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In shipborne Transfer Alignment (TA) applications, partial observability is one of the most
important factors limiting convergence velocity. This paper proposes a new method of
attributing weak observable states and lever-arm variables to a group of constraints in order
to improve the observability of TA model. This yields the so-called Constrained Transfer
Alignment (CTA) model which is uniformly observable even under zero-manoeuvre con-
ditions. Within this framework, the Moving Horizon Estimation (MHE) and its stability
analysis are also addressed. Finally, comparative simulation results are given to demonstrate
the advantages of the proposed approach.
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1. INTRODUCTION. Inertial Navigation System (INS) is a type of dead-
reckoning navigation system and must to be initialized prior to its operation (Pitman,
1962). In many practical applications, the higher accuracy Master INS (MINS) is
available to aid the alignment of the Slave INS (SINS). This process is appropriately
known as Transfer Alignment (TA), and its significance has been recognized in both
theoretical research and in modern navigation applications.

The past few decades have witnessed a marked rise in TA techniques to meet the
increasing demands of quick reaction performance in weapons systems. Because weak
observability is commonly considered the best starting point to lengthen the required
time in the aligning process (Groves, 2003), most previous literatures endeavoured to
increase the observability magnitude of the misaligned states. Bar-Itzhack proposed a
framework of observability analysis of time-varying system in (Meskin and Itzhack,
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1992a; 1992b). Within this framework, the manoeuvring-related observability during
the in-flight alignment was investigated in (Itzhack and Porat, 1980), (Porat and
Itzhack, 1981), and (Meskin and Itzhack, 1992). Rhee expanded the instantaneous
observability results to the integrated INS/Global Positioning System (GPS) system in
(Rhee et al., 2004). In the presence of time correlated noise, Wendel presented a rapid
TA scheme (Wendel et al., 2004) where the full observability was achievable with brief
Wing Rock (WR) manoeuvres. In order to excite azimuth-related states to extreme
magnitude, Efraim proposed a new in-drilling alignment procedure (Efraim and
Mintchev, 2007a; 2007b). Furthermore, TA experiments were designed in various
practical platforms, such as F-16 fighters (Kevin and William, 1998) and other air-to-
surface weapons (Ross and Elbert, 1994). More recently, diverse observability analysis
results were summarized and the general analysis tools were given (Lee et al., 2010;
Hong et al., 2008). Based on these literatures, since more latent states can be excited by
vehicle motion, artificial manoeuvres are necessary to drive the alignment model to a
uniformly observable one. However, as pointed out in Groves (2003), due to the
existence of lever-arm, the manoeuvre motion can result in greater measurement
uncertainty accompanied by increased flexure and vibration, which reduces the
observability of INS error-states. In addition, challenges arise and the manoeuvres
may be very difficult or even impossible to implement because of the huge inertia of
warships in shipborne applications.

Motivated by the above observations, this paper presents a novel framework to
achieve fast alignment performance with reduced-manoeuvre (or even zero-
manoeuvre) demands. Under this framework, the traditional TA model is equally
described as a definitely observable system subject to a group of state-constraints,
which is the so-called Constrained Transfer Alignment (CTA) model. The
corresponding constrained estimation problem can be solved by employing some
newly presented filters as surveyed by Simon (2010).

The remainder of this paper is organized as follows. In Section 2, the traditional TA
problem is formulated. Based on this, the CTA model is derived and analysed in
Section 3, where the convergent performance of the Moving Horizon Estimator
(MHE) in the CTA model is also proved. Finally, simulation results with different
manoeuvres and concluding remarks are presented in Section 4 and Section 5,
respectively.

2. PROBLEM FORMULATIONS.
2.1  Glossary of Terms.

n=Local navigation frame of axes

b=Real body frame of axes

b*=Computed body frame of axes

C = Direction cosine transformation between a-frame and b-frame
v=Velocity, m/s

a = Acceleration, m/s

w=Attitude angle

V =Instrument error vector of accelerometers

&= Instrument error vector of gyros

Ax=Variable displacement vector
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2.2. Formulations. In Kain and Cloutier (1989), the framework of TA via
velocity matching is presented by the following differential equations:

AV = Ay x Cl.al + C”*(a’}b +Vh, )
Ay = Cj (@, + &), )
where:

Av is velocity difference between the master and slave velocities.

