BOUNDARY COMPONENTS OF RIEMANN SURFACES*

MAKOTO OHTSUKA

Introduction. The boundary components of an abstract Riemann surface
were defined by B. v. Kérékjartd [7] and utilized in the book [14] written by
S. Stoilow.” It is the purpose of the present paper to investigate their images
under conformal mapping and to solve the Dirichlet problem with boundary
values distributed on them.

Suppose that the universal covering surface of a Riemann surface 3 is of
hyperbolic type, that is, conformally equivalent to the disc U : |z| <1. The
work [15] by M. Tsuji shows that the linear measure of the image on I : |z|
=1 of the set Gy of all boundary components of R is 0 or 2z according as R
has a null or positive boundary. The writer in [8] studied topologically the
image on I" of each boundary component. In Chapter I of the present paper
we shall continue this study.

The set € may be regarded as a topological space, as was done by Stoilow
[14]. We are naturally led to consider the Dirichlet problem on & with boundary
values on G, with respect to this topology. We shall treat this problem in
Chapter II by the Perron-Brelot’s method; it was proposed in [8] but left open

there.”

Chapter I. Boundary Correspondence

1. Definition of boundary compoments. Throughout this paper let R be an

Received December 20, 1953.

* This is the work indicated at the footnote 5) of [10]. The essential part of the pre-
sent paper was first reported to the Annual Meeting of Japanese Mathematical Society held
in Tokyo, Japan, in June, 1952, and then to the conference at Michigan, U.S.A,, in 1953
(see [11)]).

1) Kérékjartdo and Stoilow called them Randstiicke and éléments-frontiéres respectively.
The writer used the term *ideal boundary component” in [8] but now drops the word
“ideal.”

2) It was pointed out in the lecture given by M. Brelot at the conference at Michigan
in 1953 (see [4]) that the solution of this problem follows also from the results in [5].
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open Riemann surface of connectivity at least three¥’ We take an exhaustion
{R,}, REC Rp+1, of R, where R means the closure of R, and is compact in R.
We select {®.} so that each N, is bounded by a finite number of simple closed
analytic curves, each of which divides M into two non-simply-connected
domains, and that any two of the boundary curves of ®; are not homotopic to
each other. Let the boundary curves of R be 71, 72, . . ., 74, and the domain,
outside M, and bounded by 7, be D;. Let the boundary curves of ., lying in
Di,be 7i1, Ti,2, - + « 5 Ti,uth), and the domain, outside R, and bounded by 7,5, be D;,j,
and so on. Thus we get domains {D;,, . ,x} such that D;j, ..t D Dij, . .k...1
and their relative boundaries {r;,;,....») in ®. We shall call these domains ele-
mentary domains. Here we may, and do, add an assumption that 7;,;,...,x and

Ti.j.... k1 are not homotopic to each other on I unless D ;,..,r is doubly-con-

nected.

With each nested infinite sequence D; D D;,; D . .. we associate a boundary
component and call the sequence the determining sequence of the component.
Let D.,j;,..» be an elementary domain, and add to it all boundary components
determined by the sequences which begin with D; D D;; D...2D; ;... We
denote this set by D;,j,..... We take both all {D; .., and a countable open
base of R as a countable open base in the space N+ €x, where Cx denotes the
set of all boundary components of . Then it is easily shown that It + €y is
a compact space with respect to this topology. Since it is a Hausdorff space,
it is normal and hence metrizable. Further €y is a null-dimensional space as
is seen from the definition.

Let Pg be a boundary component and {D; j, ..t} its determining sequence.
Ps is said to belong to the first class if and only if one of {D;j,.. .} is of
planar character, and, otherwise, to the second class. We now suppose that one of
{D;,j,..,r} is of planar character, and map it conformally and in a one-to-one
manner onto a plane domain D by the Koebe's uniformization theorem. If the

images in D of the boundaries {7i,;,... k/ converge to an isolated boundary point

.....

of D, Py is called parabolic. Any non-parabolic boundary component, regardless

® This means that, if the genus of % is zero, % shall be conformally equivalent to a
plane domain with at least three boundary components.

If we admit the case when % is simply- or doubly-connected, we must make special
mentions of these cases often in the sequel, while the treatment of them is easy. Therefore
we omit these cases in this paper.
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of its class, is called hyperbolic.

