitive 
(qn — l ) th root of unity. Since the characteristic polynomial of £ over Fq, 

n (* - *•*). 
is the same as the characteristic polynomial of T^ T% has only trivial eigen-
spaces in V. Suppose that we extend the ground field FQ to Fqn; thus we have 
the natural embeddings: 

V-+W = Fqn®Fq V, 
P(V)-+P(W), 

GL(V)-+GL(W), 
AutP(V)-*AutP(W). 

Identify V with its image in W, etc. 

Definition 2.1. A vector in W but not in V will be called irrational. A point 
of P(W) not in P(V), i.e., a one-dimensional subspace of W spanned by an 
irrational vector, will be called an irrational point in P(W). 

Choose a basis X0, Xi, . . . , Xn„i of W such that Xt is the irrational eigen­
vector of T corresponding to the eigenvalue £Qt, i = 0, . . . , n — 1. Any 
member of T has the form (Tç)1 = 7y with eigenvalues £tQt, i = 0, . . . ,w — 1. 
What are the eigenspaces for 7y? Xt and Xi+j are in the same eigenspace for 
TV if and only if £'«* = £tqi+3', and this equality holds if and only if £' = £**'"; 
thus in particular the eigenspaces of T^ all have the same dimension. Let 
a: x—>%q, x € Fqn*, be an automorphism of order n of Fqn over Fq. Since 
%w is (^yj, X0 and Xj are in the same eigenspace if and only if ^ is in the 
fixed field of <rJ. Hence, if Fq(^

1) — Fqm (necessarily m divides n), then X0 and 
Xm are in the same eigenspace and no Xu 0 < i < m, is in that eigenspace. 
The following result is now clear for r — qn — 1. The caser = (qn — l)/(q — 1) 
is similar. 

THEOREM 2.2. Suppose that r = qn — 1 or r = (qn — l)/(q — 1) and t\ is a 
primitive rth root of unity, so that {Tv) is either T or the unimodular subgroup 
of T. Then for an integer t, 0 < t < r, and a positive integer m dividing n, the 
following are equivalent: 

(1) Fq(v<) = Fqm; 
(2) The eigenspaces of TJ are the m spaces {Xt\ i = a (mod m)), 

a = 0, 1, . . . , m — 1, each of dimension n/m; 
(3) t is a multiple of r/sm but not of r/sjfor any 0 < j < m such that j divides 

m, where s{ = (qi — 1, r). 
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Given r and /, where r = qn — 1 or r = (qn — l)/(q — 1) and 0 < t < r, 
write ii(r, /) for the uniquely determined m dividing n satisfying ( l ) - ( 3 ) . 

COROLLARY 1. Suppose that A is a Singer cycle in GL(V) (so that r = qn — 1) 
or A is a Singer cycle in S L ( F ) (so that r = (qn — l)/(q — 1)). Then for 
0 < t < r, the eigenspaces of Al are all of dimension n//x(r,1). Consequently, n is 
a prime if and only if each non-scalar element of (A ) has the same eigenspaces as A. 

COROLLARY 2. n is a prime if and only if all the non-identity elements of a 
Singer group in P G L ( F ) (or in P S L ( F ) ) have the same fixed point set in P(W). 

W e have determined the eigenspaces of the elements of a Singer group in 
G L ( F ) and in S L ( F ) . Certainly the eigenspaces of a Singer group itself are 
well-defined. We will now show tha t no two distinct Singer groups in G L ( F ) 
or in S L ( F ) have a non-zero eigenvector in common. Here we will use the 
matr ix versions since the result is an easy consequence of the following general 
matr ix proposition. 

T H E O R E M 2.3. Let E be a field, let L be a finite cyclic extension of E of degree 
n ^ 2, and let a be a generator of the automorphism group of L over E. Then there 
is an inner automorphism of Ln (the n X n matrices over L) which maps En 

onto the set of all matrices in Ln of the form 

(*) 

Xi 
a 

xn 

x2 
Xi 

Lx2 

o-n-l 

Xn 
<T 

o-n-l o-n-l 
Xfi 0C\ 

Proof. Suppose t h a t a is a primitive element of L over E. If 

1 
a 

a 

1 
a 

n—l (n— 1)<T 

L a a 
(n-l)<r»-l 

then one can easily check t h a t the map X —» P"XXP, X G Ln, is the desired 
inner automorphism of Ln. 

In the present context, we obtain the following theorem. 

T H E O R E M 2.4. There is an inner automorphism of GLw(gn) which maps 
GLn(q) onto the set Cn(q) of all matrices of GLn(q

n) of the form (*). Furthermore, 
there is a Singer cycle A in Ghn(q) whose image under this inner automorphism 
is diagonal. 
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Proof. If Fqn = FQ(£), £ a primitive (qn — l)-root of unity, and the minimum 
polynomial for £ is m{x) = a0 + axx + . . . + xn, (coefficients in Fq), then 
the corresponding companion matrix A is a Singer cycle in GLn(q) whose 
image under the inner automorphism is diag{£, £?, . . . , ^ f t -1J. 

COROLLARY 3. No two distinct Singer groups in Ghn(q), and hence in SLn(q), 
have a common non-zero eigenvector in W. Thus, no two distinct Singer groups in 
VGL-n{q) or in ¥SLn(q) have a common fixed point in P(W). 

Proof. The eigenspaces of the Singer group in Cn(q) generated by 
A = diag{£, £ « , . . . , r - 1 } are spanned by (1, 0, . . . , 0), . . . , (0, . . . , 0,1), 
respectively. If any Singer cycle B in Cn(q) has one of these unit vectors as 
an eigenvector, then it is easy to check that B generates the same Singer 
group as A. 

Our next goal is to determine the possible intersections of a Singer group 
with a conjugate. We would particularly like to know when a Singer group 
is a T.I. set. 

Definition 2.5. A subgroup D of a group G is a trivial intersection (T.I.) set 
HD r\D9 = l o r 2? for all g 6 G. 

THEOREM 2.6. Suppose that S is a Singer group in G and S* is a distinct 
conjugate of S. Then for some positive proper divisor r of n, \S* C\ S\ divides 

(i) qf - l « / G = GL»(«z), 
(ii) (q'-l)/(q-l)ifG = PGLn(q), 

(iii) (q* - 1, (g- - 1 ) / ( S - 1)) if G = SLn(q), 
(iv) (qr - 1, (g- - l ) / ( 2 - l ) ) / ( » , <Z - 1) if G = PSUOz), 

and intersections of these orders exist for every positive proper divisor r of n. 