Ay denotes the ‘misalignment’ of the slave INS b*-frame from the ‘true’
North-East-Down (n-frame).
7. 1s the estimated body-to-navigation frame direction cosine transformation.

a}’;, denotes the flexible body acceleration which is equal described by a stochastic
process.

V5 and sg are parameterized instrument error vectors of accelerometer and gyros,
respectively.

]y is the flexible body rotation rate.

As pointed out (Britting, 1971; Itzhack and Porat, 1980; Yi, 1987 and Wendel et al.,
2004), the accelerometer and gyro instrument error parameterization is very complex
for accurate modelling. However, most literatures consider the random error of gyros
as a mixture of three independent elements that will be referred to hereafter as
successive start drifting &;,, random walk ¢,; and white noise signals w,. Consequently,
ep; and ¢g,; can be formulated as:

&i=0 i=x,),z, 3

. -1 .
&i=—¢&it Wy =Xz, “)
Tg
where 7, means the correlated time of gyros’” output.
The total error of gyro is:

£ = &p + & + Wy. ®)

The instrument error of accelerometer V is modelled as a mixture of random
constant V, and white noise w,;

Vi=Vpi+ws =X,z 6)

where Vj; = 0,i = x, y, z.

Generally speaking, the commonly selected states include Vv, V¥, g, and
V;, i=x,y,z. It is worth noting that some additional states can also be augmented
into other TA models. However, for simplicity, those states are not involved in this
paper.

Let ¥ be the lever-arm vector denoting the relative distance between the SINS with
respect to the MINS. Then the relationship between velocity of the MINS and the
SINS can be shown (Sun and Deng, 2009), as:

sno__ i n ~n &
Vi=v,+o, xF"+1F +0v, @)

where ¥ =r + or.
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The lever-arm compensation on the velocity output of the MINS can be calculated
as follows:

Ve = Vi, + Cll(@, — ) x 1) ®)

Then the measurement equation for velocity matching case in traditional TA takes
the following form:

Z, =¥ —v;)"" = Av + C)(w,x)or" + v,, )
where:

a . .
vy = CJ ¥ and can be seen as white measurement noise.
or represents the lever-arm error vector and can be modelled as random constants.

Then, the traditional TA model consists of Equations (1)-(6) and Equation (9).
Based on this traditional formulation, the objective of this paper is to obtain an equal
TA framework with uniform observability.

3. MAIN RESULTS.

3.1 Constrained Descriptions of Instrumental Errors and Lever-Arm. Without
loss of generality, the random walk component in Equation (4) is widely accepted as a
first-order Gauss-Markov process. Suppose the inertial outputs are sampled with unit
interval, the correspondingly discrete model can be written as:

e+ 1D =L e 4wk + 1), (10)
g

wr(k + 1) ~ N(O, 0,2,), (1)

ep(k + 1) = g(k), (12)

we(k + 1) ~ N(O, aﬁ,), (13)

The correlated time of gyros 7, is generally longer than several hundreds of seconds.
Substituting Equations (10)—(13) into Equation (5) yields:

gk +1) = &,(k + 1) + ep(k + 1) + wo(k + 1) ~ N(e(k), (6> +62)). (14
Similarly, the accelerometer error in Equation (6) can be rewritten as:
V(k) = Vj + wa(k) ~ N(Vj, 62). (15)

It is worth noting that the above instrumental errors are represented in the slave
body frame. Because the established instrumental error model varies with inertial
instruments and modelling methods, for simplicity, we only consider a well-accepted
instrumental error model here. However, it is easy to extend this constrained
description framework to other error models.

On the other hand, the effects of lever-arm motion and ship flexure remarkably
confine the alignment accuracy and rapidity in the presence of ship-dynamics, which
are rather difficult to compensate due to their strong uncertainties (Titterton and
Farnborough, 1990). In this section, we suggest that the lever-arm can also provide
auxiliary information to evaluate the initial misalignment-states. As depicted in
Figure 1, the coupled relationships of relative velocity and angular rotation between
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Figure 1. Coupled constraints description from lever-arm effect.

the MINS and SINS in the presence of dynamic deformation can be equally described
as a group of constraints.