2. Regular and singular points with respect to a Fuchsian or Fuchsoid
group. Under our assumption that N is of connectivity at least three, the uni-
versal covering surface R” of i is mapped conformally onto U : [z]| <1. We
shall denote the corresponding function mapping U onto R by f(z), and the
Fuchsian or Fuchsoid group, with respect to which f(z) is automorphic, by &.
This group does not contain any elliptic substitution. The fixed points of para-
bolic and hyperbolic substitutions of @ lie on 7" : |z| =1 and are called para-
bolic and hyperbolic fixed points respectively. If there is a sequence of points
{2} in U such that z, tends to a point 2, on I" and f(2,) tends to a point P,
of | as n-> =, 2 is called a singular point. If at z, there exists no such se-
quence, 2o is called a regular point. It can be shown as in the case where 0t
is a plane domain (cf. [1]) that the set of all singular points coincides with
the closure of the set of all fixed points on I. Hence the set of all regular
points is decomposed into disjoint open arcs, and each of them is called a regu-
lar arc, and its closure a closed regular arc. 1f the end-points of a regular arc
are fixed points, the arc is called a completely regular arc. Under our assump-
tion on R every completely regular arc has two fixed points of a single hyper-
bolic substitution as its end-points.

Since the boundary curve of any elementary domain is not homotopic to
zero on i, its image in U consists of curves terminating at certain parabolic

or hyperbolic fixed points. For later use we prove

LemMMA 1. Under the mapping R° -~ U the image of any simple closed curve
r on R, non-homotopic to zero on N, consists of curves which have no end-points
in common on I. Furthermore, let 1 be another simple closed curve on R, which
is homotopic neither to zero nor to v on R, and disjoint from v. Then any two

respective image-curves of v and 7' have no end-points in common on I.

Proof. We select a finite or infinite number of simple closed curves {C.}
on N, which are disjoint both from y and ' and from each other, such that, by
cutting R along them N becomes a domain R' of planar character. We take
infinitely many replicas of R’ and connect them along the opposite edges of {C}
such that two replicas have at most one curve in common and no free edges

are left. The resulting surface is a Schottky covering surface of R and is
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mapped conformally and in a one-to-one manner ontc a plane domain B. Under
this mapping r and 7' are transformed to at most countably many disjoint simple
closed curves {L} in B, which are neither homotopic to zerc nor to each other
in B. The universal covering surface B® of B is conformally equivalent to %™
and hence we can interpose B” between the mapping ®” - U. The images in
U of v and 7' may be regarded as the images of {L} under the mapping B”
- U. Since the assertion in our lemma is known to be true in the case

where R is a plane domain, it follows that Lemma 1 holds good.

3. Images of boundary components. Let Py be a point of €x, and {D™}
its determining sequence of domains with boundaries {y'*}. Under the mapping
of R onto U we can choose a nested sequence {G.} of simply-connected do-
mains which are images of {D™} : D™ =f(G,). As m — o the closure Gn of
G, tends to a point or to a closed arc on I. We shall call this an a-image,
or distinctively a point-image or an arc-image of Py, and the nested sequence
{Gn} the fundamental sequence of the a-image. FEach G, is bounded by one
or countably many cross-cuts® which are images of """, and one of them sepa-
rates z2=0 from G., where we suppose that z=0 lies in a certain image of R

= the first domain of the exhaustion). We denote this separating cross-cut by
I, and call {In} the fundamental sequence of cross-cuts of the a-image. On
account of Lemma 1 these cross-cuts have no end-points in common unless D
is doubly-connected.

We shall say that two fundamental sequences {G»} and {G)} are differeni
if there is a number n, such that Gu, % G, Then it is clear that G» and G»

(n = n,) are disjoint from each other.

THeOREM 1. Let R be an open Riemann surface of conmectiviiy at least
three. On mapping R* onto U, the different fundamental sequences determine

disjoint a-images on T.

Proof. Let {G»} and {G)} be two different fundamental sequences, and let
Gn, % G»,. Each boundary cross-cut of G, borders a domain which is some
component of the open set U— G7, and G, is located in one of them, say in M
with boundary cross-cut .. We connect any point on ! with any point of G,

by a curve running inside M, and let 7 be the boundary cross-cut of Gn, which

4 The end-points of a cross-cut may, or may not, coincide.
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the curve meets at the first time. Since [ and !’ have no end-points in common by
Lemma 1, and since G, and Gy, lie along the opposite edges of them, G», and G,
have no points in common. Therefore the two a-images N\ G4 and N GA* are
disjoint from each other. " ’

4. Correspondence between boundary components and their a-images. We

assumed in §1 that ™"V

is not homotopic to r'”” unless D™ is doubly-connected.
It is immediately shown that Py is an isolated boundary component of the first
class if and only if some domains of its determining sequence are doubly-con-

nected. For such boundary components we have

THEOREM 2, Let R be an open Riemann surface of commectivity at least
three. Under the mapping of R™ onto U, the a-images on I of a parabolic
boundary component consist of a class of equivalent® parabolic fixed points, and
converselv, any such class forms the a-images of a certain parabolic boundary
component. The isolated hyperbolic boundary components of the first class and
the classes of equivalent closed completely regular arcs correspond to each other

in the similar manner.

Remark. Each domain of the fundamental sequence of such an a-image, with
the exception of a finite number of domains, is bounded by a single cross-cut
terminating at the point-image (i.e., at the parabolic fixed point), or at the two
end-points of the arc-image (i.e., at the two hyperbolic fixed points).

