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SUMMARY

Early prediction of the final size of any epidemic and in particular for Zika disease outbreaks can
be useful for health authorities in order to plan the response to the outbreak. The Richards
model is often been used to estimate epidemiological parameters for arboviral diseases based on
the reported cumulative cases in single- and multi-wave outbreaks. However, other non-linear
models can also fit the data as well. Typically, one follows the so called post selection estimation
procedure, i.e., selects the best fitting model out of the set of candidate models and ignores the
model uncertainty in both estimation and inference since these procedures are based on a single
model. In this paper we focus on the estimation of the final size and the turning point of the
epidemic and conduct a real-time prediction for the final size of the outbreak using several non-
linear models in which these parameters are estimated via model averaging. The proposed
method is applied to Zika outbreak data in four cities from Colombia, during the outbreak
ocurred in 2015–2016.

Key words: Five-parameter logistic, four-parameter Gompertz, Richards, three-parameter logistic,
Weibull.

INTRODUCTION

Zika infection is an arboviral disease characterized by
subclinical or mild dengue-like illness, with severe man-
ifestations such as Guillain-Barre syndrome in adults
and microcephaly in babies born to infected mothers
[1]. During 2015 and 2016 the disease affected several
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South-American countries, especially Brazil and
Colombia. In Colombia, a total number of 104 755
cases were recorded, from which 8826, 92 113, and
3816 cases were confirmed by laboratory, diagnosed
by clinical symptoms, and suspected without confirma-
tion, respectively. Zika cases were recorded between the
32th epidemiological week, 2015 until the 42nd epi-
demiological week, 2016 (09/08/2015–22/10/2016) [2].
For the analysis presented in this paper we use the
data from four cities, Bucaramanga (3651 cases), Cali
(12 220), Cúcuta (4287), and Neiva (1940).

Mathematical and statistical models are increas-
ingly being used to facilitate the estimation of the pri-
mary epidemiological parameters in infectious disease
outbreak. During a single-peak outbreak, the turning
point (or primary inflection point), i.e. the point in
time at which the rate of accumulation changes from
increasing to decreasing, and the final size of the epi-
demic are among the epidemiological parameters of
interest to be estimated [3–5]. Once an outbreak has
begun, knowledge about the potential severity in real-
time (i.e. before the end of the outbreak) can help pub-
lic health authorities to respond effectively [5].

Various epidemiological studies used mathematical
and statistical models to describe the evolution and
spread of severe acute respiratory syndrome (SARS)
and dengue and to evaluate the impact of control
interventions. In particular, Hsieh et al. [3, 5] and
Zhou et al. [4] proposed to use a non-linear model,
the Richards model [6], in order to model the cumula-
tive number of reported cases, to estimate the turning
point and the basic reproduction number, R0. Hsieh
et al. applied non-linear models to model epidemics
of SARS [7], dengue disease [8–10], Influenza A
(H1N1) [11] and Ebola [12]. In addition to the estima-
tion of the epidemiological parameters, Hsieh et al. [3]
used the model for real-time prediction of these para-
meters for dengue and SARS outbreaks.

Hsieh et al. estimation and prediction is based on
the Richards model and considers only the cumulative
infective population size with saturation in growth as
the outbreak progresses. The basic premise of the
Richards model is that the incidence curve consists
of a single peak of high incidence, resulting in an
S-shaped epidemic curve and a single turning point
of the outbreak [7, 8]. Hsieh et al. [7, 8] also showed
that the Richards model can be used to model multi-
wave outbreaks as well. In this paper we focused on a
single-wave outbreak.

A variety of non-linear models have been developed
to model growth data. Among them, we consider the

three-parameter logistic (3P logistic) [7, 13, 14],
five-parameter logistic (5P logistic) [15], Sigmoid
Emax [16], Gompertz [14, 17], and Weibull [18] mod-
els. All these models can be used to fit epidemic data
as well. Fitting several models to the same data raises
the issue, central in statistical modeling, of model
selection. Indeed, a model selection procedure is
needed in order to choose the model with the best fit
to the data. Often, one is confronted with the problem
that several models are performing almost equally well
over the range of observed data. Typically, one selects
the best-fitting model out of the set of fitted models
and ignores the uncertainty due to model selection
in estimation and inference. For these reasons, several
authors (i.e. Burnham & Anderson [19], Claeskens &
Hjort [20], Posada [21], Moon [22], and Lin [23]),
advocate the use of model averaging (MA) techniques
to perform multimodel estimation and inference. MA
is a method that takes into account all fitted models
for the estimation of the parameters of primary inter-
est. It is based upon a weighted average of the param-
eter of primary interest obtained from different
models, giving largest weights to those models that
best fit the data [24].