The relationship between relative linear velocity and angular velocity is well
known as:

(0 — ) x 1" = (V] — V), (16)
where ) can be arranged as:
(I 4+ (Apx)]CY (&%) — "} x I = Av. 17

Equations (14), (15) and (17) constitute the constrained descriptions of instrumental
errors and lever-arm effect. The CTA model can be summarized as the following
discrete-time form:

X(k + 1) = AX(k) + Gw(k), (18)
Z(k) = HX(k) + v(k), (19)
subject to:
wo~N([ 5T )
(k) ~ N, a2, 1)
AV = {[I + (Ayx)]ICY(@") — o} x 1", (22)
where:

X=[Ayy, Ay, Ay, Avy, Avy, Av.]" (n— frame).

G = diag(Cy., C}.), o2, is the covariance of measurement noise.

W =[ggx, £gy, €gzy Vo V), V] (b— frame) and A is derived by traditional TA model
described in Equations (1) and (2).
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3.2. Observability Analysis on TA Models. 1t is worth noting that the
observability analysis of dynamic time-varying systems is still an open question. On
the basis of observability analysing methods (Ham and Brown, 1983; Meskin and
Itzhack, 1992a; 1992b), the observability analyses on traditional TA models were
referenced in many previous literatures (e.g., Jiang and Lin, 1992; Fang and Wan,
1996). Generally speaking, the velocity and angular misalignment can be easily
observed under proper measurement model, and it is hard to observe all the
instrumental error uniformly at the same time. In this section, the observability
analysis is introduced in the proposed CTA system.

Meskin and Itzhack (1992a; 1992b) have pointed out that the observability analysis
of the time-varying alignment system at the j'" segment, after having gone through
segments 1, 2,..., j—1, has to be carried out on Qj, the Total Observability Matrix

(TOM) at that segment. The matrix Qj is constructed as follows:
Q,
~ Qe

Q= , (23)
Q 'eAj_lAj_] eA]A]
j BN

where:

Q = [HT|(HA)T|HAHT| .. (HA"HT],1 < i<, can be seen as the dis-
criminant matrix of observability according to the classic control theory in the
instantaneous case.

A, 1s the time span of segment i.

Furthermore, the TA models constitute dynamic systems for which Theorem 2 in
(Meskin and Itzhack, 1992a; 1992b) holds, thus we can use the Stripped Observability
Matrix (SOM) Q,() for simplicity. The SOM is constructed as:

Q
o =| ¥ (24)
Q
For the constrained TA model in Equations (18)-(22), the instantaneous
discriminant matrix in segment i is:

Q = [HI[(HA)T|(HA)T ... (HAD ] (24a)
where:
H=[03: Iias]
_ 1 _
0 — 0
R+h 0 —f fo
) A A y 1 0 0 y P .
- s 12 — e s 21 — u —Je
Axy Axn R+
tan L 0 0 o Se O
LR+ h i
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0 w;esin L + v;tin hL - (wie cosL + Rv:_h)
An = _(COie sin L + V;;T;) 0 R_—l”h
] <wi€cosL+R‘j:h R:’ih 0 A
[ V"ti;—fh_v“ 2wesin L + v;t'in hL - <2wie cosi + RV—_f_h) |
A = —2<a),~e sin L+ 2o 4 hL> A R
i 2w cos L + Rvi;h Rz_v: A 0 J

Please refer to (Britting, 1971) for details on the above notations. We can easily find
that the rank of the SOM is uniformly equal to six even without any manoeuvring
motion, which equally means that the constrained system is completely observable in
every segment. See (Rao et al., 2003) for detailed definitions of observability.

