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Abstract In this paper, we introduce the polynomial numerical index of order k of a Banach space,
generalizing to k-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s
for linear operators. We also prove some results. Let k be a positive integer. We then have the following:

(i) n(k)(C(K)) = 1 for every scattered compact space K.

(ii) The inequality n(k)(E) � kk/(1−k) for every complex Banach space E and the constant kk/(1−k)

is sharp.

(iii) The inequalities

n(k)(E) � n(k−1)(E) � k(k+(1/(k−1)))

(k − 1)k−1
n(k)(E)

for every Banach space E.

(iv) The relation between the polynomial numerical index of c0, l1, l∞ sums of Banach spaces and
the infimum of the polynomial numerical indices of them.

(v) The relation between the polynomial numerical index of the space C(K, E) and the polynomial
numerical index of E.

(vi) The inequality n(k)(E∗∗) � n(k)(E) for every Banach space E.

Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on
C(K) and the disc algebra are given.

Keywords: polynomial numerical index; numerical radius; Aron–Berner extension;
homogeneous polynomials; Banach spaces
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1. Introduction

Let E and F be real or complex Banach spaces. We write B̊E , BE and SE for the open
unit ball, the closed unit ball and the unit sphere of E, respectively. The dual space of
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E is denoted by E∗. Let k ∈ N. We let L(kE : F ) denote the Banach space of continuous
k-linear mappings of Ek := E × · · · × E into F , endowed with the norm

‖A‖ = sup{‖A(x1, . . . , xk)‖ : xj ∈ BE , j = 1, . . . , k}.

A mapping P : E → F is called a continuous k-homogeneous polynomial if there is an
A ∈ L(kE : F ) such that P (x) = A(x, . . . , x) for all x ∈ E. Each such P has a unique
associated continuous symmetric k-linear map P̌ of Ek into F . We let P(kE : F ) denote
the Banach space of continuous k-homogeneous polynomials of E into F , endowed with
the polynomial norm ‖P‖ = supx∈BE

‖P (x)‖. When F is the scalar field R or C, we
denote this space by P(kE). Note that P(1E : E) = L(1E : E) is the space of bounded
linear operators on E. (See [10] for a general background on the theory of polynomials
on an infinite-dimensional Banach space.) Let

Π(E) = {(x, x∗) : x ∈ SE , x∗ ∈ SE∗ , x∗(x) = 1}.

For each P ∈ P(kE : E), the numerical range of P is the subset V (P ) of the scalar field
defined by

V (P ) = {x∗(Px) : (x, x∗) ∈ Π(E)}.

In [5] the numerical radius of P is given by

v(P ) = sup{|λ| : λ ∈ V (P )}

and the numerical radius of a homogeneous polynomial on some classes of Banach spaces
was computed. It is clear that v is a seminorm on P(kE : E) and v(P ) � ‖P‖ for every
P ∈ P(kE : E). We introduce the polynomial numerical index of order k of a Banach
space, generalizing to k-homogeneous polynomials the ‘classical’ numerical index defined
by Lumer in the 1970s for linear operators. It is natural to consider the polynomial
numerical index of order k of the space E, namely the constant n(k)(E) defined by

n(k)(E) = inf{v(P ) : P ∈ SP(kE:E)}.

Equivalently, n(k)(E) is the greatest constant c � 0 such that c‖P‖ � v(P ) for every
P ∈ P(kE : E). Note that 0 � n(k)(E) � 1, and n(k)(E) > 0 if and only if v and ‖ · ‖ are
equivalent norms on P(kE : E). It is obvious that if E1, E2 are isometrically isomorphic
Banach spaces, then n(k)(E1) = n(k)(E2).

