
J. Fluid Mech. (2025), vol. 1012, A1, doi:10.1017/jfm.2025.10172

The joint effects of planetary β, topography and
friction on baroclinic instability in a two-layer
quasi-geostrophic model

Miriam F. Sterl
1,2

, André Palóczy
3

, Sjoerd Groeskamp
1

,
Michiel L. J. Baatsen

2
, Joseph H. LaCasce

4
and

Pål Erik Isachsen
4,5

1NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
2Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, The Netherlands
3National Oceanography Centre, Liverpool, UK
4Department of Geosciences, University of Oslo, Oslo, Norway
5Norwegian Meteorological Institute, Oslo, Norway
Corresponding author: Miriam F. Sterl, miriam.sterl@nioz.nl

(Received 16 December 2024; revised 21 March 2025; accepted 21 March 2025)

The quasi-geostrophic two-layer model is a widely used tool to study baroclinic instability
in the ocean. One instability criterion for the inviscid two-layer model is that the potential
vorticity (PV) gradient must change sign between the layers. This has a well-known
implication if the model includes a linear bottom slope: for sufficiently steep retrograde
slopes, instability is suppressed for a flow parallel to the isobaths. This changes in the
presence of bottom friction as well as when the PV gradients in the layers are not aligned.
We derive the generalised instability condition for the two-layer model with non-zero
friction and arbitrary mean flow orientation. This condition involves neither the friction
coefficient nor the bottom slope; even infinitesimally weak bottom friction destabilises
the system regardless of the bottom slope. We then examine the instability characteristics
as a function of varying slope orientation and magnitude. The system is stable across all
wavenumbers only if friction is absent and if the planetary, topographic and stretching PV
gradients are aligned. Strong bottom friction decreases the growth rates but also alters the
dependence on bottom slope. In conclusion, the often mentioned stabilisation by steep
bottom slopes in the two-layer model holds only in very specific circumstances, thus
probably plays only a limited role in the ocean.
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1. Introduction
Mesoscale eddies are ubiquitous in the ocean (Ferrari & Wunsch 2009; Storer et al. 2022)
and play a key role in the global ocean circulation, ecosystems and the climate system
(e.g. Wolfe & Cessi 2010; Zhang & Vallis 2013; Gnanadesikan et al. 2015; Busecke &
Abernathey 2019). Most global climate models do not have sufficient horizontal resolution
to resolve mesoscale eddies; instead, the effects of eddies are parametrised (e.g. Eden &
Greatbatch 2008; Hallberg 2013; Hewitt et al. 2017; Kjellsson & Zanna 2017; Yankovsky
et al. 2022). Good understanding of eddy dynamics is highly relevant to accurately
parametrising them. The main generation mechanism of mesoscale eddies is baroclinic
instability (Gill et al. 1974; Robinson & McWilliams 1974). Baroclinic instability may oc-
cur when the isopycnals of the background density fields are sloped, providing a reservoir
of available potential energy that can be converted to eddy energy. Baroclinic instability
occurs almost everywhere in the ocean (Smith 2007b; Tulloch et al. 2011; Feng et al.
2021). To understand eddy dynamics, it is thus vital to understand baroclinic instability.

Theoretical quasi-geostrophic (QG) models for baroclinic instability were first
developed by Charney (1947) and Eady (1949). Phillips (1951, 1954) introduced a
simplified version: the two-layer QG model. In this model, two fluid layers with
homogeneous properties are stacked on top of each other, with different densities and mean
flows. The mean flow difference (vertical shear) causes the isopycnal interface between
the two layers to tilt due to thermal wind balance. The two-layer QG model incorporates
the most important features of baroclinic flows (Flierl 1978). Thus the simplicity and
controllability make the model very suitable for studying baroclinic instability, and for
linear stability analysis in particular. Although the properties of the fully developed
nonlinear eddy field may differ from those predicted by linear stability theory (Early
et al. 2011; Berloff & Kamenkovich 2013a,b; Wang et al. 2016), understanding the linear
dynamics can still shed light on the role of different physical properties in the system.

In its most basic version, the two-layer model describes a zonal mean shear on an
f -plane over a frictionless flat bottom. However, the model can be modified to include
planetary β and bottom topography. These both come into the two-layer QG model in the
form of potential vorticity (PV) gradients, although they are not dynamically equivalent
(Deng & Wang 2024). PV gradients are relevant for eddy dynamics as they suppress eddy
mixing (Nakamura & Zhu 2010; Klocker et al. 2012; Sterl et al. 2024). In the context
of linear analysis, both planetary and topographic PV gradients are found to suppress
growth rates and stabilise long waves (Blumsack & Gierasch 1972; Pedlosky 1987; Wang
et al. 2016; Leng & Bai 2018). Linear bottom slopes in particular have an important
effect: where steep prograde slopes (shear and topographic wave propagation in the same
direction, isopycnals and isobaths in opposite directions) only suppress wave growth rates,
steep retrograde slopes (shear and topographic wave propagation in opposite directions,
isopycnals and isobaths in the same direction) beyond a ‘critical slope’ value stabilise
the flow completely, suppressing all baroclinic instability (e.g. Tang 1976; Ikeda 1983;
Steinsaltz 1987; Pavec et al. 2005; Poulin & Flierl 2005; Chen & Kamenkovich 2013;
LaCasce et al. 2019). This result follows from the Charney–Stern–Pedlosky criterion,
which states that the PV gradient must change sign between the layers for instability to
occur (Charney & Stern 1962; Pedlosky 1963, 1964).