The proof of this theorem was given in [8], Chap. II1.® Other proofs for
the correspondence of parabolic boundary components may be found in [9] and
[121.

Next we shall study the a-images of a non-isolated boundary component
of the first class or of any boundary component of the second class.

Let Pg be such a boundary component and {D'"'} its determining sequence
with relative boundaries {y'™}. Since the connectivity of D is infinite, each

image of D' is bounded by countably many cross-cuts, which are images of

5) When a point or a set on U+ I' is transformed to another point or set by a substi-
tution of &, the two points or sets are called equivalent (under @) to each other.

6) At this juncture the writer wishes to correct some errors in Chap. III of [8].
p- 112, line 6 is to be read as: small, the inside of W, defined below is divided into..
p. 112, line 18 is to be read as: sufficiently small, the inside of Wy is divided into...
p. 114, line 4 is to be read as: ...components of the first class of R correspond to...
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™ Furthermore each image of D' contains a countable set of the images

of D"V in it. Therefore, the ways to select a sequence of nested images of
{D'™} have the power of the continuum. Thus the power of the a-images on
I' of Pg is of the continuum, because different fundamental sequences determine
disjoint a-images according to Theorem 1. Since the possible set of arc-images
is countable, there are always an uncountable number of point-images of Fg.

Let now 2, be a point-image on I', which is not a parabolic fixed point, and
{I,} the fundamental sequence of cross-cuts determining it. If z, were a hyper-
bolic fixed point, there would exist a closed curve C in % whose image ¢ termi-
nates at z,. Then there would be a number n, such that, for any #n > n, In
intersects ¢ in U. However, this contradicts the fact that the images {7} of
{1} do not intersect C on % for » sufficiently large. Hence 2z, can not be a
fixed point, but, since clearly it is not a regular point, it is a non-fixed singular
point.

Let us turn to an arc-image z/;\z'o on I, which is not a completely regular
arc. For the same reason as above, both z; and z. are non-fixed singular points.
Further no inner point of Z:2: is a singular point, because near any singular
point there are always hyperbolic fixed points. Thus z12: is a closed regular
arc with two non-fixed singular end-points. Obviously the disjoint arc-images
are countable in number. So then, equivalent (under &) arc-images being
brought together into a class, how many such classes correspond to one bound-
ary component? We can show without difficulty by examples that the number
may be finite or countable.

We summarize the results in

Tueorem 3. Let R be an open Riemann surface, and let Ps be a non-iso-
lated boundary component of the first class or a boundary component of the
second class. On mapping R* onto U, the set of the a-images of Py consists
of an uncountable set of mon-fixed singular points and, possiblv, of an at most

countable set of classes of equivalent closed non-completely regular arcs.

5. Paths converging to the boundary of R. We shall call a curve
C={P(t); 0=t <1}, lying in R and tending to the boundary of R as ¢ - 1,
a path converging to the boundary of R or simply a path. It is seen easily

that a path converges to a certain point of €x with respect to the topology of
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R+Cq.  Let {Gx} be a fundamental sequence in U and c={z(¢) ; 0 £t <1}
be a curve in U. 1If, for every Ga, there is a number ¢, 0 <#, <1, such that
{z(t) ; ty =t <1} lies in Gn, ¢ will be said to converge to the (point- or arc-)
image determined by {G»}. We can show easily that any image of a path con-
verging to Py converges to a certain a-image of Pg. Conversely, for any image
a of a boundary component Py there is a curve which converges to a. It is
obvious that its image on R converges to Fg. Therefore, to a set of curves
on R which converge to Fg, there corresponds a set of curves in U which con-
verge to the a-images of Fg, and vice versa.

Let Ci={P(t) ; 0=t<1})and C.={P(t); 0=t <1} be two paths on R
which converge to the same point Pg of €y, and {K(¢) ; 0=t <1} be a set
of curves on N such that, for every ¢, 0 <t <1, K(#) connects Pi(f) with P(¢)
and tends to Pg as t > 1. If {K ()} can be chosen such that the closed curve,
consisting of four parts: {P(¢) ; 0= =t}, K(1), {P(r) ; 0=t =t} and K(0),
is homotopic to zero on R for every ¢t (0 <¢<1), C; and C, will be called

homotopic to each other on R.”

THEOREM 4. If and only if two paths are homotopic to each other on R,
thetir image-curves in U converge to the images, equivalent under &, of a bound-

ary component to which the paths converge.

Proof. Let Ci={Pi(#)} and C,={P:(t)} be homotopic to each other and
{K(t)} a set of curves with the property stated above. Let ¢;={z:(¢)} be an
image of C; in U and « the a-image to which ¢; converges. We take the func-
tion-element at Pi(0), corresponding to the point z:(0), continue it analytically
along the curve K(0)+ C: and denote the image of C: by ¢:. Since the closed
curve, consisting of four parts: {Pir); 0=r=t¢), K@), {P(r); 0=t <t)
and K(0), is homotopic to zero, we obtain images {k(¢)} of {K(¢)} which con-
nect ¢ and ¢.. It is obvious that, given a domain G» of the fundamental
sequence determining a, k() lies in G, for ¢ sufficiently large. This shows that
an end-part of ¢, lies in G». Hence ¢: converges to a.