The concept of the numerical index (in our terminology, the polynomial numerical
index of order 1) was first suggested by Lumer [17]. He gave a theory of the numerical
range or bounded linear operators on a Banach space. This is a very successful generaliza-
tion of the classical theory, in which only Hilbert spaces are considered. At that time, it
was known that a Hilbert space of dimension greater than 1 has numerical index 1

2 in the
complex case and 0 in the real case. Several years later, Duncan et al . [11] proved that
L-spaces and M -spaces have numerical index 1. McGregor [18] obtained necessary and
sufficient conditions such that a finite-dimensional normed space has numerical index 1.
The disc algebra is another example of a Banach space with numerical index 1 [8, Theo-
rem 3.3]. Crabb et al . [7] investigated some extremal problems in the theory of numerical
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ranges. Recently, Lopez et al . [16] investigated necessary conditions for a real Banach
space to have numerical index 1. Martin and Paya [19] studied the numerical index
of vector-valued function spaces. For general information and background on numerical
ranges we refer to the books by Bonsall and Duncan [3,4]. Further developments in the
Hilbert space case can be found in [13].

In § 2 of this paper we prove the following results. Let k be a positive integer. Then
we have the following:

(i) n(k)(C(K)) = 1 for every positive integer k and every scattered compact space K.

(ii) The inequality n(k)(E) � kk/(1−k) for every complex Banach space E and the con-
stant kk/(1−k) is sharp.

(iii) The inequalities

n(k)(E) � n(k−1)(E) � k(k+(1/(k−1)))

(k − 1)k−1 n(k)(E)

for every Banach space E.

(iv) The relation between the polynomial numerical index of c0, l1, l∞ sums of Banach
spaces and the infimum of the polynomial numerical indices of them.

(v) The relation between the polynomial numerical index of the space C(K, E) and the
polynomial numerical index of E.

(vi) The inequality n(k)(E∗∗) � n(k)(E) for every Banach space E.

In § 3 some results about the numerical radius of multilinear maps and homogeneous
polynomials on C(K) and the disc algebra are given.

2. Properties of the polynomial numerical index of order k

It was proved in [5, Theorem 3.1 (ii)] that n(k)(c0) = n(k)(c) = n(k)(l∞) = 1 for every
positive integer k, where c is the Banach space of convergent sequences in C.

Given a Banach space E, we denote by A(BE) the Banach space of all functions
f : BE → C which are holomorphic on B̊E and uniformly continuous on BE , endowed
with the supremum norm. Recall that a mapping P is said to be a continuous polynomial
on E if it can be represented as a sum

P = P0 + P1 + · · · + Pm,

where Pj ∈ P(jE) for j = 0, . . . , m. The vector space of all continuous polynomials on P

is always a dense subspace of A(BE).

Lemma 2.1 (see Theorem 3.3 in [6]). Let K be a scattered compact Hausdorff
space. If T is an element of A(BC(K)), then

‖T‖ = sup{|T (f)| : f ∈ ext BC(K)},

where ext BC(K) is the set of all extreme points of BC(K).
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Theorem 2.2. Let K be a scattered compact space. For every positive integer k, we
have n(k)(C(K)) = 1.

Proof. It suffices to show that ‖P‖ = v(P ) for every P ∈ P(kC(K) : C(K)). Let P ∈
P(kC(K) : C(K)). Let ε > 0 be given. We can choose f0 ∈ BC(K) and t0 ∈ K such that
|P (f0)(t0)| > ‖P‖ − ε. Define a continuous k-homogeneous polynomial Q : C(K) → C

by Q(f) = P (f)(t0) (f ∈ C(K)). By Lemma 2.1 there exists g0 ∈ ext BC(K) such that
|Q(g0)| > supf∈BC(K)

|Q(f)| − ε. Then |g0(t)| = 1 for every t ∈ K. It follows that

‖P‖ − 2ε < |P (f0)(t0)| − ε � sup
f∈BC(K)

|P (f)(t0)| − ε

= sup
f∈BC(K)

|Q(f)| − ε < |Q(g0)| = |P (g0)(t0)|

= |sgn(δt0(g0))δt0P (g0)| � v(P ),

which shows that ‖P‖ = v(P ) because (g0, sgn(δt0(g0))δt0) ∈ Π(C(K)). �

Theorem 2.3. Let E be a complex Banach space. For every positive integer k, we
have

n(k)(E) � kk/(1−k)

and the constant kk/(1−k) is sharp.

