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Abstract In this paper we study the existence of multiple positive solutions and the bifurcation problem
for the following equation:

−∆u + u =
(∫

R3

|u(y)|2

|x − y|
dy

)
u + µf(x), x ∈ R

3,

where f(x) ∈ H−1(R3), f(x) � 0, f(x) �≡ 0. We show that there are positive constants µ∗ and µ∗∗ such
that the above equation possesses at least two positive solutions for µ ∈ (0, µ∗), and no positive solution
for µ > µ∗∗. Furthermore, we prove that µ = µ∗ is a bifurcation point for the equation under study.
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1. Introduction and main results

The study of inhomogeneous non-local problems has been a very active topic in recent
years and many interesting results have been obtained by different authors (see, for
example, [4–6, 8, 10, 11, 16]). But most of the authors cited have not discussed the
properties of the solutions, rather they only investigated the existence of the solutions.
In this paper we consider the equation

−∆u + u =
(∫

R3

|u(y)|2
|x − y| dy

)
u + µf(x), x ∈ R

3, (1.1)

where µ � 0 is a given constant, and f(x) satisfies the conditions

f(x) ∈ H−1(R3),

f(x) � 0, f(x) �≡ 0, ∀x ∈ R
3,

}
(A)
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which can be regarded as a perturbation of the homogeneous equation

−∆u + u =
(∫

R3

|u(y)|2
|x − y| dy

)
u, x ∈ R

3. (1.2)

We not only study the existence of multiple positive solutions of the above problem but
also investigate the properties of the solutions. In particular we study the dependence of
solutions on the parameter µ, and work out the bifurcation point of problem (1.1).

The main idea of our paper is related to the bifurcation problems for semilinear elliptic
equations [7,9,12]. The methods used in these papers are strongly dependent on the local
character of the equation. We use a different method and some special estimates to obtain
our results for the non-homogeneous Choquard’s equation. The main results of this paper
are as follows.

Theorem 1.1. Suppose f(x) satisfies (A), then there are positive constants µ∗ and
µ∗∗ such that

(1) Equation (1.1) possesses at least two positive solutions for all µ ∈ (0, µ∗);

(2) there is no positive solution of Equation (1.1) for all µ > µ∗∗.

Theorem 1.2. Under the condition of Theorem 1.1, there is only one positive solution
for Equation (1.1) for µ = µ∗, and µ = µ∗ is a bifurcation point for Equation (1.1).

The paper is organized as follows. In § 2 we introduce some notation and facts we need
later. In § 3 we prove Theorem 1.1 stated in § 1. In § 4 we discuss the properties and
bifurcation of solutions of Equation (1.1) and prove Theorem 1.2.

2. Some notation and preliminary results

In this section we give some notation, definitions and state several preliminary results
that will be used in the subsequent sections. Let

〈u, v〉 =
∫

R3
(∇u∇v + uv) dx

denote the inner product of H1(R3), and let

‖u‖ = 〈u, u〉1/2

be the norm in the Hilbert space H1(R3), whose dual space (H1(R3))∗ = H−1(R3) has
norm denoted by ‖ · ‖H−1 . We say that u ∈ H1(R3) is a weak solution of Equation (1.1)
if ∫

R3
(∇u∇v + uv) dx =

∫
R3

(∫
R3

u2(y)
|x − y| dy

)
uv dx − µ

∫
R3

fv dx, ∀v ∈ H1(R3).

One can verify that the weak solutions of (1.1) are equivalent to the non-zero critical
points of the functional

Iµ,f (u) = 1
2‖u‖2 − 1

4

∫∫
R3×R3

u2(x)u2(y)
|x − y| dxdy − µ

∫
R3

f(x)u(x) dx. (2.1)
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Define

I(u) = 1
2‖u‖2 − 1

4

∫∫
R3×R3

u2(x)u2(y)
|x − y| dxdy. (2.2)

Denote
I∞ = inf{I(u) | u ∈ H1(R3), u � 0, u �≡ 0, F (u) = 1}, (2.3)

where F (u) is the functional defined in H1(R3), by

F (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if u ≡ 0,∫
R3

(|∇u|2 + |u|2) dx∫∫
R3×R3

u(x)2u(y)2

|x − y| dxdy

if u �≡ 0.

