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Abstract

Simultaneous localization and mapping systems based on rigid scene assumptions cannot achieve reliable position-
ing and mapping in a complex environment with many moving objects. To solve this problem, this paper proposes
a novel dynamic multi-object lidar odometry (MLO) system based on semantic object recognition technology. The
proposed system enables the reliable localization of robots and semantic objects and the generation of long-term
static maps in complex dynamic scenes. For ego-motion estimation, the proposed system extracts environmental
features that take into account both semantic and geometric consistency constraints. Then, the filtered features can
be robust to the semantic movable and unknown dynamic objects. In addition, we propose a new least-squares esti-
mator that uses geometric object points and semantic box planes to realize the multi-object tracking (SGF-MOT)
task robustly and precisely. In the mapping module, we implement dynamic semantic object detection using the
absolute trajectory tracking list. By using static semantic objects and environmental features, the system eliminates
accumulated localization errors and produces a purely static map. Experiments on the public KITTI dataset show
that the proposed MLO system provides more accurate and robust object tracking performance and better real-time
localization accuracy in complex scenes compared to existing technologies.

1. Introduction

In recent years, artificial intelligence technologies such as service robots, autonomous driving, and
AR/VR have rapidly developed and demonstrated broad applications. A key commonality among these
applications is the need for high-precision modeling of scenes, including semantic objects such as cars
and people. To achieve the above functions, a fundamental and important technology — simultaneous
localization and mapping (SLAM) — is indispensable. On the other hand, most SLAM [1-4] systems
based on the assumption of rigid scenes are not applicable in dynamic scenes with moving objects.
Firstly, during the localization and mapping process, the framework designed for static scenes will intro-
duce disturbances to the estimation problem due to the emergence of dynamic objects. The system may
even crash as a result. Secondly, the classic SLAM system can only construct 3D maps with static
backgrounds. They cannot provide the foreground semantic object information required for upper-level
planning and control tasks. The robots may appear clumsy and unreliable in practical work. Therefore,
it is necessary to focus on dynamic SLAM technology to improve the adaptability of navigation systems
in real scenarios.

Currently, some studies have used geometric constraints or prior semantic methods to process
dynamic objects within the perception range of the sensor. Methods with geometric constraints
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[5-8] use spatial clustering, motion segmentation, background model, or reprojection error checking
to separate abnormal data associations before state estimation. For learning-based methods, refs. [9, 10]
and [11] directly identify moving objects in a single scan or image through the trained network model.
Refs. [12] and [13] use a semantic segmentation network [14] to obtain point-level semantic labels in the
lidar scan and realize 3D map construction with scene semantics (roads, buildings). Undoubtedly, com-
pared to schemes that check abnormal geometric constraints, SLAM systems which correctly introduce
and use semantic information have more potential for application. Firstly, the semantic and geometric
information can both be considered to ensure that invalid measurements are recognized. Meanwhile, the
semantic map constructed by SLAM systems can provide richer decision-making information for the
navigation system.

On the other hand, although the methods mentioned above can improve the robustness of the system in
dynamic scenes, semantic SLAM systems such as refs. [12, 13] focus more on extracting and processing
background semantic information. They cannot stably track and represent dynamic objects in the map
coordinate, which is also necessary for many actual robot systems. In this work, we will solve this
problem by using a lidar sensor that provides highly accurate point cloud data. Noting that moving
objects are often only observed from a local perspective, the geometric point cloud constraints may
sometimes fail to estimate the 6-DOF object motion. We further consider using the information obtained
from the perception module to balance the accuracy and robustness of object tracking.

Based on the above analysis, a least-square estimator is proposed that takes into account both semantic
and geometric information to perform reliable multi-object tracking (SGF-MOT). Combined with the
estimation results of ego odometry, the absolute localization for each object can be calculated. The
mapping module uses the absolute trajectory tracking list for dynamic semantic object detection. Then,
the accumulated error of ego and object odometry is eliminated. Finally, we realize the construction of
a 4D scene map. Figure 1 shows the scene map created by the MLO system. The main contributions of
this paper are as follows:

o A complete multi-object lidar odometry system (MLO) can provide the absolute localization
of both robot and semantic objects and build a 4D scene map (the robot, semantic object
localization, and long-term static map).

o A least-square estimator considering the bounding box planes and the geometric point cloud
is used for object state updating in the multi-object tracking (MOT) module. The semantic
bounding boxes ensure the correct optimization direction. The relative motion model eliminates
the point cloud distortion caused by robot and object motion. Using point clouds with direct
measurement further improves the estimation accuracy.