Proof. By [14, Theorem 1], it is true that ‖P‖ � kk/(k−1)v(P ) for each P ∈ P(kE :
E). This follows from the fact that

v

(
P

‖P‖

)
=

1
‖P‖v(P )

and the definition of n(k)(E). In [14, § 7] it is proved that for every k ∈ N there is a
two-dimensional space E with n(k)(E) = kk/(1−k). �

Lemma 2.4. Let E be a Banach space. Let P ∈ P(kE : E), x ∈ BE . For 1 � m < k,
we have

v(D̂mP (x)) � k(k+(k/(k−1)))m!
(k − m)k−mmm

v(P ),

where D̂mP (x) ∈ P(k−mE : E) is defined by D̂mP (x)(y) = P̌ (xm, yk−m) for x, y ∈ E.

Proof. By a result of Harris [15, Corollary 3] and Theorem 2.3, it follows that

v(D̂mP (x)) � ‖D̂mP (x)‖ � kkm!
(k − m)k−mmm

‖P‖

� kkm!
(k − m)k−mmm

kk/(k−1)v(P ).

�
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Proposition 2.5. Let E be a Banach space. For every positive integer k � 2, we have

n(k)(E) � n(k−1)(E) � k(k+(1/(k−1)))

(k − 1)k−1 n(k)(E).

Proof. First we will prove the left inequality, n(k)(E) � n(k−1)(E), for every Banach
space E and every k � 2.

Indeed, let α = n(k)(E). Let Q ∈ SP(k−1E:E). Let {xi} ⊂ SE such that ‖Q(xi)‖ → 1 as
i → ∞. Define Pi(x) = x∗

i (x)Q(x) for x ∈ E, where x∗
i ∈ E∗,with ‖x∗

i ‖ = x∗
i (xi) = 1

for every positive integer i. Then Pi ∈ P(kE : E). Note that ‖Pi‖ → 1 as i → ∞. Since
v(Pi/‖Pi‖) � α, we have

α‖Pi‖ � v(Pi)

= sup
(x,x∗)∈Π(E)

|x∗(Pi(x))|

= sup
(x,x∗)∈Π(E)

|x∗
i (x)| |x∗(Q(x))|

� sup
(x,x∗)∈Π(E)

|x∗(Q(x))|

= v(Q).

Taking the limit as i → ∞, we get α � v(Q). Since Q ∈ SP(k−1E:E) was arbitrary, we
obtain the left inequality.

In order to prove the right inequality, let P ∈ SP(kE:E), x ∈ SE . By Lemma 2.4, it
follows that

n(k)(E) � n(k−1)(E) � v

(
D̂P (x)

‖D̂P (x)‖

)
=

1
‖D̂P (x)‖

v(D̂P (x))

� k(k+(k/(k−1)))

(k − 1)k−1

v(P )
‖D̂P (x)‖

.

We claim that

inf
P∈SP(kE:E), x∈SE

v(P )
‖D̂P (x)‖

� 1
k

n(k)(E).

Let

I = inf
P∈SP(kE:E), x∈SE

v(P )
‖D̂P (x)‖

.

Then

I = inf
P∈SP(kE:E)

{
v(P ) inf

x∈SE

1
‖D̂P (x)‖

}

= inf
P∈SP(kE:E)

{
v(P )

1
supx∈SE

‖D̂P (x)‖

}
.

We show that
sup

x∈SE

‖D̂P (x)‖ � k.
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Indeed,

sup
x∈SE

‖D̂P (x)‖ = sup
x∈SE

(
sup

y∈SE

‖D̂P (x)(y)‖
)

= k sup
x,y∈SE

‖P̌ (xk−1y)‖ � k sup
x∈SE

‖P (x)‖ = k.

So,

I � inf
P∈SP(kE:E)

{
v(P )

1
k

}
=

1
k

n(k)(E).

Therefore,

n(k)(E) � n(k−1)(E) � k(k+(k/(k−1)))

(k − 1)k−1 I � k(k+(1/(k−1)))

(k − 1)k−1 n(k)(E).

�

Remark 2.6. If l2 is a real Hilbert space, then n(k)(l2) = 0 for every k � 2.

Remark 2.7. If l2 is a complex Hilbert space, then n(k)(l2) � 1
2 for every k � 2.

The proof of the following proposition is almost the same as the one given in [19,
Proposition 1].