In the current paper we analyse Zika outbreak data
and estimate a model average of the final size and the
turning point of the epidemic, and perform a real-time
prediction using several non-linear models. A real-
time prediction is a procedure in which the final size
of the outbreak is estimated as early as possible. An
elaborate description of the procedure is given in the
supplementary material for the paper (Supplementary
Fig. S1). The proposed method is applied to four Zika
outbreaks that occurred in four cities in Colombia dur-
ing the 2015/2016 outbreak.

DATA

The data used in this paper were collected from four
cities from Colombia, where Zika disease cases were
reported to the Instituto Nacional de Salud
(Colombian National Institute of Health) in a weekly
basis. The study locations represent cities with the
highest number of Zika cases within all the cities in
Colombia. Two of the cities are located to the north-
east of Colombia (Bucaramanga and Cúcuta) and two
are located to the southwest (Cali, Neiva).

The weekly counts of clinical Zika cases by date of
onset of symptom per city were converted into cumu-
lative case curves starting on the 50 epidemiologic
week (EW) of 2015 for Cali and Bucaramanga, and
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the 47 EW for Cucuta and Neiva. The starting and
ending dates of the outbreaks, as well as the observed
number of cases at the end and the observed attack
rates are shown in Table 1.

Figure 1 shows incidence and cumulative number of
cases for the four cities under study. The outbreaks in
Cúcuta and Neiva started and ended earlier (47 EW
2015 until 13 EW 2016) than the outbreaks in Cali
and Bucaramanga (50 EW 2015 until 36 EW 2016).

METHODS

Modeling Zika outbreak using non-linear models

The Richards model [6, 25, 26] has often been used to
model reported cumulative cases in disease outbreaks.
In particular, Hsieh et al. [5, 7] demonstrated that
Richards model can be used for real-time prediction
of outbreak severity by estimating the carrying cap-
acity (i.e.the final size of the epidemic) as well as real-
time detection of the turning point (i.e. the time point
with the peak number of cases) of the epidemic.

In Hsieh et al. [5–10], the estimates were obtained
under the assumption that the cumulative number of
reported cases at time t, Yt, are normally distributed
with mean μ(t, θ) and variance σ2, Yt∼N(μ(t, θ), σ2).
The mean structure for μ(t, θ) is given in the first
line in Table 2. As pointed out by Hsieh et al. [5–9]
the parameter vector to be estimated is θ= (α, γ, k, η),
where α is the final size of the epidemic, γ is the per
capita intrinsic growth rate of the infected population,
k is the exponent of the deviation from the standard
logistic curve and η is the turning point.

The cumulative number of reported cases in a Zika
outbreak is an example of growth data. For many
types of growth data, the growth rate does not steadily
decline, but rather increases to a maximum before
steadily declining to zero. In such models, η is the pos-
ition of the point of inflection (turning point of the
epidemic for the application presented in this paper),
the time when the growth rate is greatest.

Table 2 presents other five possible non-linear mod-
els. Note that all these models are scaled in calendar
time (for which t= 1 is the first epidemiological
week in which the outbreak ocurred). The 3P logistic
model [13, 14] is a special case of the Richards
model, obtained when the exponent k = 1. For the
3P logistic model, the growth curve is symmetric
around turning point and has equal periods of slow
and fast growth. The Gompertz model [14, 17] is
another special case of the Richards function when
γ→ 0 and is frequently used in situations where
growth is not symmetrical about the turning point.
There are many variants of the Weibull model, the
one we use in this paper is a modification of the
Gompertz model when its independent variable,
time, is rescaled by logarithmic transformation [18].
Note that for all the models in Table 2 the turning
point and the final size of the epidemic are parameters
in the model.