Conversely, let C; and C, be two curves whose images ¢;={zi(t)} and

c:={2:(¢)} converge to the same a-image with fundamental sequence {Gx}.

7 Compare it with the definition of accessible boundary points by R. Nevanlinna. See

[6].
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We can select {tx}, t» » 1, such that z;(¢,) and z:.(t.) lie in G». = We connect
21(2) with 2:(2) for #, t» <t <tu+1, by curves running in G».  Their images
play the role of {K(#)} required for the homotopicity of C: and C.

No difference has been seen, up to this place, between the non-isolated
boundary components of the first class and the boundary components of the
second class, so far as their images on I are concerned. However, it is desira-
ble that a certain effective characterization of the distinction between these
images is obtained.

6. Points of I which are not contained in a-images. We know that all
parabolic fixed points and all closed regular arcs are a-images, and that no
hyperbolic fixed point is contained in an «-image unless it is an end-point of
a certain completely regular arc. In this section we shall study on non-fixed
points on I" which are not contained in a-images.

First we consider an arbitrary connected component of the image in U of
R», and denote it by D. This domain is bounded by a countable set of cross-
cuts and by their accumulating points. The boundary & of D is regarded as a
Jordan curve which has no double points except for possible parabolic fixed
points on_it. Since the set of singular points on § is a perfect set, it has the
power of the continuum. Fixed points being countable, all non-fixed singular
points on § are uncountable. Suppose that such a non-fixed singular point 2o
is contained in an a-image, and let {l;} be the fundamental sequence of cross-
cuts which determines this a-image. Then {l;} intersect D except for a finite
number of them. However, on R the images of {/x} do not intersect R, for
sufficient large k. Thus we get a contradiction and it is shown that any non-
fixed singular point on § is not contained in any a-image.

Next let 20 be a non-fixed point on I which is neither contained in any a-
image nor on the boundary of any component of the image of any R.. We
take all images of the curves {rij,.,r} which separate z, from z=0 and enu-
merate them in {l;} so that I/, separates 2=0 from k+;. By Lemma 1 these
{It} have different end-points, If the images of {lx} on : were contained in a
certain R, 20 would be a boundary point of a component of the image of the
Nn.  Therefore the images of {lx} are not compact in R. Since z, is not con-
tained in any a-image, the images on R of {lx} do not converge to a boundary

component. The image on R of any curve terminating at z, is neither compact
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in ¢ nor a path in the sense of §5. Conversely, if every curve terminating at
2o has this property, or if there is a sequence {l/;} of cross-cuts whose images
on N are neither compact in R nor converge to a boundary component, 2, is a
non-fixed point which is not contained in any a-image. The ways of selection

of such {/x} have the power of the continuum if R is of infinite connectivity.
Thus we have

THEOREM 5. Let R be an open Riemann surface with connectivity at least
three. On mapping R® onto U, the set of non-fixed points, which lie on the
boundary of a component of the image of Rn but not contained in any a-image,
have the power of the continuum, for every n. If and only if R has infinite
connectivity, there are non-fixed points of the power of the continuum, which
are neither contained in a-images nor lie on the boundary of any component of

the image of any Ra.

Chapter II. Dirichlet Problem
7. Perron-Brelot’s method. We shall treat in this chapter the Dirichlet

problem on R with boundary functions on €y by means of the Perron-Brelot’s
method (cf. [2], [3]. See also footnote 2)).

For a real-valued function ¢ (admitting =+ o) defined on €y, the lower
class 119: is defined by all continuous subharmonic functions {#(P)} bounded

from above on R such thatpl_ﬁ;l_ #(P) = ¢(Pg), where lim is taken with respect
el
to the topology introduced in §1 and — « is added to u&‘; The upper cover

HS(P) (=the supremum at each point) of UY is harmonic or equal to the
constant + o or — o on N on account of the Perron-Brelot’s principle. Simi-
larly the upper class 5393 and its lower cover fl,(f(P ) are defined for superhar-
monic functions, and ﬁg(P) has the similar character as Hg(P). On account
of the maximum principle there holds H$(P) = H$(P) and the equality at a
point induces their identity. When Eg(P)Eﬁg(P) we shall denote it by
HE(P) and call it the general solution, and if, in addition, it is finite, ¢ will be
called a resolutive boundary function. For any fixed point P, H 533(13) is a posi-
tive (=0 for ¢ =0) linear functional defined on the class of resolutive bound-
ary functions.