From [4,10], we know that I∞ is achieved by a function ω ∈ H1(R3), which is a solution
of Equation (1.2).

For a C1-functional J on a Banach space E, C ∈ R
1, we call {un} a (PS)C sequence

of J on E if
J(un) → C and J ′(un) → 0. (2.4)

In order to prove our results, we need four lemmas as follows.

Lemma 2.1. Iµ,f (u) ∈ C1(H1(R3), R) and

〈I ′
µ,f (u), h〉 = 〈u, h〉 −

∫∫
R3×R3

u2(y)u(x)h(x)
|x − y| dy dx − µ

∫
R3

f(x)h(x) dx.

Lemma 2.1 can be proved in a standard way, therefore we omit the proof here.

Lemma 2.2. Let (Pn)n>1 be a sequence in L1(R3) satisfying Pn � 0 in R
3 and∫

R3 Pn dx = L, where L > 0 is fixed. Then there exists a subsequence (Pnk
)k>1 satisfying

one of the following three possibilities.

(I) (compactness). There exists yk ∈ R
3 such that Pnk

(x + yk) is tight, i.e.

∀ε > 0, ∃R < ∞
∫

yk+BR

Pnk
(x) dx � L − ε.

(II) (vanishing).

lim
k→∞

sup
y∈R3

∫
y+BR

Pnk
(x) dx = 0 for all R < ∞.

(III) (dichotomy). There exists α ∈ (0, L) such that for any ε � 0 there exists k0 > 1
and P 1

k , P 2
k ∈ L1

+(R3) satisfying, for k � k0,

dist(supp{P 1
k }, supp{P 2

k }) → ∞,

‖Pnk
− (P 1

k + P 2
k )‖L1(R3) � ε,∣∣∣∣

∫
R3

P 1
k dx − α

∣∣∣∣ � ε,

∣∣∣∣
∫

R3
P 2

k dx − (L − α)
∣∣∣∣ � ε.
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Lemma 2.2 can be found in [13,14] and the following Lemmas 2.3 and 2.4 are cited
from [6].

Lemma 2.3. Suppose {un} is bounded in H1(R3), u0 ∈ H1(R3) and un ⇀ u0 (weakly
in H1(R3)). Then we have

lim
n→∞

∫∫
R3×R3

u2
n(x)u2

n(y) − u2
0(x)u2

0(y) − (un − u0)2(x)(un − u0)2(y)
|x − y| dxdy = 0. (2.5)

Lemma 2.4. Suppose {un} ∈ H1(R3) is a (PS)C sequence of Iµ,f and u0 ∈ H1(R3),
un ⇀ u0 (weakly in H1(R3)). Then I ′

µ,f (u0) = 0, i.e. u0 is a weak solution of (1.1).

3. Existence and non-existence results

In this section, we shall prove Theorem 1.1. First we define

B̄R = {u ∈ H1(R3) | ‖u‖ � R} (3.1)

and
I0 = I0(R) = inf

u∈B̄R

Iµ,f (u). (3.2)

Theorem 3.1. Suppose {un} is a (PS)C sequence of Iµ,f (u) in H1(R3) and u0 ∈
H1(R3), un ⇀ u0 (weakly in H1(R3)). Then either un → u0 (strongly in H1(R3)) and
Iµ,f (u0) = C, or C � Iµ,f (u0) + I∞.

Proof. Since {un} is a (PS)C sequence of Iµ,f in H1(R3), then

Iµ,f (un) = C + o(1),

〈I ′
µ,f (un), un〉 = o(1).