The sigmoid Emax model and the 5P logistic are
commonly used in dose–response modeling [23]. The
sigmoid Emax model [16] is obtained by mathematical
transformation of 3P logistic model and rescaling the
independent variable by a logarithmic transformation.
Similarly, the 5P logistic model is obtained by rescal-
ing the independent variable by logarithmic trans-
formation and by doing a reparametrization, so that
the model evaluated at the inflection point (η) reaches
50% of maximum response [15].

The first derivative of μ(t, θ), μ′(t, θ) = (∂μ(t, θ)/∂t), is
the number of cases at time t, i.e., the incidence at time
t. Except for the 3P logistic model, μ′(t, θ) is not sym-
metric around the turning point.

Model uncertainty, model selection, and MA

In the previous section, we presented six non-linear
models that can be used for the estimation of epi-
demiological parameters and for real-time prediction.
In this section, we describe the MA technique

Table 1. Epidemiological information on the 2015/2016 Zika outbreak in the four cities from Colombia

Area Population
Elevation
(meters) Start (2015) End (2016)

Outbreak
length
(EW)

Observed
final size

Attack rate
per 10 000
inhabitants

Bucaramanga 528 269 959 13 December 10 September 39 3651 69·11
Cali 2 394 925 1000 13 December 10 September 39 12 220 51·02
Cúcuta 656 380 320 22 November 2 April 19 4287 65·31
Neiva 344 026 442 22 November 2 April 19 1940 56·39
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(Burnham & Anderson [19, 27], Claeskens & Hjort
[20]), which is used to account for model uncertainty
by combining together the estimates from all the
fitted models. Within the MA framework, one fits a
set of R candidate models, g1, g2, . . ., gR, to the data

in order to obtain the parameter estimates from all
models, θ̂1, θ̂2, . . . , θ̂R. A post selection procedure
[20, 23] implies that we first need to select the model
with the best goodness-to-fit to the data, say gℓ, and
to estimate θ by θ̂ℓ. The model selection can be

Fig. 1. Weekly number of cases (left) and cumulative cases (right) of Zika disease for the 2015/2016 outbreak in four
cities from Colombia.The time scale is given in EW.

Table 2. Non-linear models considered to fit the cumulative cases of Zika outbreak

Models μ(t, θ) μ′(t, θ)

Richards
α

1+ k × e−γ(t−η)[ ]1/k
γμ(t) 1− μ(t)

α

( )k
[ ]

3P logistic
α

1+ e−γ(t−η) γμ(t) 1− μ(t)
α

[ ]
5P logistic α+ α0 − α

1+ 21/k − 1
( )(t/η)γ[ ]k − kγ

t
[μ(t) − α] 1− μ(t) − α

α0 − α

( )1/k
[ ]

Sigmoid Emax α0 + tn(α− α0)
tn + ηn

n
t
[μ(t) − α0] 1− μ(t) − α0

α− α0

[ ]
4P Gompertz α0 + (α− α0)e−e−γ(t−η) −γ[μ(t) − α0]ln μ(t) − α0

α− α0

[ ]
Weibull α+ (α0 − α)e−(t/η)γ γ

t
[μ(t) − α]ln μ(t) − α

α0 − α

[ ]
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based on an information criteria. However, this pro-
cedure does not take into account model uncertainty
since the estimation is based on a single model. The
MA techniques allow us to estimate the component
in θ using information obtained from all fitted models
and in that way to account for model uncertainty. Let
us assume that the Akaike’s Information Criterion
(AIC [28]) is used for model selection. For a given
set of R candidate models, g1, g2, . . ., gR, Burnham
& Anderson [27] proposed to rescale the AIC to

ΔAICi = AICi −AICmin, i = 1, . . . ,R

here, AICmin is the smallest AIC value across the set of
Rmodels. The AIC differences, ΔAICi, are interpreted
as the information loss when model gi, rather than the
best model gmin, is used to approximate the true and
unknown model. Burnham & Anderson [19] defined
Akaike’s weights as

wi(AIC) = exp(−(1/2)ΔAICi)∑R
i=1 exp( − (1/2)ΔAICi)

.