« A dynamic object detection method based on the absolute trajectory tracking list that can identify
slow-moving semantic objects.

The rest of this paper is structured as follows. First, in Section 2, we discuss related works. Then, the
proposed MLO system is described in Section 3. The experimental setup, results, and discussion will
be presented in Section 4. Finally, Section 5 is the conclusion.

2. Related works
2.1. MOT

For the MOT method based on point cloud data, object recognition and tracking are the two main steps
of most solutions. In the beginning, traditional methods focused on object extraction from spatial dis-
tribution information of point clouds. Then, object tracking is realized by constructing geometric error
constraints and a corresponding estimator. Moosmann et al. [6] proposed a local convexity criterion for
geometric object detection. Then, the MOT task was implemented by the point-to-plane ICP [15] algo-
rithm. Dewan et al. [16] used the RANSAC [17] algorithm to compute the motion model sequentially.
Then, a Bayesian approach was proposed for matching the object point cloud with the corresponding
motion model. Ferri et al. [18] proposed a rigid scene flow algorithm for tracking non-rigid objects that
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Figure 1. The proposed MLO system testing on sequence 0926-0013 in the KITTI-raw dataset. The
upper part of the picture shows the point cloud map, tracking trajectories of the robot and seman-
tic objects generated by the MLO system. The lower part of the picture (for visualization only) gives
the semantic bounding box and absolute motion speed of each object successfully tracked in the
synchronized image.

can also handle the pedestrian. Sualeh ez al. [19] used a cluster point cloud for fitting 3D bounding boxes
(3D-BB). The boxes were tracked by the Kalman filter [20] algorithm.

Recently, the learning-based recognition method on point clouds has brought new solutions to the
MOT problem. They can provide richer and more stable recognition information, such as the bounding
box with object category and motion direction. Weng et al. [21] detected semantic objects by Point-
RCNN [22] network model and tracked the 3D-BB with a Kalman filter. Kim et al. [23] used 2D/3D-BB
detected in image and point clouds for filter tracking, achieving better tracking accuracy. Wang et al. [24]
and Huang et al. [25] designed an end-to-end MOT framework using different deep-learning models to
complete object detection and data association tasks.

In summary, optimization-based tracking methods that rely on the geometric constraints of point
clouds require a reliable initial guess. If the estimator’s initial value is poor, many point-level data asso-
ciations may provide the wrong direction at the early stage of the calculation. Extracting bounding boxes
from the point cloud (directly fitting or using a network model) and tracking them by the filter-based
methods [26] is more stable but sacrifices high-precision measured point clouds. In our SGF-MOT mod-
ule, we use semantic bounding box planes and geometric point cloud distributions simultaneously in a
least-squares estimator, achieving a better balance between tracking accuracy and robustness.

2.2. Dynamic aware 3D lidar SLAM

At present, 3D lidar SLAM systems are mainly divided into two categories: feature-based and matching-
based. Zhang et al. [1] and Shan et al. [2] extracted stable environment structure features (edge and
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surface) based on scan line roughness for reliable robot localization and lidar mapping. Meanwhile,
Shan et al. [2] also considered ground constraints to improve the accuracy and efficiency of estimation.
Liu et al. [27] proposed a novel lidar bundle adjustment (BA) [28] method, which depends only on the
robot poses. The feature landmarks and robot poses can be optimized for high-precision lidar mapping
by minimizing the eigenvalue. In the matching-based method, Behley et al. [4] used surfel to model the
environment and designed a projection data association method for ego localization. Dellenbach et al.
[29] proposed a continuous-time ICP algorithm for lidar odometry estimation. Their method considered
both the constraint of inter-frame discontinuity and the correction of in-scan motion distortion. The
above systems rely on the assumption of the rigid scene and cannot work stably in a highly dynamic
scene.

To solve the above problems, some studies proposed geometric methods such as background model
[7], local convexity [6], and point cloud clustering [5] to detect and eliminate unreliable information.
Meanwhile, with the development of deep-learning technology, some semantic-based lidar SLAM can
also process dynamic objects within the field of view. Pfreundschuh et al. [10] designed a method to
automatically label dynamic object points when the 3D-MinNet detection model was trained. The static
point cloud after detection will be input into the LOAM [1] framework to enable reliable mapping.
Sualeh et al. [30] further considered the space-time constraints of sequence frames when training the
dynamic object detection model. Both refs. [12] and [13] using semantic segmentation networks realize
semantic scene mapping. In addition, they detect dynamic objects through point-by-point checks from
the object point cloud.