The stabilising effect of steep linear retrograde slopes is a well-studied phenomenon. It
is typically studied in the context of an inviscid zonal flow, with all the PV gradients in
the system aligned. However, there are also studies that describe the effects of including
bottom friction and of varying the orientations of the mean shear and the bottom slope.
In this study, we combine all of these effects in a single model to study the instability
properties. We review some known results below.
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We first consider the relative orientation of the mean shear and the bottom slope. It
is known that on the β-plane, even a weak non-zonal component of the mean shear
can destabilise an otherwise stable system (Kamenkovich & Pedlosky 1996; Walker &
Pedlosky 2002; Arbic & Flierl 2004b; Smith 2007a; Hristova et al. 2008). Moreover, even
a small zonal slope can destabilise the system (Chen & Kamenkovich 2013; Khatri &
Berloff 2018, 2019) and increase cross-stream eddy fluxes (Boland et al. 2012; Brown
et al. 2019). Leng & Bai (2018) introduced a wavenumber coordinate system to study
the baroclinic instability of non-zonal currents. They showed that small differences in the
orientation of the mean shear and bottom slope result in different instability characteristics.
However, in the case studies that they describe, the bottom slope is still perpendicular to the
mean shear. In other words, the topographic and stretching PV gradients are still aligned,
though not with the planetary PV gradient.

Next, we consider the effect of including bottom friction. Numerical models require
bottom friction to balance the energy budget and in some cases to limit the inverse energy
cascade and thereby achieve realistic levels of mesoscale activity (Arbic & Flierl 2004a;
Wang et al. 2016; Radko et al. 2022). However, bottom friction alters the baroclinic
instability properties, in particular destabilising flows that are inviscidly stable. Although
bottom friction damps the total eddy energy in the system, it can also increase the eddy
available potential energy (APE) while damping the eddy kinetic energy. This in turn
increases energy conversion from the background APE to the eddy APE. Thus it is possible
that as a net effect, more energy is released than without bottom friction (Lee 2010a). This
effect is referred to as ‘dissipative destabilisation’ or ‘frictional instability’, and has been
studied using various methods (Holopainen 1961; Romea 1977; Pedlosky 1983; Lee &
Held 1991; Weng & Barcilon 1991; Rivière & Klein 1997; Krechetnikov & Marsden 2007,
2009; Lee 2010a,b; Swaters 2010; Willcocks & Esler 2012).

However, the joint effect of bottom friction and bottom slopes in the two-layer QG model
has received less attention. Weng (1990) discussed the Eady model with a sloping bottom
and Ekman layers at both the top and the bottom, and showed that for weak non-zero
frictional strength, the critical slope value for instability is extended to a larger value.
Swaters (2009) considered a hybrid planetary geostrophic–QG model, and showed that
flows over a sloping bottom are destabilised by a bottom Ekman boundary layer, for any
finite Ekman number.

In this study, we transform the two-layer model equations to a wavenumber coordinate
system, following Leng & Bai (2018) but adding bottom friction (§ 2). In § 3, we use
the transformed equations to derive instability conditions for a two-layer system with
arbitrarily oriented shear and slope. For the inviscid case, we derive a generalised version
of the Charney–Stern–Pedlosky criterion, demonstrating the stabilising effect of planetary
β and steep retrograde slopes for aligned flows (§ 3.1). For non-zero friction, however, the
instability condition becomes independent of the bottom slope (§ 3.2). We then study how
the instability characteristics – growth rate, wavenumber and propagation direction of the
most unstable mode – depend on the orientations of the stretching PV, planetary PV and
topographic PV gradients relative to each other, and on the frictional strength (§ 3.3). We
conclude and discuss our results in § 4.

2. Model

2.1. Two-layer model equations
We study a two-layer QG model on a β-plane, over a linear bottom slope, with linear
bottom friction and forced externally at the surface (e.g. Pedlosky 1987; Leng & Bai 2018).
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We index the upper layer with i = 1 and the lower layer with i = 2. The two layers have
densities ρi and thicknesses Hi ; the total depth is H ≡ H1 + H2. The total flow field is the
sum of a uniform and stationary background field and an eddy field that varies in space
and time. We assume that the eddy field is of small amplitude compared to the background
field. The background PV is denoted by Qi , and the background flow velocity vector by
U i . Finally, the eddy PV, eddy flow velocities and eddy streamfunction are denoted by qi ,
ui and ψi , respectively. The QG PV equations for the two-layer system are

∂qi

∂t
+ (U i + ui ) · ∇ (Qi + qi )= δi1F − δi2μ∇2ψ2, (2.1)

where δi j is the Kronecker delta function, F is the surface forcing, and μ is the inverse
frictional time scale. The eddy PV and velocities are related to the eddy streamfunctions:

qi = ∇2ψi + (−1)i Fi (ψ1 −ψ2) , (2.2a)
ui = (−∂ψi/∂y, ∂ψi/∂x) . (2.2b)