Akaike’s weight wi(AIC) can be interpreted as the
weight of evidence that model gi is the best model
given a set of Rmodels and given that one of the mod-
els in the set must be the best model. The non-linear
model with the highest Akaike’s weight (i.e. the min-
imum AIC) is considered as the model with the best
goodness-to-fit to the data.

Following Burnham & Anderson [19], we can cal-
culate the model averaged estimator for turning
point (̂ηMA) and the final size of outbreak (̂αMA) as fol-
low:

η̂MA =
∑R
i=1

wi(AIC)η̂i,

α̂MA =
∑R
i=1

wi(AIC)α̂i.

Here, η̂i and α̂i are the parameter estimates for the
turning point and final size of outbreak of ith
model, respectively. The estimators for variance for
η̂MA and α̂MA are given, respectively, by:

v̂ar(̂ηMA) =
∑R
i=1

wi(AIC)
���������������������������
v̂ar(η̂i|Mi)+ (η̂i − η̂MA)2

√[ ]2

,

v̂ar(̂αMA) =
∑R
i=1

wi(AIC)
���������������������������
v̂ar(α̂i|Mi)+ (α̂i − α̂MA)2

√[ ]2

.

Note that one can replace the AIC by other infor-
mation criteria such as Bayesian information criterion

(BIC), Kullback information criterion (KIC) and cal-
culate the model’s weight based on these criteria.

In addition, since the models’ weights are based on
the AIC (or any other information criterion) the MA
approach described above ensure that the parameter
estimates for the turning point and final size of the epi-
demic (and their standard errors) will be dominated by
the model(s) with the best goodness-of-fit.

RESULTS

Estimation of the final size and turning point using MA
methods

All non-linear models discussed above were fitted to
the single-phase Zika outbreak in the cities of
Bucaramanga, Cali, Cúcuta, and Neiva. The models
were fitted to the weekly cumulative number of
reported cases and the turning point and the final
size were estimated for each city. The models were
fitted using R software 3·3·1 [29], using the gnls func-
tion from package nlme [30].

Table 3 shows the parameter estimates, Akaike’s
information criteria and the Akaike’s weights for all
non-linear models used to calculate the model aver-
aged estimates for the turning point and the final
size of the outbreak. Figure 2 displays the cumulative
predicted values and the incidence predicted values
obtained for the fitted models to the complete data
in each city, together with the observed values.

For Bucaramanga, the 5P logistic model (AIC =
348·6), the Richards model (AIC = 361·9), and the
3P logistic model (AIC = 397·0) had lower AIC than
the four-parameter (4P) Gompertz model (AIC =
424·1), the sigmoid Emax model (AIC = 405·5), and
the Weibull model (AIC = 468·3). The MA final size
estimate of the Zika outbreak is equal to 3700 cases
(95% CI 3632–3768) with a turning point close to
the 19·1 weeks (95% CI 18·8–19·3) after the begining
of the outbreak. Note that the observed final size is
equal to 3651 (Table 1). The 5P logistic model has
an Akaike weight equal to 0·999, while the weights
obtained for the other models are relatively small
which implies that the model average parameter esti-
mated will be dominated by the 5P logistic model
for this city.

Similar pattern was observed in Cali. The 5P logis-
tic model (AIC = 451·6), the Richards model (AIC =
494·9), and the 3P logistic model (AIC = 511·7) had
lower AIC than the 4P Gompertz model (AIC =
527·0), the sigmoid Emax (AIC = 521·1), and the
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Weibull model (AIC = 567·2). The final size estimate
for the Zika epidemic from the MA is equal to 12
458 cases (95% CI 12 023–12 893), with an estimated
turning point of 20·3 weeks (95% CI 19·9–20·8) after
the Zika epidemic starts. As for Bucaramanga, in
Cali, the Akaike’s weight from the 5P logistic model
is the highest and closed to 1, which implies that
MA parameter estimates are mostly based on the 5P
logistic model. The 5P logistic model is the model
with the smallest AIC (AIC = 196·8) in Cúcuta as
well. The 3P logistic (AIC = 196·8) and Richards
model (AIC = 197·4) have similar AIC. Once again,
the Weibull model has the highest information criteria
(AIC = 247·9). The MA estimate for final size is 4285
cases (95% CI 4199–4372), with an estimated turning
point of 8·93 weeks (95% CI 8·72–9·15) after the out-
break begins. For this city Akaike’s weights for the 3P
logistic, the Richards and the 5P logistic models are
equal to 0·370, 0·265, and 0·365, respectively.
Hence, the MA estimates of final size and turning

point are dominated by the parameter estimates
obtained for these three models.