Proof. We prove (i). The proof of (iii) is similar, and (ii) and (iv) are 
immediate consequences of (i) and (iii), respectively. By Theorem 2.4, S is 
similar in GLn(q

n) to the group M generated by A = diag{£, £ff, . . . , ^qn~1}, 
where £ is a primitive (qn — l)-root of unity. Suppose that Mx Pi M = (A1) 
for some t > 1 dividing \M\. A1 cannot have all its diagonal entries distinct 
since x does not normalize M. By Theorem 2.2, Corollary 1, t must be such 
that ju(gw — 1, t) = r for some positive proper divisor r of n. By 
Theorem 2.2 (3), t is a multiple of (qn - l)/(qr - 1). Hence \MX C\ M\ 
divides qT — 1. 

COROLLARY 4. / / n is a prime, the Singer groups in PGLw(g) and PSLw(g) 
are T.I. sets. 

On the other hand, let t = (qn - l)/(qr - 1) so that A1 has order qT - 1 
and A1 has every rth diagonal entry equal. Let x be a member of Cn(q) (the 
group of all matrices of GLn(q

n) of the form (*)) such that the only non-zero 
entries in the first row are xx and xr+i. Then x normalizes {A l) but does not 
normalize any larger subgroup of M ; thus \MX C\ M\ = qr — 1. 
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Let us turn our attention to the normalizers of the Singer groups. Higman 
and McLaughlin [2] have determined the normalizers of M in GL and H in 
PGL. They pointed out that if a generates the automorphism group of FQn 
over FQ, then each member of (a) may be considered as a non-singular linear 
transformation of the vector space V = Fqn over Fq, and hence induces a 
collineation of the projective space P(V). If we denote this induced collinea-
tion group by (r), then (a) and (r) are isomorphic, NGL(Af) = M(a) and 
N P G L ( t f ) = H(r). 

THEOREM 2.7. 

N8Ij(SM) = NGL(ilf) H SL and N P S L ( X ) = N P G L ( t f ) H PSL. 

Proof. Certainly NGL(Af) H SL ^ N 8Ij(SM) since M is cyclic. If 
» € N SL(Sikf), then 5M" ^ M* H M and by Theorem 2.6 (i), Mx H M = M. 
The projective case is similar. 

If a £ SL, then NgL(5ili") = Sikf(o-); thus the question arises, when is 
a G SL? a maps x to xff, and so with respect to a normal basis, 

To i 1 

• 1 
Ll OJ 

and this has determinant ( —l)w+1. Thus a Ç SL if and only if n is odd or 
n is even and g is a 2-power. Similarly, r £ PSL if and only if n is odd or n is 
even and there is a X 6 FQ such that \n = — 1 . Using this and a coset decom­
position when 0- $ SL or r g PSL, one can easily see that the orders are as 
they should be. 

THEOREM 2.8. 

| N B L ( 5 M ) | = | N G L ( M ) | / ( ( Z - 1 ) and | N P S L ( X ) | = |NP G L(ff) | / (» f a - 1). 

Remark. From this theorem and Corollary 3, it follows that when n = 2, 
every irrational point in P(TF) is a fixed point for some Singer group in 
PSL2(g), for there are (q2 + 1) — (q + 1) irrational points, and there are 
PSL2(g): N P S L ( X ) = q(q — l ) / 2 distinct Singer groups each fixing two 
points, no two fixing the same point. 

THEOREM 2.9. The Singer groups are all self-centralizing. 

Proof. The normalizer of a Singer group in GLn(q) is conjugate in GLn(q
n) 

to (A)(a), where A = diag{£, £«, . . . , ^ n _ 1 } , £ is a primitive (qn - l)-root of 
unity, and cr is the above cyclic matrix. Then 1 ^ i S n and cr* centralizes A 
(even up to a scalar) implies i = n; thus the Singer groups in GL and PGL 
are self-centralizing. The unimodular case is similar. 
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T H E O R E M 2.10. N P g L ( i £ ) is a Frobenius group with Frobenius kernel K 
if and only if n is an odd prime or n = 2 and 4 | ( g + 1). 

Proof. Set N = N P S L ( i £ ) . W e determine when 1 ^ x £ K implies 
CN(x) ^ K by determining when the elements which fix all non-scalar 
members of SM up to a scalar are contained in SM. Let SM = (A), where 
A = d i ag{ \ , \ \ . . . , \Qn~1}, X a primit ive (qn - l ) / ( g - 1) root of uni ty . 
Then N S L ( 5 ¥ ) = (^4) (7), where 7 = a if a £ SLw(g) and 7 = ga otherwise, 
where g Ç M and de t g = — 1. 

If n is not a prime, then for a divisor r of w, 1 < r < n, there is a £ such t h a t 
A l has every r th diagonal en t ry equal. yT centralizes A \ and hence N is not 
Frobenius. Assume t h a t n is a prime. If A l is not scalar, then A l has no two 
diagonal entries equal ; thus for N not to be Frobenius there mus t be some 5 
less t han n such t h a t 7 s fixes A l up to a scalar different from / . However , 
this only happens when n = 2 and 4 divides g + 1. 

T h e normalizer of a Singer group in GL, SL, or P G L cannot be Frobenius 
unless there is an isomorphism with PSL. I t should be mentioned t h a t the 
image of the normalizer in SL2(g) of the diagonal subgroup is a Frobenius 
subgroup of PSL 2(g) in case 4|(g + 1). 

In the next two theorems, Gn(q) ivill denote any of GLw(g), SLw(g), 
PGL^(g) , or PSLn(q). These theorems give conditions for a subgroup of 
Gn(q) to be contained in a Singer group. 

T H E O R E M 2.11. Given a Singer group S in Gra(g), suppose that U is an abelian 
subgroup of Gn(q) of order dividing |5j , and that there is a prime r dividing \ U\ 
such that (r, Gn(q): S) = 1. Then Ux S S for some x G Gn(q). 

Proof. Suppose t h a t Gn(q) = GLn(q). Le t R be the r-Sylow subgroup of 
GLn(q) contained in S. Then there is an x G GLn(q) such t h a t Ux C\ R ^ 1. 
In GLn(q

n)j S is similar to the group S' generated by A = diag{£, £q, . . . , ^ n - 1 } , 
g a primit ive (qn — l ) - roo t of uni ty . Le t R' and V denote the images of R 
and Ux, respectively, under this similarity. Now (r, GLn(q) :S) = 1 implies 
(r, ql — 1) = 1 for all i, 1 ^ i < n\ t hus by Theorem 2.2 and Corollary 1, 
the non-ident i ty matrices in R! have dist inct diagonal entries. Since U is 
abelian, Ux ^ C(UX r\ R); t hus the matrices in U' are diagonal. Therefore 
they centralize 5 ' , a self-centralizing group, and hence Ux ^ S. 