Here, Fi is the square of the inverse deformation radius in layer i , given by

Fi = f 2
0

g′Hi
, g′ = g

ρ2 − ρ1

ρ2
, (2.3)

with f0 the Coriolis parameter, and g′ the reduced gravity. We write the background
velocity in the upper layer as U1 = (U1, V1), and in the lower layer as U2 = (U2, V2). The
vertical shears of the zonal and meridional background flow are�U = U1 − U2 and�V =
V1 − V2, respectively. The (linear) bottom slope α = (αx , αy) induces a topographic PV
gradient ∇B = ( f0/H2)α in the lower layer. The total background PV gradient is the sum
of the stretching, planetary and topographic PV gradients:

∇Q1 = (−F1 �V, F1 �U + β) , (2.4a)

∇Q2 = (
F2 �V + Bx ,−F2 �U + β + By

)
. (2.4b)

Finally, the term ui · ∇qi in (2.1) represents nonlinear eddy–eddy interactions, which we
will ignore in our linear analysis. Thus the linearised versions of (2.1) in terms of the eddy
streamfunctions are(

∂

∂t
+ U1

∂

∂x
+ V1

∂

∂y

) (∇2ψ1 + F1(ψ2 −ψ1)
) + βV1 + F1 (U1V2 − U2V1)

+ (F1 �U + β)
∂ψ1

∂x
+ F1 �V

∂ψ1

∂y
=F , (2.5a)(

∂

∂t
+ U2

∂

∂x
+ V2

∂

∂y

) (∇2ψ2 + F2(ψ1 −ψ2)
) + BxU2 + (

β + By
)

V2

+ F2 (U2V1 − U1V2)+
(−F2 �U + β + By

) ∂ψ2

∂x
− (F2 �V + Bx )

∂ψ2

∂y
= −μ∇2ψ2.

(2.5b)

The lowest-order balance in (2.5a) is the generalised Sverdrup balance (Sverdrup 1947),
by which surface forcing (F) permits the mean flow to cross the mean PV gradient. There
is no forcing in (2.5b), implying that the mean flow must be parallel to the PV contours.
This requires that

U2

V2
= F2U1 − β − By

F2V1 + Bx
. (2.6)
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Thus U2 and V2 are not independent. We will retain them for now, for generality, but will
focus subsequently on the case U2 = V2 = 0.

At next order, (2.5a) and (2.5b) become homogeneous equations for the eddy
streamfunctions ψi (Kamenkovich & Pedlosky 1996; Leng & Bai 2018). These are the
equations on which we will focus:(
∂

∂t
+ U1

∂

∂x
+ V1

∂

∂y

) (∇2ψ1 + F1(ψ2 −ψ1)
) + (F1 �U + β)

∂ψ1

∂x
+ F1 �V

∂ψ1

∂y
= 0,

(2.7a)(
∂

∂t
+ U2

∂

∂x
+ V2

∂

∂y

) (∇2ψ2 + F2(ψ1 −ψ2)
) + (−F2 �U + β + By

) ∂ψ2

∂x

− (F2 �V + Bx )
∂ψ2

∂y
= −μ∇2ψ2. (2.7b)

2.2. Dispersion relation for wave solutions
We look for plane wave solutions of the eddy streamfunctions in a doubly periodic domain:

ψ1,2 = ψ̂1,2ei(kx+ly−σ t), (2.8)

where ψ̂1,2 denotes the wave amplitude, K = (k, l)= κ(cos θ, sin θ) is the wavenumber
vector, and σ is the angular frequency. The wave phase speed magnitude c is given by
c = σ/κ . Substituting (2.8) into (2.7) yields a matrix equation for the wave amplitudes:(

M11 M12
M21 M22

) (
ψ̂1
ψ̂2

)
= 0, (2.9)

with

M11 = cκ
(
κ2 + F1

) − κ2 (kU1 + lV1)− F1 (kU2 + lV2)+ kβ, (2.10a)
M12 = (kU1 + lV1 − cκ) F1, (2.10b)
M21 = (kU2 + lV2 − cκ) F2, (2.10c)

M22 = cκ
(
κ2 + F2

) − κ2 (kU2 + lV2)− F2 (kU1 + lV1)+ kβ + k By − l Bx + iμκ2.

(2.10d)

To simplify the analysis, we introduce a wavenumber coordinate system, following the
approach of Leng & Bai (2018). In this coordinate system, the unit vectors e‖ and e⊥ are
parallel and perpendicular to K, respectively. We can then define the following projections:

Ũi = K · U i

κ
= kUi + lVi

κ
= Ui cos θ + Vi sin θ, (2.11a)

β̂ = K × ∇ f

κ
= kβ

κ
= β cos θ, (2.11b)

Ŝ = K × ∇B

κ
= k By − l Bx

κ
= f0

H2

(
αy cos θ − αx sin θ

) = f0

H2
α̂, (2.11c)

where Ũi is the projection of U i on e‖, and β̂, Ŝ and α̂ are the projections of ∇ f , ∇B and
α on e⊥, respectively. Thus the projections of the PV gradients on e⊥ are

̂∇Q1 = F1 �Ũ + β̂, (2.12a)
̂∇Q2 = −F2 �Ũ + β̂ + Ŝ, (2.12b)
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where �Ũ = Ũ1 − Ũ2. The projections (2.11) simplify the matrix equation (2.9) to

(
c
(
κ2 + F1

) − Ũ1κ
2 − F1Ũ2 + β̂

(
Ũ1 − c

)
F1(

Ũ2 − c
)
F2 c

(
κ2 + F2

) − Ũ2κ
2 − F2Ũ1 + β̂ + Ŝ + iμκ

) (
ψ̂1
ψ̂2

)
= 0. (2.13)