Proposition 2.8. For every Banach space Eλ and every positive integer k, we have

(1) n(k)
([⊕

λ∈Λ

Eλ

]
c0

)
� inf

λ∈Λ
n(k)(Eλ);

(2) n(k)
([⊕

λ∈Λ

Eλ

]
l1

)
� inf

λ∈Λ
n(k)(Eλ);

(3) n(k)
([⊕

λ∈Λ

Eλ

]
l∞

)
� inf

λ∈Λ
n(k)(Eλ).

Proof. We prove only (2) because the proofs of (1) and (3) are similar. Let P ∈ P(kX :
X) with ‖P‖ = 1. Let Q ∈ P(kX ⊕1 Y : X ⊕1 Y ) be such that Q(x, y) = (P (x), 0). Then
‖Q‖ = 1. Given ε > 0, there exist (x, y) ∈ SX⊕1Y and (x∗, y∗) ∈ S(X⊕1Y )∗ such that
x∗(x) + y∗(y) = ‖x∗‖ ‖x‖ + ‖y∗‖ ‖y‖ = 1 and

n(k)(X ⊕1 Y ) − ε � |(x∗, y∗)Q(x, y)|

= |x∗(P (x))| � 1
‖x∗‖ ‖x‖k

|x∗(P (x))| =
∣∣∣∣ x∗

‖x∗‖P

(
x

‖x‖

)∣∣∣∣ � v(P ),

because (1/‖x∗‖ ‖x‖k) � 1. Thus n(k)(X ⊕1 Y ) � n(k)(X). �
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In l1(µ, R) = l1, the inequality in Proposition 2.8 (2) is strict because n(2)(R) = 1 and
n(2)(l1(µ, R)) � 1

2 . Indeed, as in [5], let P ∈ P(2l1 : l1) be defined by

P (x) = ( 1
2x2

1 + 2x1x2,− 1
2x2

2 − x1x2, 0, 0, . . . ) (for x = (xi) ∈ l1).

Then it is not difficult to show that ‖P‖ = 1 and v(P ) = 1
2 . Thus n(2)(l1) � 1

2 .
The following lemma can be deduced from Corollary 2 of [14].

Lemma 2.9. Let K be a compact Hausdorff space and let k be a positive integer. Let
Q ∈ P(kC(K, E) : C(K, E)). Then

v(Q) = sup{|x∗(Q(f)(t))| : f ∈ SC(K,E), t ∈ K, x∗ ∈ SE∗ , x∗(f(t)) = 1}.

The proof of the following theorem is almost the same as the one given in [19, Theo-
rem 5].

Proposition 2.10. Let K be a compact Hausdorff space. For every positive integer
k, we have n(k)(C(K, E)) � n(k)(E).

Proof. Let P ∈ P(kE : E) with ‖P‖ = 1. Define Q ∈ P(kC(K, E) : C(K, E)) by

Q(f)(t) = P (f(t)) (t ∈ K, f ∈ C(K, E)).

Then ‖Q‖ = 1. So, v(Q) � n(k)(C(K, E)). By Lemma 2.9, given ε > 0, we can find
f ∈ SC(K,E), t ∈ K, x∗ ∈ SE∗ such that x∗(f(t)) = 1 and

|x∗(P (f(t)))| = |x∗(Q(f)(t))| > n(k)(C(K, E)) − ε.

Thus n(k)(C(K, E)) � n(k)(E). �

Let E and F be Banach spaces. A bounded k-homogeneous polynomial P has an
extension P̄ ∈ P(kE∗∗ : F ∗∗) to the bidual E∗∗ of E, which is called the Aron–Berner
extension of P (see [1]). In fact, P̄ is defined in the following way. We first start with the
complex-valued bounded k-homogeneous polynomial P ∈ P(kE). Let A be the bounded
symmetric k-linear form on E corresponding to P . We can extend A to an k-linear form
Ā on the bidual E∗∗ in such a way that, for each fixed j, 1 � j � k, and, for each fixed
x1, . . . , xj−1 ∈ E and zj+1, . . . , zm ∈ E∗∗, the linear form

z → Ā(x1, . . . , xj−1, z, zj+1, . . . , zk), z ∈ E∗∗,

is weak∗ continuous. By this weak∗ continuity A can be extended to a k-linear form Ā

on E∗∗, beginning with the last variable and working backwards to the first. Then the
restriction