Since (r, q — 1) = 1, R is in Shn(q); thus the result holds when 
Gn(q) = SLn(q). T h e projective cases are similar. 

T H E O R E M 2.12. Given a Singer group in Gn(q) and an abelian subgroup U of 
Gn(q) of the same order, then U is conjugate to the Singer group except possibly for 
G 6(2) or G2(p), where p + 1 = 2a for some a. 

Proof. By the previous theorem, we need only show t h a t there is a pr ime r 
dividing \U\ bu t (r, Gn(q): U) = 1. Such an r exists by the following result 
[1, p . 358, Corollary 2]. 

https://doi.org/10.4153/CJM-1970-057-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-057-2


SINGER GROUPS 499 

7/ p is a prime and s, t are positive integers, then there is a prime r such that 
r\(pl - 1) but r\ (ps - l), s < t, except for 

(1) t = 2 and p + 1 = 2a for some a, or 
(2) px = 64. 
A simple calculation shows that the only exception (2) gives in our case is 

n = 6 and q = 2. 
PSL2(11) demonstrates that the abelian hypothesis cannot be dropped, 

since \K\ = 6 and |N P S L ( i£ ) | = 12, and thus there is also a dihedral subgroup 
of order 6. 

By considering orders, we have the following result. 

THEOREM 2.13. A Singer group K is a Hall subgroup of PSLn(q) if and only 
if n is an odd prime or n = 2 and 4 | (g + 1). 

Much of our attention will be focused on this case. Here Theorems 2.11 and 
2.12 with Gn(q) = PSLn(g) can be obtained without the abelian assumption 
just by citing a theorem of Wielandt [6, p. 230], but this powerful theorem 
seems out of character with the previous discussion. 

In closing this section we mention the following: Suppose that T is a finite 
Desarguesian projective space of dimension n — 1. A question which arises 
naturally is exactly what are the subgroups G of the collineation group of w 
which are regular on the points of T? (X, G) is then a projective incidence 
group in the sense of Karzel [4]. He showed that if n ^ 3, then there exists 
a unique normal nearfield (F, L) (L is a sub-skewfield of F coordinating ir) 
such that G is isomorphic to F*/L*. Since T is finite, G is cyclic; thus by 
Theorem 2.12, G is a Singer group in PGLn(q). There are some exceptions when 
n = 2, but at least the normalizer of G is not Frobenius in any of the excep­
tional cases. 

3. Some Frobenius regular representations of PSL(g). In this section 
we study in detail some Frobenius regular representations of PSLn(g) afforded 
by the Singer groups. A Singer group K in PSLw(g) is a T.I. set in PSLw(g) 
when n is a prime (by Corollary 4). By Theorem 2.10, N(K) = NP S L(2£) is 
a Frobenius group with Frobenius kernel K if and only if n is an odd prime 
or n = 2 and 4^(g + 1). When N(K) is a Frobenius group, a Frobenius 
complement E in N(2C) is a cyclic group of prime order n; thus E is certainly 
a T.I. set in PSLn(g). Hence by Lemma 1.5, we have the following result. 

THEOREM 3.1. PShn(q) is faithfully represented as a Frobenius regular group 
on the set fi of left cosets of PSLw(g) (mod N (K) ) if and only if n is an odd prime 
or n = 2 and M(q + 1). 

In order to apply Lemma 1.6, we need to know the structure of N(E) . 
Let us first consider the case n = 2 and 4 \ (q + 1). Since there is only one 
class of involutions in PSL2(g), we may pick any involution that is convenient 
and it will generate a complement E for some Singer group K. 
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LEMMA 3.2. If n = 2 and q = 2W, then C(E) is elementary abelian of order q. 

Proof. PSL2(g) is isomorphic to SL2(g) ; thus assume that E = (r), where 

[i°J 
The matrices which centralize r have the form 

a £ Fq, 

and the set of all such matrices form an elementary abelian group of order q. 

C°J-
THEOREM 3.3. PSL2(g), q = 2m, has a [(q — 2)/2, 0]-Frobenius regular 

representation. The Frobenius orbits are all self-paired with q + 1 points. 

Proof. By Lemma 1.6, the number of Frobenius orbits is (N(E):E) — 1, 
and since N(E) = C(E), this is (q/2) — 1. Every Frobenius orbit is self-
paired since C(E)/E elementary abelian of order q/2 implies C(E)/E contains 
(q/2) — 1 involutions. The q + 1 points in each of the (q — 2)/2 Frobenius 
orbits plus the one point in the trivial orbit account for the q(q — l ) / 2 points, 
and hence there are no regular orbits. 

LEMMA 3.4. If n = 2 and 2\\(q + 1), then C(E) is dihedral of order q — 1. 

Proof. Since 4|(g — 1), — l i s a square in FQ1 say a2 — —-1. Suppose that E 
is the image in PSL of (7), 7 = diagfa, —a}. Since a and —a are distinct, the 
diagonal subgroup of SL is the centralizer of 7 in SL. The image D in PSL 
of this subgroup has order (q — l ) /2 . 

0 l" 
- 1 0. 

normalizes (7), and therefore its image 77 in PSL centralizes E. r inverts the 
diagonal matrices of SL, and hence C(E) is the dihedral group {r])D of order 
q - l . 

THEOREM 3.5. / / 2\\(q + 1), then PSL2(q) has a [(q - 3)/2, (q - l ) /4 ] -
Frobenius regular representation. The number of points in each Frobenius and 
regular orbit is (q + l ) / 2 and q + 1, respectively, and the number of self-paired 
Frobenius orbits is b + (q — l ) /4 , where b Ç {0, 1} and ô = (q — 5)/4 (mod 2). 

Proof. N ( £ ) = C(£) , and thus N(E):E = (q - l ) / 2 is the number of 
Frobenius orbits plus one. There are q(q — l ) / 2 points all together, and from 
the number of points in each Frobenius and regular orbit, the number 
(q — l ) / 4 of regular orbits is easily determined. The number of self-paired 
Frobenius orbits is the number of involutions in D/E plus the order of D/E. 
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From now on we will assume that n is an odd prime. E is a cyclic group 
generated by the image r of some matrix a 6 SLw(g). Usually, it will be 
convenient to assume that a has the form obtained by using a normal basis: 

^0 1 

LEMMA 3.6. N(E)/C(E) is cyclic of order n — 1. 

