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1. Introduction. A well-known consequence of the Kônig theorem on 
maximum matchings and minimum covers in bipartite graphs (5) or of the 
P. Hall theorem on systems of distinct representatives for sets (4) asserts 
that an n by n (0, 1)-matrix A having precisely p ones in each row and column 
can be written as a sum of p permutation matrices: 

(1.1) A = Pt + P 2 + . . . + Pp. 

Our main objective is a generalization of (1.1) along the following lines. Let 
A be an arbitrary m by n (0, 1)-matrix. Call an m by n (0, 1)-matrix P a 
permutation matrix if PPT = 7, where PT is the transpose of P and I is the 
identity matrix of order m. This definition implies m < n and we shall assume 
throughout that this inequality holds. As in (1.1), we seek a decomposition 

(1.2) A = P1 + P2 + ... + Pv + Rf 

where each Pi} i = 1, . . . , p, is a permutation matrix, R is a (0, l)-matrix, 
and the integer p is maximal. 

If p is maximal in (1.2), the remainder R, of course, contains no permutation 
matrix. The converse statement is false, however. For example 

A = 
1 1 1 
1 1 0 
1 0 1 

has the decompositions 

A = 

A = 

1 0 0" 
0 1 0 + Ru 
0 0 1_ 

0 0 1" "0 1 01 
0 1 0 + 1 0 0 
1 0 0 _0 0 l j 

+ R2, 

and neither i^i'nor R2 contains a permutation matrix. 
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In Section 4 a formula for the maximum value of p in (1.2) is derived. 
Letting x = T(A) denote this maximum value, it is shown that 

Here A' is an e by / minor of A, N\(Af) denotes the number of ones in A', 
s(Af) = e -{- f — n, brackets denote the biggest integer, and the minimum is 
understood to be taken over all minors A' of A with s (A') > 0. The con­
structive proof singles out a critical minor A1 of A that yields the minimum in 
(1.3). In the example above, critical minors are the identity of order two in 
the lower right corner, the last column, or the last row. 

Using the formula (1.3) and a result due to Haber (3), the integer 

(1.4) 7T = min TT(A) 

A M 
can also be evaluated. In (1.4) §1 is the class of all m by n (0, l)-matrices that 
have the same row and column sums as A. The resulting formula for TT is 
given in Section 5. 

2. Reformulation. The problem of determining w(A) for an m by n 
(0, 1)-matrix A = (ai3) may be reformulated in the following way. Determine 
an m by n (0, 1)-matrix X = (xtj) satisfying the constraints 

n 

(2.1) X) xu = P> i = 1, . . . , m, 

m 

(2.2) X) xu < Pf i = 1, . . . ,w, 

(2.3) 

and maximizing p. 
To see this, first note that if (1.2) holds, then X = Px + P2 + . . . + Pv 

satisfies (2.1), (2.2), (2.3). On the other hand, if X is an m by n (0, 1)-matrix 
with row sums equal to p and column sums at most p, then X is a sum of p 
permutation matrices. This assertion can be proved in various ways. For 
instance, a theorem of Mann and Ryser (6) concerning the existence of a 
system of distinct representatives that includes a prescribed set of elements 
implies that such a matrix X contains a permutation matrix Px having a 1 in 
each column of X of sum p. We may thus write X = P x + Ru where Ri has 
row sums p — 1 and column sums at most p — 1, and apply the theorem to Ri. 
Repeated applications produce the desired decomposition. 

The construction described in the next section solves the maximum problem 
(2.1), (2.2), (2.3) by increasing the parameter p by one at each major cycle 
until the maximum value T is obtained. Thus, for each value of p encountered 
in the construction, there will be a decomposition (1.2) for A. The construction 
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can be started with p = 0, X = 0, although this would, in general, be rela­
tively inefficient from the computational standpoint. 

3. A construction. We may suppose, in describing the construction, that 
A — X + R, where each row sum of the (0, l)-matrix X is either p or p + 1, 
each column sum of X is at most p + 1, and R is a (0, 1)-matrix. The aim of 
a major cycle of the construction is to produce a decomposition A = X' + R', 
with X' having precisely p + 1 l's in each row and at most p + 1 l's in each 
column. If successful, the process is repeated with the new decomposition and 
p replaced by p + 1. If unsuccessful, T(A) = p. 