For non-trivial solutions, the determinant of the matrix in (2.13) must be zero. This gives a
quadratic equation for c, A1c2 + A2c + A3 = 0, which has the following solution:

c =
−A2 ±

√
A2

2 − 4A1 A3

2A1
≡ −A2 ± √

D

2A1
, (2.14a)

A1 = κ2(κ2 + F1 + F2
)
, (2.14b)

A2 = −κ4(Ũ1 + Ũ2
) − 2κ2(F2Ũ1 + F1Ũ2

) + β̂
(
2κ2 + F1 + F2

)
+ (
κ2 + F1

)(
Ŝ + iμκ

)
, (2.14c)

A3 = κ4Ũ1Ũ2 + κ2
(

F2Ũ 2
1 + F1Ũ 2

2

)
− β̂

((
κ2 + F1

)
Ũ2

+ (
κ2 + F2

)
Ũ1 − β̂ − Ŝ − iμκ

)
− (

Ŝ + iμκ
)(
κ2Ũ1 + F1Ũ2

)
. (2.14d)

The solution for c can have both a real part and an imaginary part. The real part, cr , denotes
the eddy phase speed. The imaginary part, ci , multiplied by the wavenumber magnitude,
denotes the unstable growth rate, σi = κci . The requirement for baroclinic instability is
that σi > 0.

3. Linear stability analysis

3.1. Instability conditions in inviscid case
We can use the dispersion relation (2.14) to study the instability of the two-layer model.
We start by considering the inviscid case (μ= 0). In this case, a necessary and sufficient
condition for instability is that D = A2

2 − 4A1 A3 in (2.14a) is negative (as A1, A2, A3 are
all real,

√
D is the only possible source of an imaginary part of c). Here, D is a polynomial

in κ , and from D < 0 it follows that there exist both a long-wave and a short-wave cut-off
for instability. To get insight into the role of the bottom slope, we derive another necessary
condition for instability. We multiply the first row of (2.13) by d1ψ̂

∗
1/(c − Ũ1) and the

second row by d2ψ̂
∗
2/(c − Ũ2), where di ≡ Hi/H , and ∗ denotes the complex conjugate.

Next, we sum the two rows and find

κ2
(

d1ψ̂
2
1 + d2ψ̂

2
2

)
+ F

(
ψ̂1 − ψ̂2

)2 + d1ψ̂
2
1

c − Ũ1

(
F1 �Ũ + β̂

)

+ d2ψ̂
2
2

c − Ũ2

( − F2 �Ũ + β̂ + Ŝ
)= 0, (3.1)
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where F ≡ f 2
0 /(g

′H). Both the real and imaginary part of (3.1) must vanish separately.
The imaginary part of (3.1) is

−ci

{
d1ψ̂

2
1

|c − Ũ1|2
(
F1 �Ũ + β̂

) + d2ψ̂
2
2

|c − Ũ2|2
(−F2 �Ũ + β̂ + Ŝ

)} = 0. (3.2)

For ci 	= 0, which is necessary for instability, (3.2) implies that(
F1 �Ũ + β̂

)(−F2 �Ũ + β̂ + Ŝ
)
< 0. (3.3)

Note that (3.3) is equivalent to ̂∇Q1 ̂∇Q2 < 0. In other words, the component of the PV
gradient perpendicular to the wavenumber vector must change sign between the layers
for the flow to be unstable. This is the generalisation of the Charney–Stern–Pedlosky
criterion (Charney & Stern 1962; Pedlosky 1963, 1964). A number of interesting aspects
emerge from the instability condition (3.3). First, the relevant parameter for stability is the
vertical velocity shear �Ũ rather than the individual layer velocities. Also, planetary PV
has a stabilising effect since sufficiently large β̂ will make both ̂∇Q1 and ̂∇Q2 positive.
Note that for meridional wavenumber vectors (θ = π/2 or 3π/2), planetary PV cannot
stabilise the flow, as β̂ = 0 then. Finally, it follows from (3.3) that there exists a critical
slope for instability:

α̂c = f0 �Ũ

g′ − H2β̂

f0
, (3.4)

with the necessary instability conditions

α̂ < α̂c if ̂∇Q1 > 0,

α̂ > α̂c if ̂∇Q1 < 0. (3.5)

Thus if the bottom slope component perpendicular to K exceeds the critical slope, then
there is no instability for wavenumber vectors with wave angle θ . (Here, ‘exceeds’ can
mean either to be smaller or greater, depending on the sign of ̂∇Q1.) The term f0 �Ũ/g′
on the right-hand side of (3.4) represents the slope of the density interface between the
two layers, projected on e‖. This means that on the f -plane, the instability condition (3.5)
is that the bottom slope component perpendicular to K is less steep than the isopycnal
slope component parallel to K. Again, this is a generalisation of a well-known result for
zonal flows (e.g. Blumsack & Gierasch 1972; Mechoso 1980; Pavec et al. 2005; Isachsen
2011; Pennel & Kamenkovich 2014). Note that (3.5) is not a sufficient condition for
instability; as mentioned above, for slopes below the critical slope, there is still instability
only for a limited range of wavenumber magnitudes.