In contrast to these approaches, our proposed system, MLO, integrates the results of robust ego local-
ization and the SGF-MOT module to achieve accurate and reliable localization of instance objects in
the map coordinate. Additionally, our system uses an absolute trajectory tracking list to detect dynamic
objects in the scene, creating a 4D scene map that includes both robot and semantic object positions as
well as the static environment.

2.3. Robust SLAM with multi-sensor fusion

To overcome the shortcomings of a single sensor, some researchers are considering combining two
or three types of sensors to improve the adaptability of SLAM systems in complex scenarios. Unlike
lidar, the camera can provide images with rich color information. Thus, visual SLAM has also received
widespread attention. According to the different front-end methods, visual SLAM can mainly be divided
into feature-based methods [31, 32], semi-direct methods [33], or direct methods [34, 35]. Among
them, the feature-based method is more robust to illumination and rotational motion, while the direct
method has more application potential because it can construct dense or semi-dense maps. In the field
of visual-lidar fusion SLAM, ref. [36] used a monocular camera with higher frequencies for initial
pose estimation, providing more accurate initial values for lidar odometry and constructing point cloud
maps. Meanwhile, the author also used point cloud information to solve the scale uncertainty problem
in monocular visual odometry. In refs. [37, 38], depth information measured by lidar was integrated
into the feature-based [3] or direct [39] visual SLAM framework for 3D pixel or feature landmark
initialization. The system further improves the local mapping accuracy in the back-end by the BA
algorithm.

The Inertial Measurement Unit (IMU), as an internal high-frequency sensor that is not affected by
the external environment, has significant advantages in dealing with problems such as intense motion
and complex scenes. In refs. [1, 40], the IMU measurement was used to eliminate the motion distortion
of lidar point clouds and provided reasonable initial values for the lidar odometry. In addition, ref. [40]
further used GPS to reduce the accumulative error generated by lidar odometry. Refs. [41, 42] tracked
feature points extracted from images and combined IMU pre-integration technology to construct the
tightly coupled visual-inertial SLAM system. They can achieve high-precision sparse feature mapping
through the BA algorithm. Recently, ref. [43] proposed a visual-inertial, lidar-inertial odometry fusion
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Figure 2. The proposed MLO system framework. The orange box is the key part of this paper; it
includes the semantic-geometric fusion multi-object tracking method (SGF-MOT), which will be dis-
cussed in detail. A 4D scene mapping module is also introduced for maintaining the long-term static
map and movable object map separately, which can be used to further navigation applications.

system, which can effectively work when either odometry fails and cope with textureless scenes such as
white walls.

Undoubtedly, by combining multiple sensors, the fusion system can utilize richer measurement infor-
mation to enhance the robustness of robots working in complex motion states or low-texture scenes.
However, when the fusion system operates without targeted images or point cloud data processing in a
dynamic environment, dynamic measurement information can still lead to significant estimation errors
in the localization and mapping processes. In this paper, we compare the proposed semantic lidar odom-
etry (MLO) with other advanced multi-sensor fusion SLAM frameworks to fully analyze the advantages
and disadvantages of the MLO system in complex dynamic scenarios.

3. Method

The MLO system proposed in this paper can be divided into three modules: multi-task fusion perception,
semantic lidar odometry, and 4D scene mapping. Figure 2 shows the flowchart of the MLO system.
Firstly, the ground and objects are detected and refined by information fusion. Then, the proposed SGF-
MOT tracker is integrated into the odometry module to achieve robust and accurate object tracking.
After dynamic object detection, the mapping module uses both static objects and environment feature
sets [1] to eliminate accumulated errors.

3.1. Notation definition

The notation and coordinates used in this paper are defined as follows: In the odometry coordinate o and
frame i, the robot pose is T', € SE(3). Meanwhile, the observed semantic object has pose T/, € SE(3). In
the mapping module, the corrected robot pose in the map coordinate m is T! , € SE(3), and the correction
matrix which transforms the object from the odometry coordinate o to the map coordinate m is T', €
SE(3).

3.2. Multi-task fusion perception

For point cloud @’ in frame i, we run the parallel object detection algorithm and ground feature extrac-
tion algorithm to obtain the original ground and object point cloud. Then, we detect and eliminate the
intersection point in the ground feature set and foreground object by the marked labels and perform
background feature extraction. Figure 3 shows the detection results of the multi-task fusion perception
module.
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Figure 3. The multi-task fusion perception module testing on sequence 0926-0056 in the KITTI-raw
dataset. The semantic object point clouds are composed of pink points. Yellow points form the ground
feature set. Green and red points form the background edge and surface feature sets, respectively. The
image projection results with the same timestamp are used for visualization only.