The model fit for the city of Neiva is sligthly differ-
ent from the other cities reported above. Here, the
models with the lowest AIC were the sigmoid Emax
model (AIC = 173·8), the 5P logistic model (AIC =
175·7), and the Richards model (AIC = 176·9), while
the model with the highest AIC corresponded again
to the Weibull model (AIC = 198·3). The MA final
size estimate for Neiva is equal to 1943 cases (95%
CI 1913–1972), and an estimated turning point of
8·9 weeks (95% CI 8·7–9·3) after the outbreak starts.
In Neiva, the highest Akaike’s weight is for the sig-
moid Emax model (0·613), followed by the 5P logistic
(0·236) and Richards model (0·133).

Real-time prediction

The model average framework is particularly useful
for real-time prediction since we use only part of the

Table 3. Parameter estimates for the turning point and final size of the epidemic obtained for the six non-linear model
and their model average estimates per city

City Model Turning point Final size estimate k AIC Weight

Bucaramanga 3P logistic 19·0 (18·9, 19·1) 3623 (3596, 3651) 397·0 2·997 × 10−11

Richards 18·3 (18·1, 18·5) 3680 (3654, 3705) 0·59 (0·48, 0·69) 361·9 0·001
5P logistic 19·1 (19·0, 19·2) 3700 (3672, 3729) 348·6 0·999
Sigmoid Emax 19·3 (19·1, 19·5) 3838 (3785, 3892) 405·5 4·435 × 10−13

4P Gompertz 16·9 (16·8, 17·2) 3789 (3732, 3845) 424·1 4·055 × 10−17

Weibull 17·6 (17·1, 18·0) 4206 (3994, 4418) 468·3 9·976 × 10−27

Model averaging 19·1 (18·8, 19·3) 3700 (3632, 3768)
Cali 3P logistic 20·3 (20·1, 20·5) 12 350 (12 204, 12 496) 511·7 8·751e × 10−14

Richards 19·5 (19·1, 19·9) 12 645 (12 449, 12 841) 0·55 (0·38, 0·72) 494·9 3·889 × 10−10

5P logistic 20·3 (20·2, 20·4) 12 458 (12 333, 12 583) 451·6 1
Sigmoid Emax 20·9 (20·6, 21·3) 13 510 (13 166, 13 854) 521·1 7·846 × 10−16

4P Gompertz 18·1 (17·8, 18·4) 13 216 (12 924, 13 508) 527·0 4·101 × 10−17

Weibull 19·5 (18·5, 20·4) 15 927 (14 557, 17 298) 567·2 7·590 × 10−26

Model averaging 20·3 (19·9, 20·8) 12 458 (12 023, 12 893)
Cúcuta 3P logistic 8·9 (8·8, 8·9) 4293 (4255, 4331) 196·8 0·370

Richards 8·9 (8·8, 9·2) 4281 (4237, 4325) 1·13 (0·86, 1·4) 197·4 0·265
5P logistic 8·9 (8·9, 9·0) 4280 (4231, 4328) 196·8 0·365
Sigmoid Emax 8·9 (8·8, 9·2) 4433 (4313, 4554) 226·9 1·019 × 10−7

4P Gompertz 8·0 (7·8, 8·2) 4402 (4277, 4528) 233·5 4·024 × 10−9

Weibull 8·2 (7·8, 8·5) 4673 (4356, 4991) 247·9 3·010 × 10−12

Model averaging 8·9 (8·7, 9·1) 4285 (4199, 4372)
Neiva 3P logistic 9·1 (8·9, 9·2) 1912 (1888, 1936) 184·7 0·003