3.2. Instability condition with bottom friction
If μ 	= 0, then the situation changes, as both A2 and A3 in (2.14) have an imaginary part.
As seen in the dispersion relation (2.14), including bottom friction is equivalent to adding
an imaginary part to the slope parameter Ŝ. The imaginary part of c is now given by

ci = Im(−A2)± Im(
√

D)

2A1
. (3.6)
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The necessary and sufficient condition for instability is that (3.6) is positive. The
imaginary part of −A2 is equal to −(κ2 + F1)μκ . To get an expression for the imaginary
part of

√
D, we first write D in polar coordinates:

D = r eiγ =⇒ √
D = √

r ei(γ /2+nπ), n = 0, 1. (3.7)

The n = 0 solution of (3.7) corresponds to a positive Im(
√

D), while the n = 1 solution
yields a negative value. Thus instability implies the sum in (3.6) with n = 0, and the
difference with n = 1. In either case, the condition for instability reduces to

√
r sin (γ /2) >

(
κ2 + F1

)
μκ. (3.8)

We use the half-angle formula to rewrite the instability condition as (see also Swaters
2009, 2010)

2r sin2(γ /2)= r (1 − cos γ ) > 2
(
κ2 + F1

)2
μ2κ2, (3.9)

or equivalently, √
Re(D)2 + Im(D)2 >Re(D)+ 2

(
κ2 + F1

)2
μ2κ2. (3.10)

Squaring both sides yields

Im(D)2 > 4
(
κ2 + F1

)2
μ2κ2 Re(D)+ 4

(
κ2 + F1

)4
μ4κ4. (3.11)

We obtain Re(D) and Im(D) from D = A2
2 − 4A1 A3 following (2.14). Some tedious but

straightforward algebra yields the following expressions:

Re(D)= κ4(Ũ1 − Ũ2
)2(
κ4 − 4F1 F2

) + (
κ2 + F1

)2
(

Ŝ2 −μ2κ2
)

+ 2β̂ Ŝ
(
κ2 (F1 − F2)+ F1(F1 + F2)

) + 2κ2 Ŝ
(
Ũ1 − Ũ2

)(
κ4 + F1κ

2 − 2F1 F2

)
+ 2κ4β̂

(
Ũ1 − Ũ2

)
(F1 − F2)+ β̂2(F1 + F2)

2, (3.12a)

Im(D)= 2Ŝμκ
(
κ2 + F1

)2 + 2μκ3(Ũ1 − Ũ2
)(
κ4 + F1κ

2 − 2F1 F2

)
+ 2β̂μκ

(
κ2 (F1 − F2)+ F1(F1 + F2)

)
. (3.12b)

Again, only the vertical velocity shear �Ũ = Ũ1 − Ũ2 enters the expression. Substituting
(3.12) in (3.11) leads eventually to many terms cancelling out. Most notably, all terms
containing the bottom slope term Ŝ disappear. Thus the slope can no longer stabilise the
flow in the presence of a bottom Ekman layer. Finally, (3.11) reduces to

16κ4 F1 F2μ
2(κ2 + F1 + F2

)(
�Ũ κ2 − β̂

)(
F1 �Ũ + β̂

)
> 0. (3.13)

The first portion is always positive, so for the μ 	= 0 case, there is instability if and only if

(
�Ũ κ2 − β̂

)(
F1 �Ũ + β̂

)
> 0. (3.14)
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Thus there can be instability only if�Ũ is non-zero. A further constraint that is necessary
and sufficient for instability follows from (3.14), depending on the sign of �Ũ · β̂:

for �Ũ · β̂ � 0, |�Ũ |> |β̂|
κ2 , (3.15a)

for �Ũ · β̂ � 0, |�Ũ |> |β̂|
F1
. (3.15b)

So there is a critical shear for instability; as long as �Ũ is greater than this critical shear,
the system is unstable for all wave orientations θ . If �Ũ and β̂ have equal signs, then
the critical shear is determined by the planetary PV gradient and the wavenumber, and
long waves are stable. If �Ũ and β̂ have opposite signs, then the critical shear depends
on the planetary PV gradient and the upper layer deformation radius, and there is no
constraint for the wavenumber magnitude. The instability is thus no longer confined to
a wavenumber range with both a long-wave and short-wave cut-off, as in the inviscid case;
friction destabilises the system (e.g. Holopainen 1961). Planetary PV can stabilise the
flow; on an f -plane, or for meridional wave vectors (β̂ = 0), there is instability for all non-
zero �Ũ at wave angle θ . Notably, neither the friction coefficient μ nor the bottom slope
α̂ appear in the instability condition (3.14). Frictional destabilisation happens even for
infinitesimally small frictional strength, consistent with Swaters (2009, 2010). Moreover,
as long as (3.14) holds, the flow is unstable for all slopes, irrespective of magnitude or
orientation. Interestingly, (3.14) also holds for unstable flows in the inviscid case (this
follows from combining (3.3) with A3 > 0, which must be true for D < 0). However,
(3.14) is not sufficient for instability in an inviscid system; constraints for the wavenumber
magnitude and slope must be met. By contrast, for μ 	= 0, (3.14) is necessary and sufficient
for instability. The inviscid case is thus a singular limit of the two-layer model.