3.3 Moving Horizon Estimator and its Modified Version in CTA Case. When it
comes to the constrained estimation problem, various filters other than traditional
Kalman filtering have been presented (Simon, 2010), such as projecting methods,
unscented filtering and truncated particle filtering, etc. To maintain a trade-off
between accuracy and calculating costs, the MHE (Muske and Rawlings, 1993), which
stems from the Bayesian Maximum a Posterior (MAP), is modified to better suit the
proposed framework. The Bayesian MAP estimation of x given y essentially means
the most likely value of x, given y is:

)emap =arg mflxl’(x | J’) (25)

Essentially speaking, MHE is an approximation of MAP estimation with a moving,
fixed-size estimation window. The fixed-size estimation window is necessary to bound
the size of the quadratic program. Most previous works assume that the noise among
the system is mutually independent and the initial state and noise have (truncated)
Gaussian distributions with zero means, where the posterior probability can be easily
derived (Muske and Rawlings, 1993; Goodwin and Hernan, 2004), while in the CTA
case as proposed in Equations (18) and (19), we take the varying means Gaussian
distributions into account. That is:

Puto(W) o exp{— % v — wlk — DIT Q' [w — wik — 1>]},
Doy (0) o€ exp(— %UTR,:11)> , 25a)

1 _ _
ProX) < exp| —= (X = Xo) Py (X = X)) |,
2

where R, Q and Py are the covariance matrix of measurement noise, system noise and
error covariance of initial states, respectively.
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Using Bayes’ rule, we have (Rao, 2000)

-1
P&, - X7y, s y1-1) 0 Py (x0) [ | 2o Ok — IacCor))p (i1 1x0), 26)
k=0
PXiex11x) = Py (Xie1 — fie(Xi0).
Furthermore:
arg max p(xo,...,X7|Yos .-, Y7-1)
{X0,ws X7}
« 2 2 2 @7)
=arg, min 3 llvll o + 1wk = weetllgo + 1% = Sollpy

Dreem —
where the minimization is done subject to the dynamics and all constraints.
|x||2Q = x"Qx, w_,=0 and the ‘cost function’ is defined as:

T-1
O = min_ Y L(wg, o) + T(xo), (28)

X0, {Wi }/(:0 k=0
where:

Lic(wi, v) = ogll s + Iwe = wiei g1,
) zk , (28a)
['(x0) = llxo — X0||p61-

Now we use a moving window (horizon) of length N, so the cost function can be
rearranged as:

- T-N-1
®% = min Z Ly (wy, o) + Z Ly (Wi, vr) + T'(x0). (29)
X(),{I'Vk}[;ol k=T—N k=0

Define the arrival cost of a state zER;_ y at time T— N as:

T—N—-1
Zr_y(Z)= min [ Z Li(wi, o) +T'(x0) : (T — N; x0, 0, {w.}) = z}. (30)

xo.wii 2 =0

R7_ n denotes the reachable set of the state space subject to all constraints and
dynamics of the system. Then the optimization problem of the proposed CTA model
can be rearranged as:

T—1
Q% = min [ S Li(wg, o) + ZTN(Z)j|, 3D
z€Rr_y AWl oy Lk=T—N
subject to Equations (20)—(22), and the optimal solution of Equation (31) is the MHE.
3.4 Stability Analysis of MHE in CTA Case.
3.4.1 Definition 1. Definition 1 states “A function f:R" — R" is a K-function if it is
continuous, strictly monotone increasing, f(x)>0 for x=0, f(0)=0, and lim f (x) = .”
Suppose f(.) is a K-function, then its inverse function /' is alsd a K-function.
Actually, it is easy to prove that the space of K-functions is closed under addition,
composition and positive scalar multiplication.
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3.4.2. Definition 2. Definition 2 states “An estimator is an asymptotically stable
observer for the system

Xkl = fe(Xk, 0)  yie = hp(xi)

if, for every feasible initial condition x., and for every €>0, there correspondingly exists
0>0 and a positive integer T such that if |xo — )€0|| < 0, then |x(T; xo, 0) — )€T|| <e
forall T > T. Furthermore, for all feasible x, X7 — x(T; xg, 0) as T— .’

3.4.3. Theorem 1. 1In the CTA case as described in Equations (18)— (22), for all
Xo € X, the MHE is an asymptotically stable observer as defined in Definition 2.