Our main concern in this chapter is to decide the class of resolutive

boundary functions.
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When R has a null boundary there is no non-constant continuous subhar-
monic function bounded from above on R (Lemma 1, 2 of [8]). Therefore

HS(P)=inf¢ and a%ep) -%up ¢, and hence HE(P) = A%(P) unless ¢ is a
Cx
constant. Accordingly we assume hereafter that R has a positive boundary.

Preparing for later use, we shall prove

LemMMa 2. Let {¢n} (n=1, 2,...) be non-negative resolutive boundary

Sunctions on Gx and put 2_1% =¢. Then

(1) BS(P)=H&P)= EHS,‘;(p)

Proof. Given ¢> 0 and P, € R, we take a non-negative function #.(P) of
class U€, and v.(P) of class BE, such that va(Py) — un(Py) < e/2". If Eun(Po

= o, let N be a number for which Zun(Po) is greater than any assigned posi-

n=1

tive number M. It is easily shown that Z,un(P) e 1%, whence M< Zun(Po)

n=1

= g?(m. From this relation, equalities (1) follow at once.

We next suppose Eun(Po) < . Since E}vn(Po) < Eiun(Po) + > e/2"
= n= n=1
Eun(Po ) +¢, the series Ev,.(Po) converges. Hence levn(P) is a super-

harmonic function on R and lim Elvu(P) = ¢(Pg), but it might be discontinu-

Po>Prrn=
ous. We replace it, therefore, by the harmonic function, with the same bound-
ary value, in every Ron+a— Rin (n 20, Ro = empty set), and then harmonize the
resulting function again in every fRzn+1 Res-1 (n=1). Thus obtained function

2(P) belongs to BY, and v (P) = Evn(P) We take a sufficiently large num-

ber p so that >, 1vn(}’o) <e Then
+

(2) Zvn(Po) - Eun(Po) = 2 va(Py) + Evn(Po) - Eun(Po) < 2e.

n=p4l

P
Since Elun(P) belongs to the class IS, there hold
p o o
(3) SunP) = HYP) = BE(P) = v(P) = Soa(P).

n=1

On the other hand we have

(4) EZL‘lun(P) 2H‘§,.<P) Ev,,uv)
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e being arbitrarily small, (1) follows from (2), (3) and (4).

8. Lower and upper integrals. We shall define in this section lower and
upper integrals for arbitrary real-valued functions, which may take =+ o, in
order to make use of them to represent H$(P) and HS(P).

Let € be a g-algebra® of sets in €y, and suppose that it contains all open
sets and hence the Borel class B in €x. Let x(E) be a finite-valued measure
defined on €. It will be called regular if, for every set E € €, u(E) =inf {u(G);
GDE, G=an open set}. On the other hand x(FE) will be called complete if
the conditions E€ €, E' CE and u(E) =0 imply that E' € €.

Let now u(E) be a finite-valued regular complete measure defined on €.

For an arbitrary real-valued function ¢ on €y we define the lower integral

{5 ¢(@du(@) by

»Cx

sup {S@mgb(Q) du(Q) ; ¢ is bounded from above and @-measurable, and ¢ < <p},

where the value — « may be taken by ¢. Similarly we define the upper inte-
gral S@mgb(Q)d,u(Q) by

inf {S@mcb(Q)d,u(Q) ; ¢ is bounded from below and €-measurable, and ¢ < 90}.
where the value + o« may be taken by ¢. Then we have

LEMmMA 3.

S@msﬁdu=sup{ggm¢d,u ; ¢ is bounded from above and upper semicontinuous,

and ¢ _é_sﬂ},

where — o may be taken by ¢, and

S 50d/,e=inf{5 ddu 5 ¢ is bounded from below and lower semicontinuous,
[ Exn

and ¢ égﬂ},

where + o may be taken by ¢.

From the definition of lower (resp. upper) integral we see that it is neces-

® That is, € is a non empty class of sets closed under the formation of complements
and countable unions.
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sary to prove this lemma only for every €-measurable function ¢ bounded from
above (resp. below). For such ¢, however, the lemma is valid in virtue of the
regularity of p.°

Since x4 is a complete measure we can show without difficulty

LemMa 4. If ¢ is (G, pu)-integrable,” there holds

S@m Ydp = §@m¢dﬂ = S@m?’dﬂ-

Conversely, if — o < S@msﬂdy: S(Emgpd,a < + oo, then ¢ is (&, u)-integrable in

the narrow sense.

COROLLARY. Let 14 be the characteristic function of a set AC Cx. Then

A belongs to € if and only if S@mZAd/4= S@ml,«d,u.

9. Resolutivity of the characteristic function of any open set. Let
D=D;; .. r be an elementary domain on R and r be its relative boundary in
9. We take the characteristic function of the set D— DC €y as a boundary
function on €, and denote it by ¥. We shall show its resolutivity in the first
place.