Proof. To show that N ( £ ) / C ( E ) is the full automorphism group of E, it 
suffices to show that there is an element p Ç SLn(q) such that p has order n — 1 
and all the non-identity members of (p) normalize but do not centralize (a). 
Let f be a primitive (n — l)-root of unity in Xn. Consider the permutation 
matrix such that the 1 in the (i + (n + l)/2)-row, 

-{n - l ) / 2 ^ i S {n - l ) / 2 , 

is in the (1 + j)-œlumn, where j = il + (n — l ) / 2 (mod n). Set p equal to 
plus or minus the matrix, the sign chosen so that p has determinant one. Then 
p~1(Tp = a* and p\ 1 ^ t < n — 1, normalizes but does not centralize (a). 

The element of order 2 in (p) has a desirable form. Namely, the non-zero 
entry in row i is ( — l)(n~u/2 in the (n + 1 — i)-column. This will be useful 
in applying Lemma 1.5, for if / is the element of order 2 in N(E)/C(E), then 
the number of involutions in N(E)/E is the number of involutions in C(E)/E 
plus the order of the subgroup of C(E)/E inverted by / . 

Let us now consider the case when q = 0 (mod n). 

LEMMA 3.7. / / q = pm and n = p, where p is an odd prime, then C(E) is 
elementary abelian of order qp~1. 

Proof. SLn(q) = PSLn(g), and hence we work in SLn(q). Instead of letting E 
be generated by the usual cyclic matrix c, it is easier to look at E = (7), 
where 7 is the unipotent matrix 

"l 
1 • 

a= ( -1 ) (p-l)/2 

U 
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Then X £ C(-E) if and only if X has the form 

1 
X2 

Xp-i 

. Xp CxJCp— i 

x2 1 
aX2 1J 

and the set of all such matrices forms an elementary abelian group of order 

LEMMA 3.8. If q = pm and p = n, where p is an odd prime, then a generator p 
of N ( E ) / C ( £ ) centralizes a subgroup of C(E) of order q. If J = p(p~1)/2, then 
C(E) = V X W, where \V\ = \W\ — q&-v/2, J centralizes W, and J inverts 
the elements of V, E ^ V. 

Proof. Assume that E is generated by the usual cyclic matrix a. Then the 
form of the elements in C(-E) is 

Xi X2 

X<n 

x = 

x2 

L,»v2 * **"p «v 1 J 

and p is the matrix described in the proof of Lemma 3.6. Since p~1[x2(r]p = x2<r^ 
etc., and f is a primitive (p — l)-root of unity in Zp, it follows that a necessary 
and sufficient condition for p to centralize X is that x2 

centralizes a subgroup of C(£) of order q. 
Since J = p(p~1)/2, we see that 

X<n Hence p 

J = 
0 

0 
where a = ( — 1) ( P - D / 2 . 

thus if we conjugate X G C(£) by / we obtain the transpose of X. Hence 
JXJ = X if and only if x2 = xp, x% = xp-i, . . . , x(3?+3)/2 = X(P+D/2. Thus / 
centralizes a subgroup W of C(£) of order q&-u/2. If we consider / acting on 
C(E) as a transformation T of period 2 acting on a vector space VQ of dimen­
sion m(p — 1), then this vector space can be written as Vo = Fi © F2, 
where V± is a subspace consisting of vectors fixed by T and V2 is a subspace 
consisting of vectors sent onto their negatives by T. Since \W\ = q(p~1)/2 and 
q = pm, the dimension of V\ is m(p — l ) / 2 . Hence V2 also has dimension 
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m(p — l ) / 2 ; thus J inverts a subgroup V of C(£) of order g^~l)l2. (Note 
t h a t E ^ V.) 

THEOREM 3.9. If q = pm, p an odd prime, then PSLp(g) has a 
[(p — l)qp~1/p — 1, fi]-Frobenius regular representation, where 

'-!fr^${t-p—o-»R<''-» + i}-s^:P-
The Frobenius and regular orbits have (qp — l)/(q — 1) and p(qp — l)/(q — 1) 
points, respectively. There are q{p~1)/2/p self-paired Frobenius orbits. 

Proof. By Lemmas 3.6 and 3.7, N ( E ) : £ = (p - l)qp~l/p, and this is one 
more than the number of Frobenius orbits. From this, the number of points 
in each Frobenius and regular orbit, and the fact that there are 

tfO-W/p) ff (<Z* - 1) 

total points, /5 can be determined. The number of involutions in N(E) is just 
the order q^-v'2 of the subgroup V of C(£) which is inverted by / . Since E 
is a subgroup of V, the number of involutions in N(E)/E is q(p~1)/2/p. 

Now consider the case q = 1 (mod n). 

LEMMA 3.10. If q = 1 (mod n), n an odd prime, then C(E) is the semi-direct 
product of a cyclic group of order n and a group B of order {q — \)n~l/n, where 
B is the direct product of n — 2 cyclic groups of order q — 1 and one of order 
(3 - l ) / « . 

Proof. The usual cyclic matrix a has characteristic equation xn — 1 = 0. 
Since n\(q — 1), this equation has roots 1, 0, /52, . . . , /3W_1, where ft £ Fq and 
j(3 has order n. Thus cr is similar to the matrix y = diag{l, /3, . . . , /iT-1}, and 
hence we can assume that E is the image of (7). Since 7 is diagonal with 
distinct entries, the centralizer of 7 in SL is the diagonal subgroup D of SL. 
D is the direct product of n — 1 cyclic groups of order q — 1 with one of them 
containing the scalar matrices; thus the image in PSL of D is just B. On the 
other hand, the coset containing 7 is {^ly\ i = 1, . . . , n\, and fify is just a 
cyclic permutation of the diagonal entries of 7 ; thus a leaves this set invariant. 
Hence since a normalizes the diagonal subgroup of SL, C(E) is the semi-
direct product of B and the image of (a). 

LEMMA 3.11. / / q = 1 (mod n), nan odd prime, then a generator ofN(E)/C(E) 
centralizes a subgroup of C(E) of order (q — l)/n. The element of order 2 in 
N(E) /C(E) centralizes a subgroup W of C(E) of order (q — l)(n~1)/2/n, and 
inverts a subgroup V of C(E) of order n{q — \yn-v/2 which contains E. 