P̄ (z) = Ā(z, . . . , z)

is called the Aron–Berner extension of P . In particular, Davie and Gamelin [9] proved
that ‖P‖ = ‖P̄‖. It is also worth remarking that Ā is not symmetric in general.

https://doi.org/10.1017/S0013091502000810 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000810


46 Y. S. Choi, D. Garcia, S. G. Kim and M. Maestre

Next, for a vector-valued k-homogeneous polynomial P ∈ P(kE : F ), the Aron–Berner
extension P̄ ∈ P(kE∗∗ : F ∗∗) is defined as follows: given z ∈ E∗∗ and w ∈ F ∗,

P̄ (z)(w) = w ◦ P (z).

For x ∈ E, we define δx : E∗ → C by δx(x∗) = x∗(x) for each x∗ ∈ E∗. Then δx ∈ E∗∗.
Let 〈xα〉 be a net in E and let x∗∗

0 ∈ E∗∗. We say that 〈xα〉 converges polynomial∗ to
x∗∗

0 if, for every P ∈ P(kE)(k ∈ N), we have that P (xα) converges to P̄ (x∗∗
0 ), where P̄ is

the Aron–Berner extension of P .
A function f : E∗∗ → F ∗ is called (pol∗,w∗)-continuous if x∗∗

0 ∈ E∗∗ and 〈xα〉 is a
net in E such that 〈xα〉 converges polynomially∗ to x∗∗

0 , then 〈f(δxα
)〉 converges weakly∗

to f(x∗∗
0 ).

The proof of the following theorem is very close to the one given in [4, Theorem 17.2].

Theorem 2.11. Let E be a Banach space. Let P ∈ P(kE∗∗ : E∗∗) (n � 1) be
(pol∗,w∗)-continuous. Let

LV (P ) := {P (x′′)(x′) : (x′, x′′) ∈ Π(E∗)}

and

lV (P ) := {δx′(P (δx)) : (x, x′) ∈ Π(E)}.

Then lV (P ) ⊂ V (P ) ⊂ lV (P ), so lV (P ) = V (P ).

Proof. We may assume that ‖P‖ = 1. Clearly, lV (P ) ⊂ V (P ).

Claim 2.12. V (P ) ⊂ LV (P ).

Let λ ∈ V (P ). Then λ = x′′′
0 (P (x′′

0)) for some (x′′
0 , x′′′

0 ) ∈ Π(E∗∗). Let 0 < ε < 1. By
the uniform continuity of P on BE∗∗ there is a 0 < δ < 1

3ε such that, for x′′, y′′ ∈ BE∗∗

with ‖x′′ − y′′‖ < δ, we have ‖P (x′′) − P (y′′)‖ < 1
3ε. Since BE∗ is w∗-dense in BE∗∗∗ ,

there exists x′
0 ∈ BE∗ such that

|δx′
0
(P (x′′

0)) − x′′′
0 (P (x′′

0))| = |λ − δx′
0
(P (x′′

0))| < δ

and

|δx′
0
(x′′

0) − x′′′
0 (x′′

0)| = |1 − x′′
0(x′

0)| < 1
4δ2.

By the Bishop–Phelps–Bollobas theorem [2] there exist (y′
0, y

′′
0 ) ∈ Π(E∗) such that

‖x′
0 − y′

0‖ < δ and ‖x′′
0 − y′′

0‖ < δ. Thus δy′
0
(P (y′′

0 )) ∈ LV (P ). It follows that

|λ − δy′
0
(P (y′′

0 ))|
� |λ − δx′

0
(P (x′′

0))| + |P (x′′
0)(x′

0) − P (x′′
0)(y′

0)| + |P (x′′
0)(y′

0) − P (y′′
0 )(y′

0)|
< δ + ‖P (x′′

0)‖ ‖x′
0 − y′

0‖ + ‖P (x′′
0) − P (y′′

0 )‖
< 3δ < ε,

which shows that λ ∈ LV (P ). Thus V (P ) ⊂ LV (P ).
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Claim 2.13. LV (P ) ⊂ lV (P ).