Let w(2, 1, D) and w(P, r, D*) be the harmonic measures of r with respect
to the domains D and D**=R - (DU 7). Since R has a positive boundary, one
of them is not a constant and its infimum is zero. Suppose lnrgcf o(P, v, D) =0.
Then 0 < inf (HY(P) - HY(P) =int BX(P) <info(P,7, D) =0. If infw(P,7, D)
=0, then 0 = igf((l—ﬂx@(})))" (1~ HY(P))) <inf (1-HE(P)) < info(P,7, D)
=0. Thus there holds always

(5) i%f #ZE(P)-BY(P)) =0.

We define a boundary function ¢ for domain D by ﬁg(P) on r and by 1
on DN Gy The function Ho(P) is defined as the upper cover of the lower class
1y consisting of all continuous subharmonic functions {u,(P)}, 0 £ #,(P) <1,
with the property thatPEIr;Tu@(P) = H%(Q). We define HY(P) in a similar way.
Then the inequality Hy(P) £ HS(P) holds clearly. Since HS(P)< 1, it belongs

9 See the proof of Vitali-Carathéodory’s theorem in [13].

10) The value of the integral may be infinite. ~When it is finite, we shall say that the
function is integrable in the narrow sense.
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to ). Hence HY(P) < H)(P)< HY(P) = A¥(P). Thus HX(P)=H¥(P) in D.
Accordingly ﬁg(P) is equal to the upper cover of 113 in D.

Next let ¢’ be the boundary function of D defined by H$(P) on r and by
1 on DNGx.  The identity Hy.(P)=H?.(P) is shown easily, but some con-
sideration is necessary in order to prove Hy.(P) =H%(P). 1t is clear that
8(P) = H).(P). Suppose now that H$(P)< H2.(P) and put H2(P) -HE(P)
=a > 0 at an arbitrarily fixed point P, € D. Let #(P) be a function of the lower
class 1 such that 0 = HS(P)—u(P)<a on 7. If a boundary function ¢" of
D is defined by #(P) on r and by 1 on D N\ &gy, obviously holds #(P) < H?>..(P)
= Hy.(P). We replace #(P) by HJ.(P) in D. Then the resulting function on
R still belongs to UY. Hence H3.(P)=HY(P) in D. Especially at Py, H2.(P,)
-H}(P)=a+H $(p) — H2(P) = a. However, this contradicts the inequality
H)(P)-H}.(P)< mﬁx(¢'—¢”)< a, which holds everywhere in D. Thus it
is shown that H\?:(P)=I_1§(P) in D. Therefore in D the function H$(P)
equals the lower cover of upper class By..

Let u,(P)E U, and v, (P)E B,.. The bounded continuous subharmonic
function u, (P) — v,.(P) has the upper limit less than A$(Q) ~H¥(Q)=0 as P~
Q €y and its upper limit as P Pg& DN\ €y is non-positive. Hence uy(P)
—vy.(P) = rggzs(ﬁ%@) -H%(Q)). Since the upper cover of the left hand side
is HY(P)~ HY(P), we have AX(P)-HY(P)< max (H(Q) -H%(Q)) in D.
Similarly we can show that this inequality holds in D%, too. In virtue of the
maximum principle this function reduces to a constant on %, and this constant
must be zero by (5). Therefore HSP)=HS(P). Thatis, 7 is a resolutive

boundary function.

Let now G be any open subset of &x. We took in §1 {Dj,j,.,» N Ex} and
the empty set ¢ as a countable open base of €x. We shall denote this class
by ®. Each of them is open and closed, and any two of them are disjoint from
each other or one is contained in the other. Therefore G is represented as a

countable disjoint union of them: G =>,D,. On account of Lemma 2 we have
n

(6) HS.(pP)=HS,(P) = gﬂ%n(m.

We may state

THEOREM 6. Let N bz an open Riemann surface with positive boundary.
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Then the characteristic function of any open or closed subset of €y is resolutive.

The resolutivity of the characteristic function Yr of any closed set FC €y

follows from the equality Yr=1— )Ye, where G=Cg — F and is an open set.

10. Integral representation. Given a point PE R, we define a set func-

tion for an arbitrary set XC €y by
(7) a(X) =inf{gH§g.,-(P) ; XC L_JIG; and every Gi is open}-

‘This is an outer measure on €y and 0 = z°(X) = 1. Since H%Gi(}’) = H%&xai(P)
=§]H§Gi(P) by Lemma 2, we may write (7) in the following manner :

75(X) =inf{HS,(P) ; XC G and G is open).

Therefore 7#7(G) = HY,(P) for any open set G.