Proof. Since E is the image of (7) and all the non-identity members of (7) 
just differ by permutations of the n — 1 elements (3, . . . , fin~l, we can assume 
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that a generator for N ( E ) / C ( £ ) is p = =t diagjl, p'}, where p' is an appro­
priate permutation matrix and the sign is chosen so that det p = 1. If 
X £ D(<r), then X = Fcr*, where F = diag{a0, a b . . . , an_i}. From the above 
description of p, it follows that p centralizes X if and only if <rj = 7 and 
ai = a2 = . . . = an. The group of all such X has order q — 1. Since this 
group includes the scalar matrices, a generator of N(E)/C(E) centralizes a 
subgroup of C(E) of order (q — l)/n. 

p can be chosen so that p(n~u/2 is 

J where a = ( — 1) (w-l)/2 

The matrices of D(cr) which are centralized by J have the form 

diag{a0, ax, . . . , a(w_i)/2, a(re_i)/2, . . . , f l i | . 

Since the scalar matrices have this form, it follows that the involution in 
N(E) /C(E) centralizes a subgroup W oî C(E) of order (g - l)(n~1)/2/n. The 
matrices of D inverted by J have the form 

diagjl, alt . . . , a(„_i)/2, a(~li)/2, . . . , ar1}, 

and (a-) is inverted by / . Hence the involution in N ( E ) / C ( £ ) inverts a sub­
group V of C(E) of order n(q — l)(n-u'2 containing E. 

THEOREM 3.12. If q = 1 (modn), n an odd prime, then PSL^(g) has an 
[(n — l)(q — l)n~1/n — 1, ft]-Frobenius regular representation, where 

The Frobenius and regular orbits have (qn — l)/n(q — 1) and (qn — l)/(q — 1) 
points, respectively. There are ô(2n~1 — 1) + (g — l)(n~1)/2 self-paired Frobenius 
orbits, where ô G {0, 1} and <5 = q (mod 2). 

The proof of this theorem is similar to that of Theorem 3.9, and therefore 
is omitted. 

The last case we will consider is where q ^ 0, q ^ 1 (mod n), n is an odd 
prime, and in addition (n, qi — 1) = 1 whenever i\(n — 1), 1 < i < n — 1. 

LEMMA 3.13. Ifnis an odd prime, q ^ 0, q ^ 1 (mod w), awd (w, qi — 1) = 1 
whenever i\(n — 1), 1 < i < n — 1, £&ew C(E) w cyc/ic 0/ on/er gn_1 — 1. 

Pnw/. Since g ^ 1 (mod w) and n is a prime, we can again identify PSLw(g) 
with SLn(q) and assume that E is generated by the cyclic matrix a. The 
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characteristic equation of a is still xn — 1 = 0. If m is such that 
(x — l)w | | (xn — 1), then a is similar to 

1 I 1 
1 • 

1 1 

p divides the order of this matrix unless m = 1, but a has order n and 
g ^ O (mod n), and hence m = 1. Thus a is similar to y = diag{l, r}, where 
r Ç SLTO_i(g) and r has order n; thus assume that E = (y). 

The matrices X £ C(£) have the form diagja, F}, where F is in the 
centralizer of r in GLn_i(g) and arl = det F. Thus finding C(£) is reduced to 
finding C G L „ _ I ( T ) . By Fermat's theorem, (f~l = 1 (modw), and from the 
assumptions it follows that M(ql — 1) for 1 ^ i < n — 1. Hence if 57kf is a 
Singer group in SLn_i(g), then |(r)| = w| \SM\ and (w, SLn_i(g):5ilf) = 1; 
thus by Theorem 2.11, (r) is a subgroup of some Singer group in SLn_i(g). By 
Theorem 2.6 there is a unique Singer group M in GLn_i(g) containing r, 
since n does not divide the order of the intersection of M with a distinct 
conjugate. From this it follows easily that anything centralizing r centralizes 
My which is a self-centralizing subgroup of GLn_i(g) (Theorem 2.9). 

LEMMA 3.14. A generator of N(E)/C(E) centralizes a subgroup of C(E) of 
order q — 1. The element of order 2 in N(E)/C(E) centralizes a subgroup W 
of C(E) of order q^1-^12 — 1 and inverts a subgroup V of order q(n~u/2 + 1 
containing E. 

Proof. If E and C(E) are as above, when we pass to the extension field 
Fqn-i, a generator diagja, Y) of C(£) is similar to X — diagja, Z}, where 
Z = diag{£, £3, . . . , £cn~2} and £ is a primitive (g"-1 - l)-root of unity. Set 
7 = X{qn~l~l),n and assume that E = (7). It follows from the discussion of 
intersections of Singer groups that 7 has distinct diagonal entries; thus 

1 

0 1 

1 
• 1 

0 

is isomorphic to a generator of N ( £ ) / C ( £ ) . p centralizes X1 if and only if 

m 
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£* = £«ff = . . . = £'*" 2; hence p centralizes a subgroup of C(E) of order q — 1. 
The element of order 2 in (p) is 

|~1 
/ = (_l)(«-D/2 o I 

L I 0. 
From this it is easy to check that / centralizes a subgroup W of C(£) of order 
q(n-i)/2 _ ]_ a n c j i n v e r t s a subgroup F of order q(n~v/2 + 1. 

THEOREM 3.15. / / n is an odd prime, q ?é 0, q ^ 1 (modw), awd 
(«, g* — 1) = 1 whenever i\{n — 1), 1 < i < w — 1, //z£?z PSLn(ç) has an 
[(n — l)(gw - 1 — l)/n — 1, (3]-Frobenius regular representation, where 

" n ( < Z n - l ) l n i i W 1 ; L * 1 J g - 1 J " 
77^ Frobenius and regular orbits have (qn — l)/(q — 1) and n(qn — l)/(q — 1) 
points, respectively. The number of self-paired Frobenius orbits is 

8 + ( ^ - D / 2 + l)/n, 

where 8 Ç {0, 1} and 8 = q (mod 2). 

The proof is omitted. 

4. Cyclic self-central izing T.I . sets . It has been shown that when n is an 
odd prime or n = 2 and 4-f (q + 1), a Singer group X in PSLn(q) may be used 
to obtain a Frobenius regular representation of PSLw(g). Now we would like 
to determine all the cyclic subgroups of PShn(q) affording such a representa­
tion. It is evident from Lemma 1.5 that such a subgroup must at least be a 
cyclic self-centralizing T.I. set in PSLn(q), and there are very few of these. 