The impact of bottom slope and bottom friction on baroclinic instability is visualised
in figure 1, which shows the growth rates of unstable waves as a function of wavenumber.
For this figure, we consider a zonal mean shear and a meridional bottom slope, so that the
planetary, topographic and stretching PV are all aligned, even without the transformation
to wavenumber coordinates. We consider a zonal wavenumber vector (θ = 0) as this always
yields the maximum growth rate. The following dimensional parameters are used, which
are representative values for the ocean (e.g. Dohan & Maximenko 2010; Koltermann et al.
2011; LaCasce & Groeskamp 2020):

f0 = 10−4 s−1, β = 10−11 m−1 s−1, �U = 0.04 m s−1,

H1 = 1000 m, H2 = 4000 m, ρ1 = 1027.5 kg m−3, ρ2 = 1028 kg m−3. (3.16)

In this configuration, the deformation radius Ld = 1/κd = 1/
√

F1 + F2 is 20 km, and
the upper layer deformation radius Ld1 = 1/

√
F1 is 22 km. As estimates of the inverse

frictional time scale μ−1 in the ocean are of the order of 1–100 day−1 (Arbic & Flierl
2004a), we test different orders of magnitude of μ. Furthermore, we test bottom slope
magnitudes of the order of 10−4−10−3, which capture most of the open ocean (LaCasce
2017). As we consider an eastward mean shear in the Northern Hemisphere, positive
slopes (rising towards the north) are retrograde, and negative slopes are prograde in this
configuration. Figure 1(a) demonstrates the existence of a critical slope for instability
in the inviscid case, resulting in a strong asymmetry between retrograde and prograde
slopes (Blumsack & Gierasch 1972; Mechoso 1980). Figure 1(b) shows that even weak
bottom friction destabilises the system for all bottom slopes, and removes the short-wave
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Figure 1. Growth rate of unstable waves as a function of wavenumber (normalised by the deformation
wavenumber) for different frictional time scales, with parameters as in (3.16). Note the different colour bar
ranges. The black curve in each plot shows the wavenumber that maximises the growth rate as a function of the
bottom slope.

cut-offs (as�U · β > 0 here, there is still a long-wave cut-off at κ = √
β/�U ; see (3.15)),

but also that the growth rates become weaker. There is still strong asymmetry between
retrograde and prograde slopes: for retrograde slopes, growth rates are much weaker, and
the maximum growth occurs at smaller wavenumbers than for prograde slopes. With
increasing frictional strength (figure 1c,d), the growth rates decrease further, and the
asymmetry between retrograde and prograde slopes gets weaker. Thus there is a shift from
a slope-dominated regime to a friction-dominated regime. This can be understood from
(2.14) by noting that the terms representing the topographic PV gradient and the bottom
friction always appear together as the sum Ŝ + iμκ; as μ increases, so does its relative
importance over the topographic term.

Figure 2 shows the maximum growth rate as a function of bottom slope, for both positive
and negative zonal shear configurations. For no or weak friction, the most unstable growth
rate depends strongly and asymmetrically on the bottom slope. The growth rates are much
higher for prograde slopes than for retrograde slopes in this parameter configuration. For
stronger, but realistic friction, the growth rate curves flatten, illustrating the shift from the
slope-dominated regime to the friction-dominated regime. The growth rates are very low
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Figure 2. The maximum growth rate as a function of the bottom slope for different frictional strengths, for
positive zonal shear �U = 0.04 m s−1 and negative zonal shear �U = −0.04 m s−1, and the other model
parameters as in (3.16).

for strong friction. Hence even though the system is unstable in an analytical sense, the
unstable modes grow only very slowly for strong friction.

3.3. Instability characteristics for varying orientations of the PV gradients
We now consider how the instability characteristics of the two-layer model change for
varying orientations of the mean shear and the topography. For simplicity, we set U2 = 0
so that the shear vector is U1 ≡ U . Figure 3 shows the most unstable growth rate as a
function of the bottom slope vector, for shear vectors making angles 45◦ (top row) or
300◦ (bottom row) with the zonal direction. In these plots, the distance to the origin is
the magnitude (steepness) of the bottom slope, and the angle around the x-axis is the
direction of the slope (i.e. the direction in which the water column becomes shallower).
For each slope vector, growth rates are computed for a range of wavenumber vectors
(varying magnitudes κ and orientations θ ), and the maximum growth rate is plotted. Shear
orientations other than 45◦ or 300◦ show similar results (not shown here). Figures 3(a)
and 3(d) show that in the inviscid case, the system is stable (white region where gridlines
are visible) only for a very narrow range of slope vectors –namely, close to the slope
for which the lower layer PV gradient ∇Q2 in (2.4b) is perpendicular to U . Note that
∇Q2 ⊥ U is equivalent to the planetary, topographic and stretching PV gradients all being
aligned with each other. The red lines in the figures indicate the slope magnitudes and
orientations for which ∇Q2 ⊥ U . This line and the stability region do not start at the
origin: only for sufficiently steep slopes can the system become stable. For both 45◦ and
300◦ shear angles, stability occurs for retrograde slopes, i.e. seafloors deepening towards
the right of the mean shear (in the Northern Hemisphere); prograde slopes, on the other
hand, are always unstable. Moreover, as soon as ∇Q2 is no longer perpendicular to U ,
the system becomes unstable. This does not necessarily mean that the system is unstable
for all wavenumber vectors – for example, it will be stable for wavenumber magnitudes
outside the long-wave/short-wave cut-offs, and for wavenumber orientations for which
(3.3) does not hold (see e.g. figure 4 in Leng & Bai 2018). However, figures 3(a) and 3(d)
show that for ∇Q2 not perpendicular to U , there is always at least some wavenumber
vector for which σi is positive. As seen before, figure 3(b,c,e,f ) demonstrate that the
presence of bottom friction destabilises the system for all bottom slopes, but also makes the
growth rates (much) weaker. Figure 3(a)–3(f ) all show that the growth rates are symmetric
around the line ∇Q2 ⊥ U . Growth rates increase as the slope becomes more aligned
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(a) Inviscid (μ = 0), angle U = 45⸰ (b) μ−1 = 100 days, angle U = 45⸰ (c) μ−1 = 10 days, angle U = 45⸰