In order to prove that any open set is measurable with respect to this
outer measure, it is sufficient to prove the measurability of any set of ©, because
any open set is the countable union of certain sets of ® and the class €° of all
ZF-measurable sets is a g-algebra. We take any Do € ©. We have only to prove
25(X) 2 75 (X N\ Do) + 55(X — Dy) for any set XC€g. For given ¢> 0, we
choose an open set G such that GD X and 77(X) +¢ = H%;(P ). Since both
GN Dy, and G- D, are open, there holds HS,(P) = H%;ADO(P) + HS 0ol P)
2 72°(XNO\ D) +7(X—-Dy). Hence a°(X)+exp(XNDy)+a(X~Dy). =
being arbitrarily small, it is concluded that any set of ® is 7i'-measurable.
Thus any open set and hence any Borel set is 7Z’-measurable.

Let us regard u© as a measure defined on €° and denote it by #°. Thisis
clearly regular and complete. Conversely, it can be shown that if a regular
complete measure is defined on a ¢-algebra of sets in €y containing all Borel
sets, and if its value is equal to H%;(P ) for every open set G, then the s-algebra
coincides with €” and the measure does with z".

Let ¢ be any upper semicontinuous function bounded from above. First
we assume ¢ < 0. We take a sequence 0=a,>a:> ... » — o, and put {P;
o(PY<any=Gnr (n=1, 2,‘. ..)and {P; ¢(P)= — o }=F, Theneach G, is
open and Fy is closed, and €y is equal to the disjoint union i(Gn— Gni1) + Fo.

n=1

We define boundary functions as follows:

Cn=an(Xa, — Ya,4,) — X7y and ¢y = n1(Xe,— Tonn) — Iry, (n=1,2,... ).
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Each of them is non-positive and resolutive, and there holds > ¢, > ¢ = >)¢,
n=1 n=1
on €Gx. Hence by Lemma 2 we have

(anp (G = Guet) = i (F)) » HY(P) s HE(P)

n=

- zj;(a,,ﬂﬂ”(c;,, = Gss) — iF(F)).

Since both the first and the last members tend to the same limit S@msﬁdup as
sup (@, — an+1) ~ 0, there holds

(8) g8p) = B&(p) =S@m¢dﬂp.

It ¢ <M< o, then HEu(P) = HEu(P)= [ (¢~ M)du, whence (8) holds

for any upper semicontinuous function ¢ bounded from above. Since H(_S.P(P)

= -E@}( P), the same relation is true for any lower semicontinuous function ¢

bounded from below.

Finally let ¢ bz an arbitrary function. We define a boundary function
¢(Pg) bygir;x u(P) (= ¢(Pg)) for any u(P)e Hg. Then ¢ is an upper semicon-
tinuous funcgon bounded from above for which (8) holds, and the inequality
u(P) = H%(P) _4__1_1%(13) is valid on . Therefore the upper cover Eg(P) of
¢ is equal to the upper cover of {HS(P))}, where {¢} arc upper semicontinuous
functions, bounded from above and not greater than ¢. Making use of Lemma

o - 63 — € — P cdnt imi -
3 and (8) there follows H;(P) = sgp HZ(P) = sgp S@m(/!dﬂ j@mydu . Similar

T 101 _ P
ly we obtain H3(P)= S@qudu .

THEOREM 7. Let N be an open Riemann surface with positive boundary,
and ¢ be an arbitrary real-valued function defined on Cx. For any given
PeR, a s-algebra € OB in Cx and a regular complete measure u° defined on
G are determined uniquely by the requirement that upf(G) =H§G(P) for every
open set G, where € does not depend upon P. Furthermore there hold

€ - 7, F ¢ - ( P
g?(P)_S@mgd,u and BY(P) = (¢ gdi.

Taking Lemma 4 into account, we have

COROLLARY. A boundary function ¢ is resolutive if and only if it is (€, u¥)-
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integrable in the narrow sense.

In Theorem 7, it is left unproved that € does not depend upon
PER. If a set E belongs to 6 for PyE R, there follows HE.(Py) = AS.(Py)
=4g"(E). Then HS(P)=HE/(P)= Lsmlzd/f = ggszdﬂp everywhere on
R, which shows by Corollary of Lemma 4 that E belongs to € for any P& .

Theorem 7 is thus proved completely.

11. Relation between the solutions on R and those in U. As we studied
in Chapter I, some set of points on I" corresponds to each Pge& €y under the
mapping R® - U, and is called the a-images of Pg. According to Theorem 1
the a-images of different boundary components have no points in common with
each other. Denote the set of points of all a-images by E. Then its linear

D For, if we regard a Green’s function on R as function in U,

measure is 2 7.
it has the limit zero along almost all radii and the set E, of the end-points of
such radii is contained in E.

The Dirichlet problem with boundary values defined almost everywhere on
I" can be treated always in U by the Perron-Brelot’s method; for instance, it
is known that the general solution for a Lebesgue integrable boundary function
is the Poisson integral with the boundary value, and that a boundary function
is resolutive if and only if it is Lebesgue integrable in the narrow sense.

Given a boundary function ¢(Pg) on €y, we give the value ¢(Pg) to the
a-images of Pg on I'. In such a manner ¢ is transformed to a function on E.