3.4.4. Proof. The stability analysis procedure consists of the following three
steps:

3.44.1. Step 1. The convergence of {®;}: monotone non-decreasing and
bounded above sequence is convergent.

Suppose the sequence {®;} is the moving horizon solution of Equation (29), we

have:

A~ T_l A
by = min > LiOwi, o) + Zr-n(2)

Z€Rr N vty | kTN

(32)
T-1 .
-y Lk<w;g’|’;‘:’ L e ,) + 27 n(2).
k=T—-N

From the definition of arrival cost as described in Equation (30), we can easily
find that:

by — dr_y = 0. (33)

Suppose N — o, the global optimization of Equation (28) is determined as:

xo. (Wil k=0

(I)j} = min {Z Li(wi, vp) + F(XO)} (34)

Because of the existence of the above infinite sum, the partial sum of ®% is limited
by a certain bound, denoted as a constant C here, then:

T7-1
by = min_ {ZLk<wk,Uk>+r<xo>} (35)

Thus we have proved the sequence {®;} is monotone non-decreasing and upper
bounded. Hence, it is convergent, and the partial sum of {®7} tend to zero:
T-1
> LW o) > 0 T o0 (36)
k=T—-N

34.4.2. Step 2. V K-function 6(.), Ve, 3¢ such that if ||x|| < ¢, then O(x) < €

. T-1
Thus for the convergence of sequence {®y}, INy, if T= Ny, > Li(#,d) <  hold,
k=T—N

7-1
> Li(w, 9)

then Ve, 0(
k=T—N

) < eis guaranteed.
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3.4.43. Step 3. In this step we prove that there exists a positive integer 7 that
for all i> T, there correspondingly exists a K-function 6() that guarantees
T—1
lxi = Xill < 9( Y. LiOb, 0) )
k=T—N
Based on the aforementioned observability analysis, we can easily found that the

CTA model is uniformly observable, which guarantees that there exists a positive
integer N; and a K-function ¢(.) such that for any two states x; and x, (Rao et al.,
2003):

Nj—1
o(llx1 = x21)) < y(k + s x1, k) — p(k =+ j; X2, B, (37

j=0
where: for all k > 0.
Specially, assume k=0, then:

Ni—1

p(llxo — %ol) < D 1y X0, 0) = y(js %o, O]l (38)
Jj=0

According to the Cauchy-Schwarz inequality, the square form of Equation (39) can
be rearranged as:

Ni—1

[p(llxo — %)) < N1 Y 1 X0, 0) — y(js %o, O)|I%. (39)
j=0

The relationship between system outputs according to different initial states can be
arranged as:

¥(j; X0, 0) — y(j; %o, 0) = HA/ (xg — %) + HA™'G(wo — v0p) + ...

. . (40)
+ HGWj—1 —Ww;—1) + (v; — 0)).

From the CTA model, we can easily establish that the group of functions f;(x) =kx
(k;€{HA HA~'G,..,HGY}) are all Lipschitz continuous functions. Correspondingly,
there exists a group of constants ¢,ER"(i=1, 2,...,j+1), named as the Lipschitz
constants of fi(.), such that:

[filxi — xpll < cillxi — x50l VY, x;. 41)

Using the Cauchy-Schwarz inequality repeatedly, Equation (40) can be rewritten as:
| ¥(j; x0, 0) — ¥(js X0, 01 < (j + D[t (xo — £o)I* + G3ll(wo — W) I* + ...

+ 110 = 5)I*]. (42)

Suppose {(xo — Xo), Wo, ..., Wj_1, 0;} are not simultaneously equal to zero, and the
bounded-ness feature of the practical noise sequence {wy,...,w;_, v;} is taken
into account, then we can infer that there exists C; =max{c},c3,.. .,cf+ 1,1} and C,ER,
such that:

J
| 905 X0, 0) = y(j: %0, O)F < (j + DK <||x0 — Soll i+ 30 LiOP, 15)). (43)
k=0
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Furthermore, the partial sum of the above inequality satisfies:

=0 k=0

Ni—1 Ni—1
> G x0, 0) = (i %o, O < K2|:||X0 — ol + D LeOi, 6)}, (44)

where L0, 8) = [ — We-1llg-r + 15l
Thus, from Equation (39), we have:

Ni—1
[o(lx0 — %ol < K3|:||x0 — Sollpor + > LeOi, 6)] 45)
k=0
where K, = C] Cz(Q + R+ Po), K>= Nl(Nl + 1)K1 and K3 =N K.
By recalling the properties of K-function given before, we assume that there exists
a function 67'(), defined as 07'(||lxo — %oll) = [p(lx0 — %ol DI + r.l1x0 — Fol[3 1,
Vr € R, which also satisfies Definition 1. This equally means that there exists
K-function 4(.) such that:

N—1
lxo — %ol < e(z Ly (0, zs)). (46)
k=0

Analogously, we can prove that Equation (47) still satisfies for Vi > 0.
Retrospectively, from the conclusion achieved in Step 2, we can conclude that
Ve > 0, AN,, if i > Ny— N holds, we have:

|Xl' — )€,| < € (47)

This completes the proof.

4. SIMULATIONS. In this section, an illustrative example is given to
demonstrate the effectiveness and applicability of the proposed methods.

The traditional TA model with velocity matching is formulated as Equations (1)—
(9), and the proposed TA model is described in Equations (18)—(22). According to the
performance index of commonly adopted inertial instruments, the simulation
conditions are selected as:

&= 1(deglh).

V/,: IO,ug

0=10""diag (1, 1, 1, 100, 100, 100).
R=10"%diag (1, 1, 1).

7,=300 (s).

The initial misalignments of SINS are assumed as:

Ay=(10, 10, 10)” (deg).
Av=(1, 1, )T (mls).

It is worth noting that here we consider the constraints in Equation (29) as
linear constraints according to the fact that if x ~ N(, ¢%) such that p[—3¢ <
(x — %) < 30] =99-7%. The length of moving window is selected as N=10 and the
manoeuvre schemes are designed according to the feasibility in warship cases.
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Figure 4. Estimation error of ‘Gamma’.

4.1.  Scenario 1: Uniform Turn Motion. In this scenario, the vehicle is assumed in
uniform turn motion with approximate constant velocity and angular rotation. Here
we suppose that the angular velocity in azimuth direction is w.=1(°/s) and the linear
velocity is v=(0-5, 0-5,0)(m/s). The simulation results of both traditional and CTA
case are comparatively depicted in Figures 2-7.

4.2. Scenario 2: ‘Zero- Manoeuvre Motion’. Here the vehicle manoeuvre is taken
into consideration, and the consequent estimations of misaligned states are depicted in
Figures 8-13.

As depicted in Figures 2-7, in traditional TA framework, if the uniform turn
manoeuvre is available, the initial misalignment will converge to less than 0-05 rad
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and 0-001 (m/s) in nearly 50 seconds, respectively. While in the zero-manoeuvre
motion case that as depicted in Figures 8-13, the estimation errors are nearly 0-1 rad
and 0-001 (m/s) after 100s. These results correspond with the fact that the weak
observability of instrumental errors will indirectly decrease the evaluating accuracy of
attitude and velocity states along with the coupled relationships among them (Rogers,
2002). Meanwhile, provided the proposed CTA framework is adopted, the initial
misalignment on attitude and velocity states can approximately convergent to less
than 0-01 rad and 0-001 (m/s) respectively in 10s (the horizon window length of
MHE).
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5. CONCLUSIONS. In shipborne TA applications, the estimation of un-
observable (or weak observable) states is the most time consuming process. In this
paper, we consider a novel framework where all instrumental errors and the lever-arm
vector are attributed to constraints, which yields rapid convergence of misalignment
states. According to the observability analysis results, we can prove its uniform
observability even in zero-manoeuvre circumstance. Subsequently, the MHE is
adopted to solve the estimation problem and the corresponding stability analysis
and simulations are also given to prove the effectiveness of the proposed TA
framework.

Future work will focus on more practical cases with more cumbersome constraints
and the calculation burden arising during the optimization process. However, along
with the increasing power of computers, the framework of MHE-based state
estimation will become an alternative for an expanding class of estimation
applications, especially in weak observability applications.
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