Richards 8·7 (8·5, 8·9) 1929 (1905, 1952) 0·49 (0·21, 0·78) 176·9 0·133
5P logistic 9·1 (8·9, 9·1) 1943 (1916, 1971) 175·7 0·236
Sigmoid Emax 9·0 (8·9, 9·1) 1945 (1924, 1967) 173·8 0·613
4P Gompertz 8·3 (8·2, 8·4) 1946 (1921, 1972) 181·3 0·014
Weibull 8·3 (8·2, 8·5) 2008 (1952, 2064) 198·3 2·884 × 10−6

Model averaging 8·9 (8·7, 9·3) 1943 (1913, 1972)
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Fig. 2. Predicted cumulative and incidence cases based on six non-linear models for Zika outbreaks in four Colombian
cities. Prediction is done when all data are used for the estimation of model parameters.
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data for long-term prediction. In this case, we do not
want to base the estimation on a single model. Point
estimates and 95% CI obtained for all non-linear
models and from the MA are presented in the supple-
mentary appendix of the paper, for the turning point
and final size of the outbreak in Bucaramanga, Cali,
Cúcuta, and Neiva (Supplementary Tables S2–S5,
respectively).

For Bucaramanga, the MA point estimate for the
final size of the epidemic is 3452 cases (95% CI
2982–3922), for the model fitted using the data of
the first 26 weeks after the epidemic starts (Fig. 3d
and Supplementary Table S2), while the observed
final size of the outbreak is 3651 cases (Table 1).
This implies that around 4 months before the end of
the epidemic this valuable information could be avail-
able for the health authority. Furthermore, for the
same estimation period, the MA estimate for the turn-
ing point becomes stable with a point estimate of 18·6
weeks (17·4,19·8) (Fig. 3b and Supplementary
Table S2). These results indicate that the health
authority could estimate the turning point of the out-
break about 6 weeks after its occurrence in
Bucaramanga.

For Cali, the observed final size of the Zika epi-
demic is 12 220 cases (Table 1). All the models over-
estimate the final size of the epidemic. The model
average estimate stabilizes around the estimate of 12
560 cases (95% CI 11 848–13 272) for the models
fitted to the period 1–33 weeks after the epidemic
starts (i.e. 6 weeks before the end of the epidemic
Fig. 3h and Supplementary Table S3). The MA
estimate for the turning point obtained from the
model fitted to the estimation period 1–33 weeks is
22·5 weeks (95% CI 21·5–19·4) (Fig. 3f and
Supplementary Table S3).

For Cúcuta, The final size estimate from MA is
stable from the model fitted for the estimation period
1–14 week, with a point estimate of 4308 cases (95%
CI 4039–4578) (Fig. 3l and Supplementary
Table S4). The observed final size for Cúcuta is 4287
cases (Table 1). The turning point estimate from
MA is equal to 8·9 weeks (95% CI 8·6–9·2), for the
models fitted to the period 1–14 weeks after the epi-
demic starts (i.e. 5 weeks before the end of the out-
break Fig. 3j and Supplementary Table S4).

For Neiva, the observed final size of the epidemic is
1940 cases (Table 1). The model average estimate for
the final size of the epidemic is equal to 1899 cases
(95% CI 1742–2055) obtained for the model fitted to
the data of the first 13 weeks of the outbreak (i.e. 6

weeks before the end of the outbreak Fig. 3p and
Supplementary Table S5). The turning point estimate
from MA becomes stable for the models fitted to per-
iod 1–13 week, showing a point estimate of 8·9 weeks
(95% CI 8·5–9·3) (Fig. 3n and Supplementary
Table S5).

In general, the models seem to fit the data for the
shorter outbreaks (Cúcuta and Neiva) better than
for the longer outbreaks (Bucaramanga and Cali). In
addition, the Weibull model fits the data poorly for
all cities. An elaborate discussion about the perform-
ance of the Weibull model in Bucaramanga and Cali
is given in the supplementary material of the manu-
script. The 95% CIs for the final size of the epidemic
for all cities contain the observed final size, which
implies that around 2–4 months before the end of
the outbreak an accurate estimate for the outbreak’s
final size could be provided to the health authorities.
The turning point estimates for Cúcuta and Neiva
understimate the observed value by 1 week, but for
Bucaramanga and Cali, the estimates are in line
with the observed values, while the final size estimates
estimate accurately the observed values for all cities
(Fig. 3). The MA estimates for the turning point
and final size of the epidemic were stable around the
first 2/3 of the total outbreak duration.