(d ) Inviscid (μ = 0), angle U = 300⸰ (e) μ−1 = 100 days, angle U = 300⸰ ( f ) μ−1 = 10 days, angle U = 300⸰
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Figure 3. The most unstable growth rate as functions of the bottom slope vector for different orientations of the
mean shear and different frictional strengths. The axes indicate the magnitude and orientation of the slope. The
direction of the shear vector is indicated by the arrow in each plot, and the shear magnitude is 0.04 m s–1;
the other model parameters are as in (3.16). The black dot marks the origin of the plot. The red lines in
(a), (b), (d) and (e) indicate the orientation of the slope at which the lower layer PV gradient is perpendicular
to the shear, as a function of the slope magnitude.

with the mean shear (so the topographic PV gradient becomes more perpendicular to the
stretching PV gradient), and are generally higher for prograde slopes. As friction increases,
the dependency of the growth rate on the slope weakens, and with that, the asymmetry
between prograde and retrograde slopes: the growth rates become very weak for all slope
orientations and magnitudes.

Figure 4 shows the most unstable wavenumber as a function of bottom slope orientation
and magnitude. Generally, retrograde slopes favour lower wavenumbers (larger scales),
whereas prograde slopes favour higher wavenumbers (smaller scales), as in Leng & Bai
(2018). An interesting feature occurs around the line ∇Q2 ⊥ U in the inviscid and weak
friction cases: there is a discontinuity across this line with a switch from a low wavenumber
mode to a high wavenumber mode. The discontinuity goes in opposite directions for the
two shear orientations considered here; the shift from low to high wavenumber occurs in
the anticlockwise direction for shear angle 45◦, and in the clockwise direction for shear
angle 300◦. Other shear orientations between 0◦ and 270◦ show the same behaviour as
for 45◦, and other shear orientations between 270◦ and 360◦ show the same as for 300◦
(not shown here). The discontinuity across ∇Q2 ⊥ U is smoothed for strong friction, and
the most unstable wavenumber becomes more uniform for all bottom slope magnitudes
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Inviscid (μ = 0), angle U = 45⸰(a) μ−1 = 100 days, angle U = 45⸰ μ−1 = 10 days, angle U = 45⸰

(d ) Inviscid (μ = 0), angle U = 300⸰ (e) μ−1 = 100 days, angle U = 300⸰ ( f ) μ−1 = 10 days, angle U = 300⸰
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Figure 4. As figure 3 but showing the most unstable wavenumber. The κ = κd contour is indicated in white.

and orientations. However, the most unstable wavenumber remains asymmetric in the
line ∇Q2 ⊥ U for retrograde slopes, as opposed to the maximum growth rate. Note that
periodic patterns appear, most notably in the low wavenumber mode close to the line
∇Q2 ⊥ U . These are in part due to the resolution of the values of κ and θ that were tested,
but some periodic signal still remains even for higher resolution (not shown here). This
is likely due to interactions of higher harmonics. As the patterns appear within a regime
where the growth rates are very weak, they are not of great importance for the qualitative
behaviour of the instability as a function of slope.

Finally, figure 5 shows the propagation direction of the most unstable wave as a function
of the bottom slope. If the phase speed (real part of c) of the most unstable wave is
positive, then the propagation direction is given by the orientation θ of the most unstable
wavenumber vector; if the phase speed is negative, then the propagation direction is exactly
opposite to θ (shift of 180◦). For the inviscid and weak friction cases, again there is a clear
asymmetry between prograde and retrograde slopes. For prograde slopes, the propagation
direction is close to the direction of the mean shear. For retrograde slopes, on the other
hand, the most unstable wave crosses the mean flow, until the propagation direction is close
to the normal direction of the mean shear around the line ∇Q2 ⊥ U . This is in agreement
with the case studies considered by Leng & Bai (2018). As in figure 4, a discontinuity
occurs across ∇Q2 ⊥ U : the propagation direction switches by 180◦ across this line. This
switch ensures that the most unstable wave always propagates at an acute angle to the
mean shear. Over a retrograde slope with ∇Q2 · U > 0, the most unstable wave travels
upslope, with the mean shear to its right; if ∇Q2 · U < 0, then it travels downslope with
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Figure 5. As figure 3 but showing the propagation direction of the most unstable wave.

U to its left. For strong friction, the discontinuity across ∇Q2 ⊥ U disappears, as does the
prograde–retrograde asymmetry: the waves all travel parallel to the mean shear.