3.2.1. Ground feature extraction

First, we adjust ground parameters in the point cloud using the iterative PCA algorithm proposed in
ref. [44] and mark the corresponding points near the ground in the point cloud <I>; (1: ground point, 0:
background point).

Assume £~ and ¢ are the beginning and end time of current frame i respectively. Meanwhile, the
sampling time of the k-th raw point 'p;, in the lidar coordinate / is #, and the relative timestamp "7, used
to correct motion distortion can be calculated as follows:

f—1
ti—l — l»i

Then, the current point cloud is uniformly segmented according to the scan line. Through the point-
by-point verification of ground markings in the point cloud <I>;, it is possible to record whether each
segment contains the ground point or background point labels. For segments containing ground or
background points, the segment head and tail point ID pairs are stored in the ground container V, or
background container V,, respectively.

Based on the calculated roughness (the calculation formula can be found in ref. [1]) and the segmented
point ID pairs contained in the ground container V,, ground feature set x f‘ can be extracted from point
cloud segments containing ground points. The roughness prior R, used for subsequent inspection of
background surface feature points is obtained as follows:

N
R, = a2 2
Lo/

where ¢, is the o-th ground point roughness. x’ represents the candidate ground feature set obtained by
downsampling, and N, is the corresponding number of ground points.

For non-ground point cloud segments that are searched by ID pairs in the background container V,,
only point roughness is calculated and sorted here. After that, the information fusion module will neatly
select the background feature sets.

rtk —

ey
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3.2.2. Semantic object detection

To identify the semantic objects and their corresponding 3D-BB in the point cloud, we use 3DSSD [45],
a point-based single-stage object detection model, to perform these tasks. Assuming that k-th 3D-BB in
frame i is:

,[kﬂt — [xk,t’ yk,l’ Zk,t’ lk,l’ wk,l’ hk.l’ yawk,l] (3)

where the object position in the lidar coordinate [ is (x, y, z). The length, width, and height of 3D-BB
are (I, w, h), and yaw is the yaw angle for the object in the lidar coordinate /. Assuming y*' denotes the
object point cloud enclosed by 3D-BB and each 3D point is marked with an independent object ID in
®'. Object semantic confidence is represented as .

3.2.3. Information fusion

The 3D-BB, obtained by the semantic detection module, usually encloses both object and ground points.
Meanwhile, the ground feature set computed by Section 3.2.1 may also have points belonging to objects.
If the object is in motion, the static ground points in the object point cloud and the moving object points
in the ground feature set will lead to errors in the pose estimation of the object and the robot, respectively.
Therefore, we need to eliminate ambiguous intersection information through a mutual correction step.

Specifically, the object points in the ground feature sets x j’ and ' are deleted by the marked object
ID in @!. The ground point in object point cloud y* is removed through the label in <I>;. This ambiguous
information is not considered in the subsequent SLAM and MOT tasks.

Based on the ID pairs contained in V, and computed point roughness, we perform two feature extrac-
tions: The candidate object edge feature set y* is extracted from the point clouds belonging to objects,
which is used in the mapping module to eliminate accumulated errors. Subsequently, the background
edge feature set l/f}, surface feature set ;}, and the corresponding candidate sets wi, ¢! are extracted
from the non-semantic and non-ground point clouds, and they will participate in both localization and
mapping modules.

Finally, we define the point-to-line error term e,, and the point-to-surface error term e;, in the lidar
coordinate /, which are used for ego pose estimation in Section 3.3.1:

_ |(lpf,k B [I_’f—l,m) X (lpf,k B [I-)?—l,n)

e - = “)
‘ |lpi71,m - lpifl,n
(lp.iy,k - [I_’té';l,m)

(]l_)j—l,m - ll_)f—l,n) X (lf)f—l,m - ll_);'r—],o) (5)

e, = —— — — —
=y =y 5
|(1pi71,m - pi*l,n) X (pifl,m - [pifl,o)

where k represents the edge or surface point indices in the current frame. m, n, o represent the point
indices of matching edge line or planar patch in the last frame. For the raw edge point ‘p;, in the set

e

e _ . o i1 L
10/’,, 'p;_,,, and 'p; |, are the matching points in the set ¥, that make up the edge line in the last frame
i IRS 5

without motion distortion. Similarly, ‘p;, is the raw surface point in the set ¢ o Pt P, and'p;_,,

are the points that consist of the corresponding planar patch in the set x'~' or Ifiﬁl.