We shall call it the function on I" corresponding to ¢. In this section we prove

THEOREM 8. Let R be an open Riemann surface with positive boundary
and of connectivity at least three. Let ¢ be any real function on €y and, on
mapping RT onto U, use the same notation ¢ to denote the corresponding func-
tion on I'. Then there hold

HS(F(2)) =H%2) and HS(f(2))=H%z2).

Proof. We supply the function ¢, defined on E, with the value zero on
I'— E, and use the same notation ¢ to denote the resulting function on I. The
ambiguity of the range of definition of ¢ will not infer nor arouse any confusion.

We take any function #(P) of class k¢ and denote u(f(2)) by #(z). This

11) This fact with the following proof was given in [15].
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is bounded from above, continuous and subharmonic in U, and lim #(z) = ¢
along every radius with an end-point on Eo,. Let us put 'liir—l1 % (re®) = ¢(e").
7>

This is measurable on I and bounded from above. From the inequality

2
I ek S 2 = 7o'
p"’+rz—-2prcos(0—5)d’ (z=7e% 0> 7),

w0 1 (" i
u(?’e )_é_ ﬁso u(pe )

we have by Fatou’s lemma

2 7 2 2
(i) = Tirm 13‘ ~ it o7 N
#(re )_113}——23 , u(pe )pg_i_fg_zprcosw_g)d,
~2 3 2 2
= 1 G~ 6% o -7 s — U (20
= njo zx_r)r} u(pe )p"'+rz—2prcos(0-—$)d’ Hy(re®).

Since ¢(e”) = ¢(€®) on E,, there holds HY(z) £ HY(z). Hence #(z) < HY(2).
Consequently HS(f(2)) « H%(z). Similarly we have BYf(2) = BY%2). I,

therefore, ¢ is a (€, x")-integrable function, there holds the equality
HS(f(2) = H(2).

When a point or an arc « CT is an image of a point Pg of €g, this
correspondence will be denoted by Pg = f(«), and, for any set X on I, f(X)
will defined by {f(a); aNX%x¢}CCx. Given a closed set FCT, the u*-
measurability of f(F) is shown as follows:

We enumerate the images in U of the elementary domains {D;}(1 £{ = u)
in an arbitrary way : Gi, Gz, . . .. In Gg, which is an image of D;, let the
enumerated images of {D; ;j} (1 j= u(¢)) be Gr 1, Gr,2,.... In such a
manner any image a« on I' of a Pg is determined by a nested sequence of

domains Gr D Gr, 1D ..., or by a sequence of numbers &, ,.... We put

,,,,,,,,,,,,

we put Ar,....m=¢ for any finite sequence of positive integers. Then if
aNF=x ¢, and if {Gp,...,
N...NAg:...mN...€Cq. But if aNF=¢, and if {Gr,1,..,m} is the
determining sequence, then A N Az, N ... N Ap,u,...,m()...=¢, because
F is a closed set and hence there is a Gk, r,..., m, such that Gz', tyoym N F
NE=¢. Hencef(F) = U )(AkﬂAk,zﬂ. ..NAgi,....mMN...). The set

.........

m) is the determining sequence of a, f(a) = Ar N A,

of the right hand side is the nucleus of the Souslin’s graph {A,i,.. ., m}. Since

every A 1., m is #P-measurable, the nucleus f (F) is so too (cf. [13], pp. 47-50).

.....
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Let now ¢ be any real-valued function on €y, and ¢ be an upper semicon-
tinuous function, bounded from above on I and not greater than ¢. We define
a function ¢/(Pg) on €y by sup ¢(z), where z € « with f(a)=PFs. For any
number % there holds f({z; ¢(2)> k}) ={Py; ¢'(Pg) > k). Since {z; ¢(2)> k}
is a countable union of closed sets, the left hand side is a x”-measurable
set. Therefore ¢'(Pg) is a #P-measurable function bounded from above on Cg.
We use the same letter ¢’ to denote the corresponding function on /. Then
HS(7(2))=HY%(z) and ¢ ¢’ = ¢ on I Hence Hi(z) £ H(2) = HS(/(2))
£H g(f (2)). By the arbitrariness of ¢ £ ¢ there is concluded that H9(z)
£H S}( f(2)). Since the reverse inequality has already been obtained, there
follows the equality. Similarly we get Fo(f(z)) = HY%(z). Thus our theorem
is proved.

Taking Theorem 7 and Corollary of Lemma 4 into account, we have

Corcrrary. A set X in €y belongs to € if and only if its image on I is

linearly measurable.

Let us give a remark to our present paper. When R is a plane domain
surrounded by curves, each curve is a point with respect to the topology of €g.
This shows that in some cases the points of €y are too wide to be defined as
boundary points of Jt. It is desirable, therefore, to study conformal mappings
and Dirichlet problems for boundary points of It defined more finely than the
points of Gg. ™
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