We distinguish the l's of X in the matrix A and call these "marked I V 
of A; other l 's of A are "unmarked." A row or column of A that contains 
fewer than p + 1 marked l's will be termed "short." Thus short rows have 
p marked l's, but short columns may have fewer than p marked l's. 

The basic routine in the construction assigns "marks" to certain rows and 
columns of A using the iterative procedure (3.1), (3.2) below. 

(3.1) Mark all short rows of A. 

(3.2) Repeat the following two steps in order until there are either no newly 
marked rows or no newly marked columns of A. (The short rows of 
A are called "newly marked" after application of (3.1), and any other 
row or column marked in the immediately preceding application of 
(3.26) or (3.2a) is called "newly marked.") 
(a) For each newly marked row, mark each unmarked column con­

taining an unmarked 1 in that row. 
(b) For each newly marked column, mark each unmarked row con­

taining a marked 1 in that column. 

At the conclusion of the row and column marking process, we distinguish two 
cases. 

CASE 1. A short column of A has been marked. In this case the marking 
procedure has located a sequence of r > 1 unmarked and r — 1 marked l's 
having the form 

(3.3) 

with aiin unmarked, ai2ji marked, . . . ,airjr unmarked, and such that row 
ii and column j r are short. We then interchange marked and unmarked l's 
in (3.3). This yields a new decomposition A — X* + R*, with X* containing 
one more 1 than X and having row sums p or p + 1, column sums at most 
p + 1. With reference to the new marking of l's given by X*, A has one less 
short row. The procedure (3.1), (3.2) is then repeated with the new set of 
marked l's of A. 
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CASE 2. No short column of A has been marked. If A has no marked rows 
(and hence no short rows), replace p by p + 1 and repeat (3.1), (3.2) with the 
new meaning for short row and column. If A has marked rows (and hence 
short rows), the construction ends. 

I t is clear that the process terminates. We shall show in the next section 
that the terminal value of p is T(A). 

4. A formula for T(A). T O establish the formula (1.3) for w(A), we show 
first that if (1.2) holds, and if A' is a minor of A with s {A') > 0, then 

(4.1) p < [NM^/siA')]. 

Thus, assume (1.2) and let A' be an e by / minor of A with s (A') = e +f 
— n > 0. Rearranging rows and columns of A, we may write 

(4.2) A = [ f ;„] = [x; ;„]+[R; ; „ ] . 
It follows that 

(4.3) p{e +f-n) < N,(Xf) - N^X") < NM'), 
verifying (4.1). 

To complete the proof, it suffices to show that there is a p corresponding to 
a decomposition (1.2), and an e by / minor A1 of A with s (A') > 0, for which 
equality holds in (4.1). Let p be the terminal value in the construction of the 
preceding section, let A' be the e by / minor corresponding to the terminal sets 
of marked rows and unmarked columns, and let A" be the m — e by n — / 
complementary minor. By (3.2a), A1 contains no unmarked l 's ; by (3.2J), 
A11 contains no marked l 's. Moreover, by (3.1), each unmarked row of A 
contains p + 1 marked l 's; and, by the Case 2 hypothesis, each marked column 
of A contains p + 1 marked l 's. Let t be the total number of marked Ts in 
A. The above remarks provide a count for t: 

(4.4) t = (p + l)(m - e) + (fi + l)(w - / ) + NtÇA'). 

Since the construction has ended, there is at least one row of A having p 
marked l 's. Consequently, 

(4.5) t < (p + l)m. 

It follows from (4.4) and (4.5) that 

(4.6) (p + l)(e+f-n) > NM'). 

In particular, s (A') = e + f — n > 0. 
Since A has a decomposition (1.2) for the terminal value p, we have, from 

(4.3) and (4.6), 

(4.7) p(e+f-n)< NM') < (p + l)(e +f - n). 
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This shows that the terminal p is ir(A) and establishes the formula (1.3) 
for TT(A). 

In case A is n by n with precisely p l 's in each row and column, the formula 
(1.3) reduces to ir(A) = p. This may be checked as follows. Let A' = A in 
the right side of (1.3) to get 

Nx(A)/s{A) = np/n = p. 

On the other hand, if such an A contained an e by / minor A' with s(A') > 0 
and 

[Ni(A')MAf)} < p, 

then 

NW) <p(e+f-n). 

But writing 

A = L * A"\ 
we see that 

P(e+f-n) = NM') ~ NM"), 

a contradiction. Hence, for such an A, the right side of (1.3) is p. 