DISCUSSION

Modeling a single-wave outbreak requires to use a
non-linear growth model in order to estimate the epi-
demiological parameters of interest. In this study we
have shown that several non-linear models, the
Richards, the 3P logistic, 5P logistic, the Weibull, sig-
moid Emax and 4P Gompertz models, can be used to
model the data. Alternatively, a model average tech-
nique that used a weighted parameter estimate,
based on the model posterior probability, can be
applied. In this paper we advocate the use of the
MA technique since it does not ignore uncertainty
related to model selection which is ignored when
post selection inference and estimation is conducted.

Further, we have shown that the MA approach can
be used in order to perform a real-time estimation for
the turning point and prediction for the final size of
the epidemic. We have shown that in the case of the
Zika outbreak in 2015/2016 in Bucaramanga and
Cali, an estimate with 95% CI that cover the observed
final size could be given to the health authorities 4
months before the end of the epidemic, and for
Cúcuta and Neiva accurate estimates for the final

2320 C. R. Sebrango-Rodríguez and others

https://doi.org/10.1017/S0950268817001078 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268817001078


Fig. 3. Parameter estimates for the turning point and final size of the outbreak, from the non-linear models under study
(point estimates), and from MA (point estimates and 95% CI) per city. Dashed lines represent the observed values. The
time scale in all figures present the last week in the estimation period. For example in panel a, 22 implies that the
estimation period is 1–22 weeks, etc.
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size could be provided 2 months before the end of the
epidemic. Further, for a real-time prediction, the MA
offers an attractive modeling approach since the data
available for modeling represents only a part of the
outbreak data (from the start to the time in which
the real-time prediction is performed). Hence, to our
opinion, taking into account several possible models
is appropriate in this setting.

Since this study was conducted retrospectively, with
data from routine surveillance system, potential biases
could not be prevented. Some limitations include data
quality associated with real-time modeling (as data are
often subject to ongoing cleaning, correction, and
reclassification of onset dates as further data become
available) and reporting delays. Whether reporting
delays or dates of reporting and date of onset were
known, it would be possible to perform more realistic
analyses that include only cases known about at the
end of the most recent time period. This would likely
make the models appear less attractive, but might pro-
vide a more realistic lower bound in terms of how
quickly turning points can be identified.

Predicting the trend of an epidemic from limited
data during early stages of the epidemic can be some-
times misleading. Nevertheless, early prediction of the
magnitude of an epidemic outbreak is more important
than retrospective studies [3]. The methodology pro-
posed in the paper does not allow for a prediction of
the turning point but only for the estimation. This is
due to the fact that the non-linear models presented
in the paper fit poorly the data in the initial stage of
the outbreak, i.e., when the turning point of the out-
break can be predicted. As was observed in other
attempts at real-time prediction, the forecast appears
to be very vulnerable to the timing of predictions, espe-
cially during the early phase of epidemic [31]. As long
as the data include this inflection point and a time
interval shortly after, the curve fitting and predicting
future case number will be reasonably accurate [3].

The MA modeling approach provides an attractive
framework for real-time prediction since it takes into
account a set of models and the real-time prediction is
dominated by the model(s) with the best goodness-of-fit
to the data. In the case of Bucaramanga and Cali, one
model dominated the estimation and prediction (the 5P
logistic), while in the case of Neiva and Cucuta the
model average estimates was dominated by several
models (3P logistic, Richard and 5P logistic in Cucuta
with a combined weight >0·999 and Richard, 5P logis-
tic, and sigmoid Emax with a combined weight of 0·982
in Neiva). This is the main advantage to use the MA

framework for real-time prediction since, taking into
account that only a part of the data is available and
can be used for prediction, the estimation procedure is
based on the best-fitted models.

The present study successfully offers a modeling
strategy to implement real-time prediction of an epi-
demic in the midst of its course. The methodology dis-
cussed in this paper was developed for a single-wave
outbreak. In future research we will extend the MA
approach to a multi-wave outbreaks setting as well.
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