3.3. Semantic lidar odometry

The semantic lidar odometry module simultaneously estimates the absolute motion increment of the
robot and the relative motion increment of the semantic object. Then, the absolute motion of each object
in the odometry coordinate o can be calculated. Figure 4 shows the transformation of objects and the
robot in the odometry coordinate.
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Figure 4. Notation and coordinates. White solid cuboids and dashed cuboids are the detected objects
and corresponding 3D-BB. Colored cylinders are the robot with lidar. Robot and object pose in the
odometry coordinate are the solid lines. Object motion increments in the body-fixed coordinate are the
dashed lines. Red parallelograms and cubes are the plane features generated by 3D-BB and matched
voxels. Green parallelogram and dot are the semantic plane feature and geometric object point in current
frame.

3.3.1. Robust ego odometry

When the semantic object detection module makes the missing detection problem, the accuracy of the
ego-motion estimation will be reduced by some unknown moving object points included in the ground
or background feature sets. Accordingly, we solve this problem by using Algorithm 1 to perform a
geometric consistency checking on current feature sets (x }', 1//}, ;}). The checked feature sets are defined
as (X ¥y £))-

Considering the different degrees of freedom (DOF) constraints provided by the ground and back-
ground feature sets in estimating the robot pose and the computational efficiency problem, a two-step
algorithm proposed in ref. [2] is used to estimate the ego-motion. First, we compute 3-DOF increment
[%2, G015 Bpireir] by the checked ground feature set 5(/’, and the candidate feature set )"(i,‘l that corrected the
motion distortion. Then, another 3-DOF increment [t,, t,, 6,,,] is estimated by surface feature points in

;; with smaller roughness than R, edge feature set 1};, and corresponding candidate sets. Finally, we

accumulate the 6-DOF increment | '8' = [£,, t,, Z., O,oi1> Opiscn» O] to compute the robot pose T', in the
odometry coordinate o.

3.3.2. Semantic-geometric fusion MOT

To track semantic objects robustly and accurately, a least-squares estimator combining semantic box
planes and geometric object points is designed for the MOT module. Before entering the increment
estimation process, we use the Kuhn-Munkres [46] algorithm to obtain the object data association
between frames.

Specifically, we need to construct the association matrix using some error functions that can evaluate
the similarity of the object between frames: (1) The position error term e, is computed by the distance
between the object’s predicted position which is inferred by the last motion model and object’s detection
position. (2) The yaw angle increment of the object forms the direction error term e,. (3) The difference
in the semantic 3D-BB size between the objects constructs the scale error term e,. Further details on
error calculation can be found in ref. [47].
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Algorithm 1. Geometric consistency feature checking.

Input: Current feature sets: ( X}, z//;, {} ), candidate feature sets: (¢!, yi~1, Zi-1),
ransformation rom last loop, thresholds: (t/1.4, thy, thg, thy), association
transf ti ;_26‘_1f last loop, thresholds: (¢h hy, thg, thy) iati
update interval A

Output: Consistent feature sets: ()Ei , ~’%, Z ;})
: T — i-2gi-1.

The point number in feature sets ( ij lﬂ}’ l }) is recorded as Ny . Let |6}
fori=1: Njer do
if i % A = 0 then

The corrected feature sets (m®, , m
Xy w { f

by (x* Iz Wt Iz 4 f) with the relative timestamp and transformation ; i-lsi

best*
Search the nearest point of the corrected feature sets (mX,. ’ml//i ,m” ) in (¢t @it
! r

Z71). Calculate the corrected feature sets (m;i , m;i , mzi ) at the end of the frame;
Y

b ) at the beginning of the frame are obtained

end

Random select matched pairs from m;,f s mw} and their nearest points in (/\?2.‘1, 1,/72.‘1);
Compute transformation !¢’ based on ICP algorithm;
Transform (y* 2 z//l Ie f) to the starting time of the current frame with | =15, Find their nearest

e

points in (! WZ 1, Zi-1) and perform a Euclidean distance check with threshold th,4;
Record the feature point number which passes the checking as (i, , 7y, 1z, ). Let
Mn _r]/\(f +771//f +7](,«;
if (nn/Ny 2 the) Ay, 2 the) Ay, +1¢p 2 thy) A (n > Npes:) then
Record feature sets Q(’ s ¢/ ¥ [ f)
Let pest = Mns - 16;,“, = l 151’
end

end

For objects that are tracked in the last frame but no matching relationship is currently found, we use
the last calculated motion model to infer their positions in the subsequent two frames. If a successful
match is still not found, they are removed.