From un ⇀ u0 (weakly in H1(R3)), we get for vn = un − u0

vn ⇀ 0 weakly in H1(R3), (3.3)

vn → 0 a.e. on R
3. (3.4)

From Lemma 2.3 and Lemma 2.4 we obtain

C + o(1) = Iµ,f (un) = Iµ,f (u0) + I(vn) + o(1) (3.5)

and

o(1) = 〈I ′
µ,f (un), un〉

= 〈I ′
µ,f (u0), u0〉 + 〈I ′

µ,f (vn), vn〉 + o(1)

= 〈I ′(vn), vn〉 + o(1). (3.6)

If

vn → 0 (strongly in H1(R3)),
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then

un → u0 (strongly in H1(R3))

and
Iµ,f (u0) = lim

n→∞
Iµ,f (un) = C.

If vn does not strongly converge to zero in H1(R3), we may assume that

‖vn‖ → η > 0.

Then from (3.5) and (3.6) we can get

C = Iµ,f (u0) + I(vn) + o(1),

〈I ′(vn), vn〉 = o(1).

Using the same method as in [1], [2] and [3] we can prove that

I(vn) � I∞ + o(1).

Then we have
C = Iµ,f (u0) + I(vn) + o(1) � Iµ,f (u0) + I∞.

�

Theorem 3.2. Under condition A on f(x), there are constants µ, R and u0,µ ∈
H1(R3) such that I0(R) = Iµ,f (u0,µ), I ′

µ,f (u0,µ) = 0, i.e. u0,µ is a positive solution of
Equation (1.1).

Proof. For any u ∈ H1(R3) and u > 0, we have

Iµ,f (tu) =
t2

2

∫
R3

(|∇u|2 + u2) dx − t4

4

∫∫
R3×R3

u2(x)u2(y)
|x − y| dxdy − tµ

∫
R3

f(x)u dx,

(3.7)

dIµ,f (tu)
dt

= t

∫
R3

(|∇u|2 + u2) dx − t3
∫∫

R3×R3

u2(x)u2(y)
|x − y| dxdy − µ

∫
R3

f(x)u dx.

(3.8)

From (3.8) we know that there is a constant t̄ such that

dIµ,f (tu)
dt

< 0

for t < t̄. Hence Iµ,f (tu) is a decreasing function in t ∈ (0, t̄).
On the other hand, we have∫

R3
f(x)u dx � ‖f‖H−1 × ‖u‖H1 (3.9)
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and ∫∫
R3×R3

u2(x)u2(y)
|x − y| dxdy

=
∫∫

R3×R3
⋂

{|x−y|�δ}
+

∫∫
R3×R3

⋂
{|x−y|<δ}

(
u2(x)u2(y)

|x − y|

)
dxdy

� 1
δ

(∫
R3

u2(x) dx

)2

+ Cδ

(∫
R3

u2(x) dx

)(∫
R3

|∇u|2 dx

)
, (3.10)

where we have used the Hölder and Sobolev inequalities; see [13], [14] and [12] for more
details.

From (3.8)–(3.10) we know that for µ sufficiently small Iµ,f (tu) is an increasing function
for t ∈ (t̄, t1). This shows that for any u > 0 and u ∈ H1(R3), Iµ,f (tu) achieves a local
minimum at t = t̄. Since Iµ,f (0) = 0, there is an R > 0 such that I0 = I0(R) =
infu∈BR

Iµ,f (u) < 0.
Using Ekeland’s variational principle [8], for R small, we obtain a (PS)C sequence of

Iµ,f (un). This means that we obtain a sequence un ∈ H1(R3) such that

Iµ,f (un) = I0(R) + o(1),

I ′
µ,f (un) → 0.

Since I0(R) < 0, from Theorem 3.1, we know that there is an u0,µ ∈ H1(R3) such that

un → u0,µ strongly in H1(R3).