4. Conclusions and discussion
We have used the two-layer QG model to study the joint effect of a planetary PV gradient,
topographic PV gradients of varying orientation and magnitude, and bottom friction on
baroclinic instability. A well-known instability condition of the inviscid two-layer model
with a zonal mean shear and a linear meridional bottom slope is that the PV gradient
must change sign between the two layers, and as a result there is a critical retrograde slope
beyond which all instability is suppressed. We generalised this condition to account for
other orientations of the mean shear and the bottom slope. A flow can be stable for all
wavenumbers only for very specific slopes. Moreover, the instability condition no longer
holds if bottom friction is present.

We first derived the instability condition with bottom friction (3.14). The system is
unstable for wavenumber vectors with wave angle θ as long as the component of the shear
parallel to the wavenumber vector is sufficiently strong; the critical shear for instability
is independent of both the friction coefficient and the bottom slope. Bottom friction
destabilises the system for all slope orientations and magnitudes, in line with previous
studies (e.g. Holopainen 1961; Swaters 2009; Lee 2010a; Willcocks & Esler 2012). The
instability condition (3.14) shows that even systems with all-positive or all-negative PV
gradients can be unstable. With weak friction, the maximum growth rate is still much
weaker for retrograde than for prograde slopes; as friction increases, this asymmetry
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disappears, and all growth rates become weaker. With strong friction, the growth rates
are very weak. Hence even though friction destabilises otherwise fully stable modes, it
also suppresses the growth of the unstable modes.

We examined how the growth rates vary with the orientation of the mean shear U and the
bottom slope. This is similar to Leng & Bai (2018), but they considered only configurations
in which the bottom slope is perpendicular to the mean shear. We considered two different
orientations of U , and studied all possible orientations of the bottom slope. The system can
be stable only if there is no bottom friction and the lower layer PV gradient is perpendicular
to the mean shear. The slope for which this criterion holds is retrograde; prograde slopes
are always unstable, and have higher growth rates. This generalises earlier findings that
a system that is stable with a zonal shear and zonal isobaths can be destabilised by even
a weakly non-zonal shear or weakly zonal slope (e.g. Kamenkovich & Pedlosky 1996;
Chen & Kamenkovich 2013). Friction destabilises the system for all slope orientations and
magnitudes, but also suppresses the growth rates. The dependency of the growth rate on
the slope disappears with increasing friction. Furthermore, we found that with no or weak
friction, the most unstable wave propagates along the mean flow for prograde slopes but
crosses the mean flow for retrograde slopes. This agrees with the findings from Leng & Bai
(2018). An interesting new finding is that there is a discontinuity in the wavenumber and
propagation direction of the most unstable wave around slope vectors for which ∇Q2 ⊥ U .
Very small changes in the slope orientation can result in large changes in the instability
scale and a 180◦ shift in the propagation direction of the most unstable mode, from parallel
to anti-parallel to the slope. For strong friction, the most unstable wave always travels along
the mean flow.

A limitation of the two-layer QG model is that it does not account for interior PV
gradients. The two layers are dynamically linked, hence the bottom friction and bottom
slope affect both layers. In contrast, Lobo et al. (2025) showed that while prograde
flows in a three-layer QG model are reasonably represented by the two-layer model,
retrograde flows are not. The reason is that retrograde flows can support surface-intensified
instabilities that are almost insensitive to bottom topography, causing the flow to be more
unstable than with two layers. The addition of interior PV gradients associated with
an extra layer or continuous stratification might thus affect the instability conditions.
An interesting case for further research would be the effect of bottom friction and
misalignment of PV gradients on baroclinic instability in the three-layer QG model.

Also of interest is the impact of the type of friction on stability. The present study
considers only bottom friction, but not lateral eddy friction. Moreover, we considered only
linear (Ekman) friction, but many models use quadratic bottom friction instead (e.g. Chang
& Held 2021; Chen 2023; Deng & Wang 2024). Linear and quadratic bottom friction
have different impacts on the turbulence properties of the two-layer model (Grianik et al.
2004; Gallet & Ferrari 2020, 2021) and may thus affect stability in distinct ways, possibly
in terms of frictional instability. As linear stability analysis is no longer possible with
quadratic friction, such analysis would necessarily be numerical.

Though highly idealised, the present findings could help to improve understanding
of baroclinic instability in the ocean. They shed light on the dependency of instability
characteristics on the bottom slope and bottom friction, and demonstrate that with
increasing friction, the system transitions from slope-dominated to friction-dominated.
This could be important for understanding the nonlinear dynamics as well (Berloff &
Kamenkovich 2013a,b). For example, it would be interesting to know how the energy levels
of mesoscale eddies depend on the bottom slope and bottom friction, and if they show
a transition from slope-dominated to friction-dominated. Unfortunately, little is known
on the strength and spatial variability of the bottom friction in the ocean, and estimates
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can differ by up to two orders of magnitude (Arbic & Flierl 2004a). More data on the
frictional strength distribution in the global ocean are needed to properly understand which
mechanism is dominant in setting the instability characteristics in the ocean. Stability
caused by steep retrograde bottom slopes holds only in a very specific case: in the absence
of bottom friction, when the planetary, topographic and stretching PV gradients are all
aligned. Since such a specific alignment of the PV gradients is extremely rare and the
seafloor is not frictionless, stabilisation by steep slopes probably does not occur in the
ocean. Likewise, the ‘classical’ two-layer model with its zonal mean shear, meridional
bottom slope and no friction might not be so relevant in practice when studying baroclinic
instability in the ocean.
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