Let β ∈ LV (P ). Then β = P (x′′
0)(x′

0) = δx′
0
(P (x′′

0)) for some (x′
0, x

′′
0) ∈ Π(E∗). Let

0 < ε < 1. By the Davie–Gamelin theorem [9] (BE is pol∗-dense in BE∗∗) there is a net
〈xα〉 in BE such that δxα

converges pol∗ to x′′
0 . Then δx′

0
(δxα

) = x′
0(xα) converges to

δx′
0
(x′′

0) = x′′
0(x′

0) = 1. Let Q = δx′
0
◦ P ∈ P(kE∗∗). Since P ∈ P(kE∗∗ : E∗∗) is (pol∗,w∗)-

continuous, Q(δxα) = δx′
0
(P (δxα)) converges to Q(x′′

0) = δx′
0
(P (x′′

0)) = β. Choose xα0

such that
|β − δx′

0
(P (δxα0

))| < δ and |x′
0(xα0) − 1| < 1

4δ2.

By the Bishop–Phelps–Bollobas theorem [2] there is (y0, y
′
0) ∈ Π(E) such that ‖xα0 −

y0‖ < δ and ‖x′
0 − y′

0‖ < δ. Then δy′
0
(P (δy0)) ∈ lV (P ). We have

|β − δy′
0
(P (δy0))|

� |β − δx′
0
(P (δxα0

))| + |δx′
0
(P (δxα0

)) − δx′
0
(P (δy0))| + |δx′

0
(P (δy0)) − δy′

0
(P (δy0))|

< δ + ‖P (δxα0
) − P (δy0)‖ + ‖P (δy0)‖ ‖x′

0 − y′
0‖

< 3δ < ε,

which shows that β ∈ lV (P ). Thus LV (P ) ⊂ lV (P ). Thus, by Claims 2.12 and 2.13,
V (P ) ⊂ lV (P ). �

Corollary 2.14. Let E be a Banach space and let k be a positive integer. Let Q ∈
P(kE : E). Then V (Q) = V (Q̄), where Q̄ is the Aron–Berner extension of Q.

Proof. Since Q̄ is (pol∗,w∗)-continuous and lV (Q̄) = V (Q), the corollary is proven.
�

Corollary 2.15. Let E be a Banach space. For every positive integer k, we have
n(k)(E∗∗) � n(k)(E).

Proof. For every Q ∈ P(kE : E) with ‖Q‖ = 1 there is the Aron–Berner exten-
sion Q̄ ∈ P(kE∗∗ : E∗∗) of Q. Davie and Gamelin [9] proved that ‖Q‖ = 1 = ‖Q̄‖ and
Corollary 2.14 shows that v(Q) = v(Q̄), which proves the corollary. �

3. Numerical radius of a multilinear map and a polynomial on C(K) and
the disc algebra

In [5] the numerical radius of a k-linear mapping A ∈ L(kE : E) is defined by

v(A) = sup{|x∗(A(x1, . . . , xk))| : (x1, . . . , xk, x∗) ∈ Π(Ek)},

where

Π(Ek) = {(x1, . . . , xk, x∗) : ‖xj‖ = ‖x∗‖ = 1 = x∗(xj), j = 1, . . . , k}.

Theorem 3.1. Let K be a compact Hausdorff space and let P ∈ P(kC(K) : C(K))
(k ∈ N). Then v(P ) = ‖P‖ or v(P̌ ) � ‖P‖, where P̌ is the symmetric k-linear map
associated with P .
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Proof. Let ε > 0. Assume that ‖P‖ = 1. Then there exist f0 ∈ C(K) with ‖f0‖ = 1
and t0 ∈ K such that f0(t0) 
= 0 and |P (f0)(t0)| > 1−ε. Let U be an open neighbourhood
of t0 with 0 /∈ f0(U). By Urysohn’s lemma there is a continuous function π : K → [0, 1]
such that π(t0) = 1, π(K − U) = 0. Now define ψ on K by ψ(t) = 0 when f0(t) = 0 and

ψ(t) =
f0(t)
|f0(t)|

√
1 − |f0(t)|2π(t),

where f0(t) 
= 0. Then ψ ∈ C(K). Let g0 = f0 + iψ, h0 = f0 − iψ, so that g0, h0 ∈ C(K),
f0 = 1