Thus,

I0(R) = Iµ,f (u0,µ),

I ′
µ,f (u0,µ) = 0.

This shows that u0,µ is a solution of Equation (1.1). �

Let u0,µ be the function given in Theorem 3.2, and ω the function achieving the infimum
in (2.3), then under the condition of Theorem 3.2 we have

dIµ,f (tω)
dt

> 0 for all t ∈ (t̄, t1).

We define

Γ = {γ ∈ C1([0, 1], H1(R3)) : γ(0) = u0,µ, γ(1) = u0,µ + t1ω} (3.11)

and
C̄ = inf

γ∈Γ
sup
u∈γ

Iµ,f (u). (3.12)

Theorem 3.3. C̄ < I0 + I∞, where I0 = infu∈B̄R0
Iµ,f (u) for R0 > 0 small enough,

and I∞ = I(ω).
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Proof. If
sup
t>0

Iµ,f (u0,µ + tω) < I0 + I∞,

then by the definition of C̄ we have

C̄ < I0 + I∞.

Since u0,µ and ω are positive functions and t > 0, we have

Iµ,f (u0,µ + tω) = 1
2

∫
R3

(|∇(u0,µ + tω)|2 + (u0,µ + tω)2) dx − µ

∫
R3

f(u0,µ + tω) dx

− 1
4

∫∫
R3×R3

(u0,µ + tω)2(x)(u0,µ + tω)2(y)
|x − y| dxdy

<
1
2

∫
R3

(|∇u0,µ|2 + u2
0,µ) dx +

t2

2

∫
R3

(|∇ω|2 + ω2) dx

+ t

∫
R3

(∇u0,µ∇ω + u0,µω) dx − 1
4

∫∫
R3×R3

u2
0,µ(x)u2

0,µ(y)
|x − y| dxdy

− 2t

4

∫∫
R3×R3

u2
0,µ(x)u0,µ(y)ω(y) + u2

0,µ(y)u0,µ(x)ω(x)
|x − y| dxdy

− t4

4

∫∫
R3×R3

ω2(x)ω2(y)
|x − y| dxdy − µ

∫
R3

fu0,µ dx − µt

∫
R3

fω dx.

(3.13)

Since u0,µ is a solution of (1.1), we have

∫
R3

(∇u0,µ∇ω + u0,µω) dx =
∫∫

R3×R3

u2
0,µ(y)u0,µ(x)ω(x)

|x − y| dxdy + µt

∫
R3

fω dx. (3.14)

From (3.13) and (3.14), we get

sup
t>0

Iµ,f (u0,µ + tω) < I0 + I∞.

Then
C̄ < I0 + I∞.

�

Theorem 3.4. Under the condition of Theorem 3.2, there are at least two positive
solutions of Equation (1.1).

Proof. First, from Theorem 3.2, we obtain a solution u0,µ of Equation (1.1).
Using the Mountain Pass Lemma and Theorem 3.3, we can get a sequence {un},

un ∈ H1(R3), which is a (PS)C̄ sequence of Iµ,f . It is easy to prove that un is bounded
in H1(R3). Hence there is a subsequence unk

and a u1,µ ∈ H1(R3) such that

unk
→ u1,µ weakly in H1(R3).
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Using Theorem 3.1, we know that unk
→ u1,µ is strongly convergent in H1(R3), hence

u1,µ is a solution of Equation (1.1).
By the strong maximum principle for elliptic equations and Theorems 3.2 and 3.3, we

know that u0,µ and u1,µ are two different positive solutions of Equation (1.1). �

Theorem 3.5. Under the condition (A) on f(x), there is a positive constant µ̄ such
that Equation (1.1) has no positive solution whenever µ > µ̄.