Considering that the object point cloud p* (object ID k is omitted) obtained by direct measurement
has motion distortion when the robot and object are in motion, we use the VG-ICP [48] algorithm and
the relative motion model based on linear interpolation to construct the geometric cost function.

Assuming the j-th raw object point in the lidar coordinate / is ‘pj;, and it has a relative times-
tamp ;. fle" € SE(3) is the transformation between interval [t"", ti]. Then, the distortion-corrected
transformation TIH; for each raw object point can be calculated:

jle]l: =rthi (6)

We use \"'R’ and 't to represent the rotational and translational components of the increment ~'H'.
The geometric error term e,; from the distribution to the multi-distribution can be defined as follows:

Z II_’?; 1,m

eg]. = N

J

—'H'p; (7)

For the matched voxel lVfﬁ , of the current object point p¢ ', at the end time of the last frame, it encloses
N; object points 'pf_,  that have corrected the motion distortion. The covariance matrix €; corresponding
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to the error term e,; is as follows:

Z C;gl m i— i i— i
Q= Tl T lHijJI 1HjT ®)

J

Ci,,, and Cj; denote the covariance matrix. They describe the surrounding shape distribution of the
point in the matched voxel and point 'p;;.

Note that objects detected in a single frame always have less constrained information. Meanwhile,
the inaccurate initial value of the estimator at the beginning of the optimization may also lead to poor
matchings. Eq. (7) sometimes fails to constrain the 6-DOF motion estimation. Therefore, while using
geometric constraints of the point cloud, this work also introduces semantic constraints on increment
estimation to ensure the correct direction of convergence.

Specifically, we model a 3D-BB 7' as a cuboid containing six planes. Each plane is represented by
the normal vector n (||n|, = 1) and the distance d from the origin to the plane, that is & = [n, d]. Unlike
the geometric point cloud error with iterative matching for estimation, the matching relationships for
3D-BB planes are directly available. Then, using the closest point II = nd proposed in ref. [49], we can
construct the plane-to-plane semantic error term e, :

b 1f?
e, =1, —'T_,, C))

i—lr
A b
M}, and'II,_,, are the r-th measured and estimated planes on 3D-BB in frame i in the lidar coordinate
l. As described in ref. [50], the motion transformation of a plane is defined as:

[ng’fl,r _ ;_l Ri 0 lnﬁr (10)
@, | -CRTOT |
[.7 we can further obtain:

i—1,r°

Taking Eq. (10) into 'TI

A b : ; T .
M, = (R (<R, +d) (1)

When using the least-squares method to estimate i~ 'H', it is necessary to obtain the derivative of e,
with respect to | 'H':

oe i L
b — —[Fj’lt;TF] - Fj’lt;T[F]X + [Fd], (12)
88;*19; ; X ;
0
S _ pF7 (13)
08i-14
[
where F = f’lR;’nb % and - represent the Jacobians of the error term e, w.r.t. the rotation and

i 35;*'0'. as;,l

translation components. The detailed derivation of Eqs. (12) and (13) can be found in Appendix.
Finally, Eq. (14) is the comprehensive cost function for the estimation of {"'H' considering the

semantic confidence '

i Ne

i Mo
arg min H Z (]\/je;Sl;legj) v Z (e} e,) (14)
g ¢ o 2N, r=1

where N, is the point number in the object point cloud. N, is the plane number on 3D-BB.

In this paper, we use the Levenberg-Marquardt [51] algorithm to solve Eq. (14) and the estimated
relative increment to get the motion-distorted object point cloud p' and object edge feature sety’. ' and
7. will be used for object tracking in the next frame and accumulated error elimination in the mapping
module.
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Figure 5. Dynamic object detection based on ATTL. The blue boxes represent the object’s predicted
pose, and orange boxes represent their tracking trajectories that have corrected the accumulated error.
Objects with IDs 37 and 84 are in a normal tracking state. The object with ID 12 will be initialized as a
static object, and the object with ID 145 will be deleted because the current frame does not observe it.
AT is used to determine the current motion state of each object.