2 (g0 + h0) and |g0(t0)| = |h0(t0)| = ‖g0‖ = ‖h0‖ = 1. Note that

1 − ε < |P (f0)(t0)| � 1
2k

∑
0�j�k

kCj |P̌ (gj
0h

k−j
0 )(t0)|

=
1
2k

(
|P (g0)(t0)| + |P (h0)(t0)| +

∑
1�j�k−1

kCj |P̌ (gj
0h

k−j
0 )(t0)|

)
,

where kCj = k!/(j!(k − j)!). So we have |P (g0)(t0)| > 1 − ε or |P (h0)(t0)| > 1 − ε or
|P̌ (gj

0h
k−j
0 )(t0)| > 1 − ε for some 1 � j � k − 1. Note that

1 − ε < |P (g0)(t0)| = |sgn(g0(t0))δt0(P (g0))| � v(P )

or

1 − ε < |P (h0)(t0)| = |sgn(h0(t0))δt0(P (h0))| � v(P )

or

1 − ε < |P̌ (gj
0h

k−j
0 )(t0)| = |δt0(P̌ ((sgn(g0(t0))g0)j(sgn(h0(t0))h0)k−j))| � v(P̌ ),

because

(g0, sgn(g0(t0))δt0), (h0, sgn(h0(t0))δt0), (sgn(g0(t0))g0, δt0), (sgn(h0(t0))h0, δt0)

∈ Π(C(K)).

Thus v(P ) > 1 − ε or v(P̌ ) > 1 − ε. Since ε > 0 was arbitrary, we have v(P ) = ‖P‖ or
v(P̌ ) � ‖P‖. �

Theorem 3.2. Let AD be the disc algebra. Let L ∈ L(kAD : AD) (k ∈ N). Then
v(L) = ‖L‖.

Proof. Let ε > 0. Assume that ‖L‖ = 1. It suffices to prove theorem in the case n = 2.
There exist f1, f2 ∈ AD with ‖f1‖ = ‖f2‖ = 1 and such that ‖L(f1, f2)‖ > 1− ε. Since L

is uniformly continuous on the closed unit ball BAD
× BAD

, there is a δ > 0 such that,
for all fi, gi ∈ BAD

(i = 1, 2) with ‖fi − gi‖ < δ, we have ‖L(f1, f2) − L(g1, g2)‖ < ε. By
a theorem of Fischer [12] there exist α1, . . . , αl, β1, . . . , βm with αj � 0, βn � 0,

∑
1�j�l

αj =
∑

1�n�m

βn = 1,

https://doi.org/10.1017/S0013091502000810 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091502000810


The polynomial numerical index of a Banach space 49

and finite Blaschke products g1, . . . , gl, h1, . . . , hm such that
∥∥∥∥f1 −

∑
1�j�l

αjgj

∥∥∥∥ < δ and
∥∥∥∥f2 −

∑
1�n�m

βnhn

∥∥∥∥ < δ.

Clearly, ∥∥∥∥L(f1, f2) − L

( ∑
1�j�l

αjgj ,
∑

1�n�m

βnhn

)∥∥∥∥ < ε,

so ∥∥∥∥L

( ∑
1�j�l

αjgj ,
∑

1�n�m

βnhn

)∥∥∥∥ > 1 − 2ε.

Choose z0 ∈ C with |z0| = 1 such that
∣∣∣∣L

( ∑
1�j�l

αjgj ,
∑

1�n�m

βnhn

)
(z0)

∣∣∣∣ =
∥∥∥∥L

( ∑
1�j�l

αjgj ,
∑

1�n�m

βnhn

)∥∥∥∥.

Note that |gj(z0)| = |hn(z0)| = 1 for all j, n. We have

1 − 2ε <

∣∣∣∣L
( ∑

1�j�l

αjgj ,
∑

1�n�m

βnhkn

)
(z0)

∣∣∣∣ �
∑

1�j�l, 1�n�m

αjβn|L(gj , hn)(z0)|.