Proof. In fact, for any u > 0 we have

∫∫
R3×R3

ω2(y)ω(x)u(x)
|x − y| dxdy

�
∫∫

R3×R3

ω2(y)ω(x)2

|x − y| dxdy +
∫∫

R3×R3

u2(y)ω2(x)
|x − y| dxdy, (3.15)

where ω is a positive solution of Equation (1.2) (this can be obtained from Lemma 3.1
in [2]). If Equation (1.1) possesses a positive solution, say u, then∫

R3
(−∆u + u)v dx =

∫∫
R3×R3

u2(y)u(x)v(x)
|x − y| dxdy + µ

∫
R3

fv dx (3.16)

for any v ∈ H1
0 (R3).

Taking v = ω in (3.16) and using (3.15), we can get

µ

∫
R3

fω dx �
∫∫

R3×R3

ω2(x)ω2(y)
|x − y| dxdy. (3.17)

Set

µ̄ =

∫∫
R3×R3

ω2(x)ω2(y)
|x − y| dxdy∫

R3
f(x)ω(x) dx

.

From (3.16) and (3.17), we know that if Equation (1.1) possesses a positive solution, then
µ � µ̄. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. From Theorem 3.5 we know there is no positive solution for
Equation (1.1) if µ > µ̄. So we take

µ∗∗ = inf{µ ∈ R
+ | there is no positive solution for Equation (1.1)}.

From Theorems 3.2 and 3.3 we know that, if µ is small enough, there are at least two
positive solutions for Equation (1.1). So set

µ∗ = sup{µ ∈ R
+ | there are at least two positive solutions for Equation (1.1)}.

This completes the proof of Theorem 1.1. �
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4. Properties and bifurcation of solutions

In this section we shall give some properties and study the bifurcation of solutions for
Equation (1.1) and prove Theorem 1.2 stated in the introduction.

Proposition 4.1. The solution u0,µ of Equation (1.1) converges strongly to 0 as
µ → 0. That is

lim
µ→0

‖u0,µ‖H1(R3) = 0.

Proof. From the previous section we know that

I0 = Iµ,f (u0,µ) = inf
u∈Br

Iµ,f (u) < 0.

On the other hand, we have

Iµ,f (u0,µ) = 1
2

∫
R3

(|∇u0,µ|2 + u2
0,µ) dx − 1

4

∫∫
R3×R3

u2
0,µ(x)u2

0,µ(y)
|x − y| dxdy − µ

∫
R3

fu0,µ dx

and ∫
R3

(|∇u0,µ|2 + u2
0,µ) dx =

∫∫
R3×R3

u2
0,µ(x)u2

0,µ(y)
|x − y| dxdy + µ

∫
R3

fu0,µ dx.

So we get

Iµ,f (u0,µ) = 1
4

∫
R3

(|∇u0,µ|2 + u2
0,µ) dx − 5

4µ

∫
R3

fu0,µ dx

� 1
4‖u0,µ‖2 − 5

4µ‖f‖ × ‖u0,µ‖

and
1
4‖u0,µ‖2 − 5

4µ‖f‖ × ‖u0,µ‖ � 0.

Since ‖u0,µ‖ � 0, we get
‖u0,µ‖ � 5µ‖f‖.

Hence,
lim
µ→0

‖u0,µ‖ = 0.

�

Proposition 4.2. The solution u1,µ of Equation (1.1) converges strongly to a non-zero
solution of Equation (1.2) in H1(R3) as µ → 0.