3.3.3. Object odometry
The aim of object odometry is to get each object pose in odometry coordinate o. First, using the results
calculated above, we can compute the object motion increment :X'"" in the lidar coordinate /:

X =g 15)

Suppose the transformation from object to robot in the frame i — 1 is "~'L,. The absolute increment
of object motion in the body-fixed coordinate [52] can be expressed as:

i*lxiziflL;l;Xi—liflL” (16)

Finally, we accumulate the increment !X’ to obtain the object pose Tf,, in the odometry coordinate
o. For an object detected at the first frame, we compute its initial pose T,, in the odometry coordinate
o based on the current robot pose T,; and the transformation L, inferred from the semantic detection
module.

3.4. 4D scene mapping

To generate a long-term static map that can be reused, we maintain an absolute trajectory tracking list
(ATTL) for processing semantic objects in the field of view. The list contains the unique id, continuous
tracking trajectory, accumulated static map, and motion state of each object.

3.4.1. Dynamic object detection

As shown in Fig. 5, the ATTL maintained in the mapping module is used to analyze the motion state of
each instance object. First, each object in the current frame is matched with the unique ID generated by
the SGF-MOT module and maintained in ATTL. Then, we use the current error correction matrix T' '
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to predict the object pose Tfm in the map coordinate m:

T =TT, 17)

mt

By calculating the motion increment of the predicted object pose and the static oldest object pose
in ATTL, we can determine whether each object is in motion. Note that the detected object in the first
frame is set to be static by default.

3.4.2. Static map creation
By matching the static object feature set . in the current frame with the accumulated object map, ground

feature set x', background edge feature sett]xl,, and surface feature set fj with their accumulated feature
map, it is possible to obtain the corrected robot pose T', in the map coordinate . Then, we align the
non-semantic feature sets to the map coordinate m to create a long-term static map. Readers can refer to
ref. [1] for more details about feature mapping and optimization.

Using the ego pose Tf}l in the odometry coordinate o and the corrected pose Tinl in the map coordinate
m, the updated accumulated error correction matrix T, can be computed.

3.4.3. Tracking list maintain

The ATTL can be updated based on the motion state of each object. If the object is moving, the object
map and tracking trajectory should be cleared first. Otherwise, they will remain unchanged. Then, we
use T! and T! , to convert the object odometry pose T', and extracted object feature set " into the map

mo

coordinate m, which will participate in the following mapping steps.

4. Results

In this section, we validate the proposed MLO system and SGF-MOT module using the public KITTI
[53] dataset. First, the ego-motion trajectory generated by the MLO system is compared with other
feature-based 3D lidar SLAM systems (A-LOAM [54], Lego-LOAM [2], F-LOAM [55]) on the KITTI-
odometry benchmark. In addition, we compared the MLO system with the visual SLAM (DSO [56])
and multi-sensor fusion systems (V-LOAM [36], LIO-SAM [40]) under the KITTI-raw benchmark to
analyze its performance in dynamic scenarios. The geometric consistency checking algorithm and the
dynamic object detection method are verified. Then, the SGF-MOT module is compared in the KITTI-
tracking benchmark with another two efficient MOT methods (AB3DMOT [21], PC3T [57]), which
also perform on CPU and use point clouds as input. Meanwhile, we use the absolute object trajectory
generated by MLO to evaluate the advantages of the SGF-MOT method compared with semantic-only
and geometric-only methods under the KITTI-raw benchmark.

4.1. Experiment setup and evaluation metrics

All experiments in this paper were performed with AMD®) Ryzen 7 5800h (8 cores @3.2 GHz), 16 GB
RAM, ROS Melodic, and NVIDIA GeForce RTX 3070. The absolute trajectory error [S8] (ATE) is used
to evaluate localization accuracy. The relative rotation error (RRE) and relative translation error (RTE)
[53] can evaluate the drift of odometry estimation. The CLEAR MOT metric [59] denotes the estimated
accuracy and consistent tracking of object configurations over time for the MOT module.

Note that our MOT module is performed in the lidar coordinate. Therefore, the ability to track the
relative motion of the object is evaluated. On the other hand, object trajectories in the map coordinate
m evaluate the overall accuracy of the MLO system.

Considering that the KITTI-raw benchmark does not provide ground-truth trajectories that can
be used directly for localization evaluation, we process the raw GPS/IMU data by the Kalman filter
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[60] algorithm to get the ground truth of robot pose in the map coordinate m. Meanwhile, based on
the artificial annotation in the KITTI-tracking dataset, we can further compute the absolute tracking
trajectory of each object.