Since ∑
1�j�l, 1�n�m

αjβn =
( ∑

1�j�l

αj

)( ∑
1�n�m

βn

)
= 1,

we have |L(gj0 , hn0)(z0)| > 1 − 2ε for some j0, n0. It follows that

1 − 2ε < |L(gj0 , hn0)(z0)| = |δz0L(gj0(z0)gj0 , hn0(z0)hn0)| � v(L)

because
(gj0(z0)gj0 , δz0), (hn0(z0)hn0 , δz0) ∈ Π(AD).

Thus v(L) > 1 − 2ε. Since ε > 0 was arbitrary, we have v(L) = ‖L‖. �

Theorem 3.3. Let AD be the disc algebra. Let P ∈ P(kAD : AD) (k ∈ N). Then
v(P ) = ‖P‖ or v(P̌ ) � ‖P‖, where P̌ is the symmetric k-linear map associated with P .

Proof. Let ε > 0. Assume that ‖P‖ = 1. Then there exist f0 ∈ AD with ‖f0‖ = 1
such that ‖P (f0)‖ > 1 − ε. Since P is uniformly continuous on the closed unit ball BAD

,
there is a δ > 0 such that, for all f, g ∈ BAD

with ‖f −g‖ < δ, we have ‖P (f)−P (g)‖ < ε.
By a theorem of Fischer [12] there exist α1, . . . , αn with αj � 0,

∑
1�j�n

αj = 1,
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and finite Blaschke products g1, . . . , gn such that
∥∥∥∥f0 −

∑
1�j�n

αjgj

∥∥∥∥ < δ.

Clearly, ∥∥∥∥P (f0) − P

( ∑
1�j�n

αjgj

)∥∥∥∥ < ε,

so ∥∥∥∥P

( ∑
1�j�n

αjgj

)∥∥∥∥ > 1 − 2ε.

Choose z0 ∈ C with |z0| = 1 such that
∣∣∣∣P

( ∑
1�j�n

αjgj

)
(z0)

∣∣∣∣ =
∥∥∥∥P

( ∑
1�j�n

αjgj

)∥∥∥∥.

Note that |gj(z0)| = 1 for all j = 1, . . . , n. We have

1 − 2ε

<

∣∣∣∣P
( ∑

1�j�n

αjgj

)
(z0)

∣∣∣∣
�

∑
i1+···+il=k

k!
i1! · · · il!

|P̌ ((αi1g1)i1 · · · (αil
gl)il)(z0)|

=
( ∑

1�j�n

αk
j |P (gj)(z0)| +

∑
i1+···+il=k, ij<k

k!
i1! · · · il!

αi1
i1

· · ·αil
il
|P̌ ((g1)i1 · · · (gk)il)(z0)|

)
.

Since ∑
1�j�n

αk
j +

∑
i1+···+ik=l, ij<k

k!
i1! · · · il!

αi1
i1

· · ·αil
il

= (i1 + · · · + il)k = 1,

we have |P (gj)(z0)| > 1 − 2ε for some j or |P̌ ((g1)i1 . . . (gk)il)(z0)| for some ij with
i1 + · · · + il = k, ij < k. It follows that

1 − 2ε < |P̌ ((αi1g1)i1 · · · (αil
gl)il)(z0)|

= |δz0(P̌ ((g1(z0)g1)i1 · · · (gl(z0)gl)il))(z0)| � v(P̌ )

or
1 − 2ε < |P (gj)(z0)| = |gj(z0)δz0(P (gj))| � v(P )

because
(gj , gj(z0)δz0), (gi1(z0)gi1 , δz0), . . . , (gil

(z0)gil
, δz0) ∈ Π(AD).

Thus v(P ) > 1 − 2ε or v(P̌ ) > 1 − 2ε. Since ε > 0 was arbitrary, we have v(P ) = ‖P‖ or
v(P̌ ) � ‖P‖. �
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Recall that (a complex) M -space with order unit is isometrically isomorphic to C(K)
for some compact Hausdorff space K.

Corollary 3.4. Let E be an M -space with order unit. Let P ∈ P(kE : E) (k ∈ N).
Then v(P ) = ‖P‖ or v(P̌ ) � ‖P‖, where P̌ is the symmetric k-linear map associated
with P .
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