THEOREM 4.1. Suppose that n ^ 3 and G is a cyclic self-centralizing T.I. set 
in PSL^(g). Then one of the following holds: 

(i) n is a prime and G = Kn(q), 
(ii) n — 1 is a prime, (q — l)\n, and G is conjugate to some Kn_i(q), 

(iii) n = 3, q = 2, and G is conjugate to (A), where 

A = 

Proof. The cyclic subgroups G of PSL^(g) are the images of the subgroups 
D{A) of SLn(q), where D is the diagonal subgroup of SLn(q) and A G SLn(q). 
As A runs through the possible classical canonical forms, we will attempt to 
show that the corresponding G is not a self-centralizing T.I. set either by 
showing that D{A) is not self-centralizing in SLw(g), or by producing a distinct 
conjugate of {A) whose intersection with (A) is non-scalar. When this attempt 
fails, we will show that the corresponding G is a self-centralizing T.I. set. 

1 0 0 
1 1 0 
0 1 1 
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xi — A is similar to diag{l, . . . , 1, ôi, . . . , ôr}, where the ôt are monic 
polynomials in x, and 5^0^+1, i = 1, . . . , r — 1. We will investigate the various 
possibilities for these invariant factors. In what follows,/(x), g(x), etc., will 
always denote irreducible functions, and the notation fs(x) will always carry 
the tacit assumption that 5 > 0. 

Assume that fs(x)\\ôi and fs(x)\\8i+i for some i < r. Then A contains two 
identical blocks C along the diagonal corresponding to the elementary divisors 
fs(x). Certainly there is an X 6 SLw(g) which interchanges the two blocks 
and fixes everything else; thus G is not self-centralizing. Hence, 

(1) If f'(x)\\bu i < r, then/'CxOllôi+i, where t > s. 
Assume that deg f(x) > 1, 5 > 1, and fs(x)\\ôi for some i. Then the block C 

on the diagonal of A corresponding to the elementary divisor fs(x) has the 
form 

C = 

B 
N B 

N B 

where N = o 

and B is the companion matrix for f(x). The group generated by all matrices 
of the form 

B1 

3 = 1, • • • - \B\, 

is a non-cyclic group which commutes with C. Hence, 
(2) If degf(x) > 1 and 5 > 1, then / s (x )^^ , i = 1, . . . , r. 
Assume that deg/(x) = 1, 5 > 1, and fs(x)\\di for some i. The block C of A 

corresponding to fs(x) has the same form as above (of course B = b and 
N = 1). C is centralized by the group of matrices of the form 

"1 
a2 • 

a2 1 
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This group is not cyclic unless s = 2 and q = p or s = 3 and q = 2. Hence, 
(3) If deg/(x) = 1, 5 > 1, and /5(x)||<5i for some i, then 5 = 2 and q = p 

or 5 = 3 and q = 2. 
If (3) holds for some i > 1 and jf(x)|5f_i, it is easy to show that D(A) is not 
self-centralizing. Hence, 

(4) If deg/(x) = 1 and fs{x)\\bt for some i > 1, where s = 2 and q = p 
or 5 = 3 and q = 2, t h e n / ( x ) | <5z_i. 

Combining (1) through (4), we have: 
(5) There is a single invariant factor ô, and the only possible reducible 

elementary divisors are described in (3). 
Assume that/(x)||<5 and g(x)\\ô, where/(x) 9^ g(%) but 

deg/(x) = degg(x) = r > 1. 

Then the blocks U and V of A corresponding to fix) and g(x), respectively, 
are both matrices from Singer groups in GL r(g). Suppose that 
A = diag{ Z7, F, IF} and X generates the unimodular subgroup of the Singer 
group containing U. Then diagjX, / , /} centralizes A but is not in D{A). If 
/s(x)||<5 and gs(x)||<5, where fix) ^ g(x) but deg fix) = degg(x) = 1 and 
s = 1 or q = p and s = 2, then it is also possible to find a matrix not in D(A) 
which centralizes A. 

(6) The following possibilities for <5 remain: 

à = / i ( * ) . . . / , ( * ) if g = Pm, 

= g20)/ i(*) • . -fi(x) iiq = p , 

= ( x - l ) 3 / i ( x ) . . . / , ( x ) if g = 2, 

where degg(x) = 1 and deg/*(x) < d e g / m ( x ) . 
Assume that/(x)||<5 and deg/(x) = r > 1. Then the block C oî A corres­

ponding to f{x) is contained in a Singer group in GL r(g). Certainly C must 
generate the largest Singer group consistent with the circumstances in order 
that G be self-centralizing. However, if r is not a prime, the Singer group in 
PGL r(g) corresponding to (C) is not a T.I. set by Theorem 2.6. Hence, 

(7) If / (x) 11<5, then the degree of fix) is 1 or a prime. 
Assume that 8 contains two non-linear elementary divisors e\ and e2. By 

(6) and (7), one of ei, e2, say e^ is /\{x) for some i, where deg ft (x) = r, a 
prime. The block 5 corresponding to/^(x) generates a subgroup of a Singer 
group Mriq) in GLr(g) which at least contains the unimodular Singer group in 
Mr(q); Hence, (<f - l)/(q - l )(r , ? - 1)| |B||(2 ' - 1). If e2 = / , (* ) , i * j , 
a similar condition holds for the corresponding block C, with r replaced by 
the primer' = deg/ ;(x) ^ r. If e2 = gs(x), where s = 2 or 3 and deg g (x) = 1, 
then p\\C\. Hence in any case there is a t such that Bl = I, Cl 9e I. Therefore 
if Â is a matrix obtained from A by replacing B by a conjugate £* $ (B)} 

then if is a conjugate of A, Â (? D(A), but if* = ^4'; thus G is not a T.I. set. 
Hence, since n ^ 3, 
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(8) 8 contains exactly one elementary divisor of degree greater than 1. 
Assume that (x — a)\\d, a ^ 0. If q = p and 8 = (x — a)(x — b)2, where 

a 9* b, b j£ 0, then 

A 
a 0 0 
0 6 0 
0 1 b 

Av = diagfa, b, b) is a non-scalar matrix. If B is a conjugate of A by 
X = diag{l, Y}, Y e SL2(£), then Bv = diag{a, b, b)\ thus G is not a T.I. 
set. Similarly, suppose that ô = (x — a)f(x), where deg/(x) is the primes — 1. 
In order that A be self-centralizing, a must generate Fq* and the block B of A 
corresponding to f(x) must generate a Singer group in GLn_i(g). 
£(<z"-i-i)/(<z-D j s s c a lar, a n ( j a n y conjugate of 5 raised to the same power will 
also be the same scalar matrix. Thus G will not be a T.I. set unless 
^ u ^ - D / u - i ) i s also scalar, and this occurs when (q — l)\n. Hence, 

(9) The remaining possibilities for ô are ô = f(x); (q — l)\n, and 
ô = (x — a)/(x), a ^ 0; or g = 2 and 5 = (x — l) 3 , where deg/(x) 
is prime. 