5. A formula for x. Let §1 denote the class of all m by n (0, 1)-matrices 
having row sums 

(5.1) n > r2 > . . . > rw > 0 

and column sums 

(5.2) *i > 52 > . . . > s„ > 0. 

The class §1 can also be viewed as generated from an arbitrary A in % by 
interchanges (7). Here an interchange is a transformation on the elements of 
A that changes a minor of type (a) below into one of type (b), or vice versa, 
and leaves all other elements fixed: 

In this section we describe a formula for 

(5.3) T = min v(A)% 
A M 

which is similar to those for maximal term rank (8), minimal term rank (3), 
maximal and minimal trace (9), and minimal width (2). Note that the nor­
malization assumptions (5.1) and (5.2) are no restriction in determining w. 

The key additional result needed in evaluating T has been furnished by 
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Haber in his study of minimal term rank (3). To describe this result, we 
begin with the function 

(5.4) t(e,f) =ef+ (re+l + . . . + rm) - (Sl + . . . + sf), 
0 < e < m, 0 < / < n. 

This function, introduced in (9), can also be viewed in the following manner. 
Let A 6 21 be written 

(5.5) A = [i> ; J 
with Ai of size e b y / . Then t{e,f) is the number of O's in A\ plus the number 
of l 's in A2: 

(5.6) t(e,f) = No(Al) + N1(A2). 

Next define, as in (3), 

(5.7) t(ej) = min ttj, 
e < t*<m 
f<j<n 

(5.8) *(«,/) = min {tu + tt, + {e - i){f - j ) ) . 
0<i<e 
0<j<f 

f<Kn 

Now let H(e,f) denote the maximum number of O's that any matrix in the 
normalized class 21 can contain in its leading e by / minor. An ingenious 
argument in (3) shows that 

(5.9) H(e,f) = min(*(*,/), *(*, /)) . 

From (5.6), if A G 21 contains the maximum number of O's possible in the 
leading ef by / ' minor, then A contains the minimum number 

(5.10) t{e',f) - H(e',f) 

of l 's possible in the complementary e = m — ef by / = n — / ' minor. Thus, 
provided it can be shown that the minimum number of l's possible in any e 
by / minor of matrices in 21 is achieved in the lower right e by / minor of some 
A in 2t, it would follow from (1.3) and (5.10) that 

(5.11) ^minr^^-gy>l, 

the minimum being taken over e',f satisfying 

(5.12) * ' + / ' < m. 

The proviso above can be established by an interchange argument. Let e 
a n d / be fixed and consider an e b y / minor A' of A in the normalized class 21. 
Let i be a row of A that is not a row of A', and let i ' be a row of 4̂ that is a 
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row of A', with i' < i. By (5.1), interchanges confined to rows i' and i of A 
can be applied in such a way that the transformed matrix B has an e by / 
minor Bf with the following properties: Columns of Bf have the same index set 
as those of A'\ rows of B' have the same index set as those of A', except that 
i has replaced i'; Ni(Bf) < Ni(Ar). Repetition of this argument, first on rows, 
then on columns, shows that the e by / minor with the minimum number of 
l 's possible in the normalized class 21 can be assumed to be in the lower right 
corner. Hence, (5.11) is valid. 

6. Remarks and questions. The recursive procedure (3.1), (3.2), which 
was the main tool in establishing the formula (1.3) for ir{A)y is a variation, 
suitable to the problem at hand, of the labelling method for constructing 
maximal flows in capacity-constrained networks (1). Formula (1.3) can also 
be deduced from known theorems concerning network flows. 

There is an analogue for matrices over non-negative reals. Specifically, 
suppose an m by n A = (a^), atj > 0, is given and we ask for a non-negative 
matrix X = (xi3) satisfying (2.1), (2.2), (2.3) with p maximal. If we let 
Ni(A') denote the sum of all entries of A', s {A') the sum of the dimensions 
of A' minus n, then the maximum value of p is given by dropping brackets 
in (1.3). 

If we return to (0, 1)-matrices, other related questions are suggested. For 
example, what is the minimum value of p in a decomposition (1.2), for a 
fixed matrix A, assuming that the remainder R contains no permutation matrix? 
Or what is the maximum value of T(A) over the class generated by A? Both 
of these questions seem harder to answer than those considered here. 
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