Proof. From the previous section we know that

Iµ,f (u1,µ) = inf
γ∈Γ

sup
u∈γ

Iµ,f (u),

so

Iµ,f (u1,µ) � I∞.
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That is,

1
2

∫
R3

(|∇u1,µ|2+u2
1,µ) dx− 1

4

∫∫
R3×R3

u2
1,µ(x)u2

1,µ(y)
|x − y| dxdy−µ

∫
R3

fu1,µ dx � I∞. (4.1)

On the other hand, u1,µ is a solution of Equation (1.1). Hence

∫
R3

(|∇u1,µ|2 + u2
1,µ) dx =

∫∫
R3×R3

u2
1,µ(x)u2

1,µ(y)
|x − y| dxdy + µ

∫
R3

fu1,µ dx. (4.2)

Combining (4.1) and (4.2), we get

1
4

∫
R3

(|∇u1,µ|2 + u2
1,µ) dx − 5

4µ

∫
R3

fu1,µ dx � I∞. (4.3)

Using Hölder’s inequality and (4.3), we see that u1,µ is bounded in H1(R3) if µ → 0. Using
the same method as in the proof of Theorem 3.1, we get that u1,µ converges strongly in
H1(R3). As u1,µ is a solution of Equation (1.1), we can take the limit in Equation (1.1)
when µ → 0, and obtain the result as required. �

Finally, we prove Theorem 1.2.

Proof of Theorem 1.2. The function

Iµ,f (u) = 1
2

∫
R3

(|∇u|2 + u2) dx − 1
4

∫∫
R3×R3

u2(x)u2(y)
|x − y| dxdy − µ

∫
R3

fu dx

is a continuous function of µ for any u ∈ H1(R3).
We assume that Equation (1.1) has at least two positive solutions when µ = µ∗, then

deduce a contradiction. Since Iµ∗,f (u) has at least two critical points and Iµ,f (u) is a
continuous function of µ, there is a positive constant ε1 > 0 such that Iµ,f (u) has at
least two critical points for µ = µ∗ + ε1. This means that Equation (1.1) has at least
two positive solutions for µ = µ∗ + ε1, which contradicts the definition of µ∗. Hence if
µ = µ∗, there is no more than one positive solution.

On the other hand, we can prove that u0,µ and u1,µ are bounded in H1(R3) for µ ∈
(0, µ∗). Using the same method as in the proof of Proposition 4.2, we find that u0,µ

and u1,µ converge strongly in H1(R3) as µ → µ∗, and that these limits are solutions of
Equation (1.1).

Combining these two results, we see that for µ = µ∗ there is only one positive solution
for Equation (1.1). Because there are two solutions when µ is less than µ∗, and there
is no solution when µ is greater than µ∗∗, there is only one solution at µ∗. From Rabi-
nowitz’s results (Bifurcation Theorem [15]), we know that µ = µ∗ is a bifurcation point
of Equation (1.1). �
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1. A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some semi-linear
Schrödinger equations, Math. Z. 224 (1997), 347–362.

2. B. Buffoni, L. Jeanjean and C. A. Stuart, Existence of a non-trivial solution to a
strongly indefinite semi-linear equation, Proc. Am. Math. Soc. 119 (1993), 179–186.

3. D. M. Cao and H. S. Zhou, On the existence of multiple solutions of non-homogeneous
elliptic equations involving critical Sobolev exponent, Z. Angew. Math. Phys. 47 (1996),
89–96.

4. I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and
Tomas–Fermi type theorems, Commun. PDEs 17 (1993), 1051–1110.

5. Y. B. Deng, Existence of multiple positive solutions of inhomogeneous semi-linear elliptic
problems involving critical exponent, Commun. PDEs 17 (1992), 33–53.

6. Y. B. Deng, Existence of multiple positive solutions for −∆u = λu + u
N+2
N−2 + µf(x),

Acta Math. Sci. 13 (1993), 311–320.
7. Y. B. Deng and Y. Li, Existence and bifurcation of the positive solutions for a semi-

linear equation with critical exponent, J. Diff. Eqns 130 (1996), 179–200.
8. I. Ekeland, Non-convex minimization problems, Bull. Am. Math. Soc. 1 (1979), 443–474.
9. I. Fukuda and M. Tsutsumi, On the Yukawa-coupled Klein–Cordon Schrödinger equa-

tions in three-dimensional space, Proc. Jpn Acad. 51 (1975).
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