These possibilities do correspond to self-centralizing T.I. sets in PSLw(g). 
We already know this is the case when 8 = f(x), for the image of (^4) in 
PSLw(g) is a Singer group. When n — 1 is a prime, (q — l)\n, and 
8 = (x — a)f(x), a ^ 0, we have seen that 4̂ = diag{a, J3}, where 5 is a 
Singer cycle in GLn_i(g). The corresponding G is clearly self-centralizing. 
In GLn(q

n~l), A is similar to diag{a, J, £ff, . . . , £cn"2}, where J is a primitive 
(gw_1 — l)-root of unity. Since no power of this matrix has two diagonal 
entries equal without the matrix being scalar, G is also a T.I. set. When 
q = 2 and 8 = (x — l)3 , G is conjugate to (^4), where 

A = 
1 0 0 
1 1 0 
0 1 1 

Under the isomorphism between PSL3(2) and PSL2(7), G is isomorphic to a 
Singer group; thus G is a self-centralizing T.I. set. 

THEOREM 4.2. The cyclic subgroups G of PSLn(g) affording Frobenius regular 
representations of PSLn(g) are as follows: 

(i) G — Kn(q), and n is an odd prime or n — 2 and 4>ï (q + 1); 
(ii) G is conjugate to Kn-\{q), n — 1 is a prime, and (q — l)\n; 

(iii) G is the image of the diagonal subgroup in SL2(g), n = 2, and 4<f (g — 1); 
(iv) G is a p-Sylow subgroup, n = 2, and q = p > 3. 

Proof. We have already seen that the Singer groups of (i) afford Frobenius 
regular representations of PSLn(g). Suppose that n — 1 is a prime, (q — l) |n, 
and G is the image of the group in SLn(g) generated by A — diag{a, B], 
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where B is a Singer cycle in GLn_i(g) and a - 1 = det B. A matrix in NSL((^4)) 
has the form 

X = 
'.y c_ 

where x is a row vector and y is a column vector. From AX = XA' it follows 
that By = aly and ax = xB\ But by Theorem 2.4, I? and Bl have the same 
eigenvectors, and their non-zero eigenvectors are all irrational. Thus x and y 
are zero vectors. But this states that C 6 N G L „ - I ( ( - B ) ) and a"1 = det C; 
thus the normalizer of G in PSLn(g) is isomorphic to the normalizer of Kn„i(q) 
in PSLn_i(g), and this latter group is a Frobenius group with kernel Kn_i(q) 
and a T.I. set as complement. 

When n = 3, Theorem 4.1 tells us that the only other possibility is n = 3, 
q = 2, and G is conjugate to {A), where 

"1 0 0" 
1 1 0 

.0 1 1. 

Under the isomorphism from PSL3(2) onto PSL2(7), G corresponds to a 
Singer group in PSL2(7), and 4|(g + 1) = 7 + 1 implies that the normalizer 
of a Singer group is not Frobenius. 

The proof that the groups of (iii) and (iv) are the only remaining cyclic 
subgroups of PSL2(#) affording Frobenius regular representations is straight­
forward and hence is omitted. 

5. Singer Groups in other classical groups. In this section we find the 
maximal intersection of a Singer group with some of the other classical groups, 
and then in the unitary case we show that this intersection may afford a 
Frobenius regular representation of the group. 

I would like to thank Professor J. E. McLaughlin for his helpful remarks on 
the field-theoretic models of the classical groups. 

We give a brief description of the groups and the notation. In the orthogonal 
and the symplectic case, let V = Fqn, considered as a vector space of dimension 
n ^ 2 over Fqi while in the unitary case, let V = F gin, considered as a vector 
space of dimension n ^ 2 over Fqi. If / is a non-degenerate Hermitian form 
on V, then a unitary group U(F) is the group of all linear transformations of V 
which leave / invariant. If / is a non-degenerate skew-symmetric form on V 
(necessarily n = 2m), then a symplectic group Sp(F) is the group of all linear 
transformations of F which keep/invariant. If Q is a non-degenerate quadratic 
form on V, then an orthogonal group 0 ( F ) is the group of all linear trans­
formations of V which keep Q invariant. 

If n is even and 0 ( F ) is an orthogonal group of maximal index, we write 
0 ( + l , V)y while if it is of non-maximal index, we write 0 ( — 1 , V) when the 
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distinction is important. Sp ( V) is a subgroup of SL ( V) ; denote O ( V) C\ SL ( V) 
by SO(7) and U(V) H SL(7) by SU(F). For any of the above groups, the 
factor group modulo the centre is denoted by prefixing a P to the notation for 
the group. The matrix version of an orthogonal group 0 ( F ) will be denoted 
by On(q), etc. 

The unitary case is the most interesting. 

THEOREM 5.1. Suppose that n is odd, M = Mn(q
2) is a Singer group in 

GLn(g2), and U = Un(g) is a unitary group in GLn{q2). Then \M C\ U\ divides 
qn + 1. 

Proof. In GLn(q
2n), a generator for M is similar to 

A =diagU,£«2 , . . . , ^ 2 ( B - 1 ) Î , 

where J is a primitive (q2n — l)-root of unity. If B = As and r = q2n — 1, 
then by Corollary 1, B can be rearranged so that B has the /i(r, S) distinct 
w/ju(r, s) X n/n(r, s) scalar matrices ai, aq2I, . . . , a

q2{tl{r'8)~l)I down the 
diagonal, where a = £s. Suppose that B satisfies BJB1 = J (t — transpose), 
where J is the matrix of a non-degenerate Hermitian form and the bar denotes 
the non-trivial automorphism of Fqm over T n̂. Since n is odd, J = J\ and B 
has the form described, it follows that / has a non-zero block on the diagonal, 
say it is the (j + l)-block. Then a«*HQn+1) = 1; thusa ç n + 1 = 1. Thus \M C\ U\ 
divides qn + 1. 

On the other hand, an intersection of order qn + 1 does occur. 

THEOREM 5.2. / / n is odd and M(V) is a Singer group in GL(F) , then there 
is a unitary group U(V) such that \M(V) H U(F) | = qn + 1. 

Proof. Our field-theoretic model of a Singer group is 

T = {Ta£ GL(V)\a e F^n*}, 

where Ta: x —>ax, x Ç V. We now describe a field-theoretic model for a 
unitary group and show that this intersects T in a group of order qn + 1. 

For x G FQ2n*, let £ = xqn, so that x —> x is the non-trivial automorphism 
of Fç2n over iv*. The restriction of this automorphism to Fq2 is the non-trivial 
automorphism of Fq2 over Fq. Using this, one can easily check that 
f(x, y) — trFq2n/Fq2%y is a Hermitian form. Let U be the group of all trans­
formations in GL(F) leaving this form invariant. Then 

m U = {Ta G T\f(Tax, Tay) =f(x,y) for all x, y G F}. 

From the definition of the form and the properties of the trace function, 
Ta G T r\ U if and only if aâ = 1. But {a G ^Vn*| aâ = 1} is just the kernel 
of the norm function from Fa*n* onto iv* , and this has order qn + 1. Thus 

| r n u\ = qn + i. 
COROLLARY 5. If n is odd and K is a Singer group in PSL(F), then there is a 

unitary group PSU(V) such that \Kr\PSU(V)\ = (qn + l)/(q + 1) (», q + 1), 
and this is the maximum possible order of such an intersection. 

https://doi.org/10.4153/CJM-1970-057-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-057-2


512 MARSHALL D. HESTENES 

THEOREM 5.3. Suppose that n is odd and K and PSU(F) are as above. Then 
K C\ PSU ( V) affords a Frobenius regular representation if and only if n is a 
prime. 

Proof. Let T and Ube as in the previous proof, and let a be an automorphism 
of order n of Fqin over FQ2. Then since fix, y) = tr xy and the trace function 
is just the sum of the conjugates, we have f(x,y) = f(x(T,y(r)) therefore 
a e U. Thus (a) SNu(Ur\T). On the other hand, if there is a 
u (E N [ / ( [ / n T) which does not normalize T, then T C\ Tu contains a sub­
group of order qn + 1, in contradiction to Theorem 2.6. Therefore 

Nv(Ur\ T) = <JJC\ T)(a). 

Let K and PSU be the images in PSL(F) of T H SL(F) and U C\ SL(7 ) , 
respectively. Suppose that n is a prime, K(<r) is a Frobenius group with 
kernel K (Theorem 2.10); thus NPSU(i£ C\ PSU) = (if n PSU)<cr) is a 
Frobenius group with kernel K C\ PSU. Since if is a T.I. set in PSL(F) and 
(a) has prime order n, K P\ PSU and (a) are both T.I. sets in PSU. Thus by 
Lemma 1.5, PSU has a Frobenius regular representation. 

Suppose that n is not a prime. A generator for the matrix version of T is 
similar in GL„(g2w) to A = diag{£, £ff2, . . . , ^ 2 ^ ~ 1 ) } , where J is a primitive 
(q2n — l)-root of unity. The matrix for a is the usual cyclic matrix. If r\n, 
then (qT + l)\(qn + 1) since n is odd. By Theorem 2.2, the subgroup of (^4) 
of order qr + 1 has every rth diagonal entry equal; thus <rr centralizes this 
subgroup. Consequently, N P S u ( ^ ^ PSU) could not be Frobenius. 

In the odd-dimensional orthogonal case, a proof almost identical to that 
of Theorem 5.1 yields the following result. 

THEOREM 5.4. Suppose that n is odd, M is a Singer group in GLw(g) and 
On(q) is an orthogonal group in GLn(q). Then M C\ On{q) = {db / } . 

COROLLARY 6. If n is odd, K is a Singer group in PSLw(g), and PS(\(g) is 
an orthogonal group in PSLn(q), then \K C\ PSOn(g)| = 1. 

Now let us look at some of the even-dimensional orthogonal and symplectic 
cases. 

THEOREM 5.5. If M is a Singer group in GL2m(g), then 

\Mn02m(± 1,<Z)| ^ qm + 1 and \M H Sp2m(q)\ S qm + 1. 

Proof. Once again we work in GL2w(g2w) and assume that M is generated 
by the usual diagonal matrix A. The matrix J = (aif) of the form is a non-
singular symmetric (orthogonal case) or skew-symmetric (symplectic case) 
2m X 2m matrix. The intersections are generated by 

B = AT = diagja, aq, . . . , a 5 n _ 1 } , 
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where a = £r, £ is a primitive (g2m — l)-root of unity, and B satisfies BJB = J". 
From this it follows that the order of B is related to J by 

\B\ = (g** - 1, gcd{g''-* + 1| 1 S i ^ j ^ 2m and atj ^ 0}). 

This is maximal when 1 ^ i ^ j ^ 2m and atj ^ 0 imply j — i = m. Then 
B has order qm + 1. 

Intersections of this order exist with a symplectic group and with an 
orthogonal group of non-maximal index. 

THEOREM 5.6. Suppose that n = 2m and M is a Singer group in GL(F) . 
Then there exists a symplectic group Sp(F) and an orthogonal group of non-
maximal index 0(-l,V) such that \M H Sp(V)\ = | M " H O ( - l , V)\ = qm + 1. 

Proof. We describe field-theoretic models for Sp(F) and 0 ( — 1 , V) which 
intersect T in a subgroup of order qm + 1. In the symplectic case, define a 
non-degenerate bilinear form / : Fqim —-> Fff by f(x, ^) = trF<l2miFqaxy, where 
a G iVm* is such that a + â = 0. Set 

Sp(7) = {5 G GL(F) | / (5x ,5y) = / (* , y) for all x, y € F}. 

In the orthogonal case, define a quadratic form Q: Fq2m —» 7^ by 
Q(x) = triTgm/Fg^- The norm function x —» xx has a kernel of order qm + 1, 
and the kernel of the trace function from Fqm onto Fq has order gw_1 — 1. 
Thus |ker Q(x)\ = (qm + l){qm~l - 1), and Q has index m - 1. Set 

0 ( - l , 7) = {S e GL(V)\Q(Sx) = Q(x) for all * 6 V\. 

An easy consequence of these definitions is that aâ = 1 is a necessary and 
sufficient condition for Ta Ç T to be either Sp(F) or 0 ( — 1 , V), and the 
theorem follows. 
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