The frameworks used in the comparison experiments, SLAM and MOT, both keep a default parameter
configuration. The parameter configuration of each module in the MLO system is as follows:

(1) Geometric consistency feature checking algorithm (3.3.1): Total iteration times Ny, = 100;
Threshold for Euclidean distance th,, = 0.5 m; Proportional threshold th, = 0.4; Threshold for
point number th, = 20, th, = 30; Association update interval A = 5.

(2) Kuhn-Munkres algorithm (3.3.2): Position error weight w, = 0.7; Direction error weight w, =
0.25; Size error weight w, = 0.1; Total error threshold tA;,, = 5.

(3) Semantic-geometric fusion least-squares estimator (3.3.2): Number of kd-tree nearest points used
in computing covariance N;, = 10; Voxel size in VG-ICP v, = 0.2 m; Maximum iteration times
Nierss = 5; Angle increment threshold ¢4, ;, = 0.1°, Translation increment threshold th, ;, = 1e™> m
(convergence conditions of the estimator).

(4) Absolute trajectory tracking list (3.4.1): Yaw angle increment threshold th,,,, .. = 2°; Translation
increment threshold th, ,,; = 0.2 m (static object judgment conditions).

4.2. Ego odometry localization accuracy experiment

The KITTI-odometry benchmark contains many static objects with long sequences. The KITTI-raw
dataset, on the other hand, contains more challenging scenes, such as the city sequence with unknown
dynamic semantic objects (trains). We evaluate the MLO system in these two datasets by comparing
it with other state-of-the-art SLAM systems. Since the KITTI dataset labels semantic objects within
the camera’s field of view, only the ROI-cutting lidar data is input into the fusion perception module.
Figure 6 shows the long-term static map created by the MLO system.

For the experimental 3D lidar SLAM system, A-LOAM [54] is a simplified version of LOAM [1]
with removing the use of IMU. It also extracts edge and surface features by the roughness of the scan line
to perform frame-to-frame matching for odometry estimation and frame-to-map matching for lidar map-
ping. Lego-LOAM [2] takes into account ground constraints. Use the ground feature set and background
edge feature set to estimate the increment [7,, 6,1, O] and [t,, ¢, 0,4,] to improve efficiency. F-LOAM
[55] proposes a two-step algorithm for motion distortion in the point cloud, and then, localization and
mapping are performed directly through frame-to-map matching. To fully validate the system perfor-
mance, we also selected a purely visual SLAM and two multi-sensor fusion systems for comparative
experiments. DSO-stereo [56] is a direct sparse stereo visual odometry based on the assumption of con-
stant luminosity. LIO-SAM [40] is a tightly coupled lidar-inertial odometry that uses high-frequency
imu-predicted pose as the initial estimation and can effectively correct point cloud distortion even
when the robot is in vigorous motion. V-LOAM [36] is a visual-lidar fusion framework that fixes the
scale uncertainty problem in monocular visual odometry by point cloud and uses high-frequency visual
odometry as a prior value for high-precision lidar mapping.

As shown in Table I, our method successfully performs all sequences under the KITTI-odometry
benchmark and achieves the best results in most cases. When estimating [, t,, 6,,,] based on the back-
ground edge feature set, the Lego-LOAM [2] system shows an obvious drift in many sequences because
it uses only point clouds from the camera perspective. Our system also uses the two-step estimation
algorithm to ensure computational efficiency. However, using the background surface feature set based
on roughness prior R, and the geometric consistency check algorithm improves the robustness of the
MLO system.

In addition, detecting dynamic objects by ATTL and adding static object constraints for static map
creation can better eliminate accumulated error compared to the MLO-attl system, which does not
use the dynamic object detection method in the mapping module. In sequences 00, 02, 03, 05, and
07 containing many static objects, the MLO system achieved better localization accuracy.
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Table I. Ego localization accuracy under KITTI-odometry benchmark.
Absolute Motion Trajectory RMSE [m]

Seq A-LOAM Lego-LOAM F-LOAM MLO-attl MLO
00 12.12 41.99 14.71 8.23 7.52
01 15.81 fail 17.61 12.11 12.42
02 fail fail fail 18.38 17.65
03 0.57 14.19 0.90 0.52 0.50
04 0.45 fail 0.36 0.29 0.27
05 5.72 8.12 8.06 2.74 1.92
06 0.44 fail 1.04 0.45 0.46
07 2.73 3.75 2.49 2.33 1.48
08 4.42 fail 6.02 5.18 4.86
09 3.48 fail 21.53 4.66 4.72
10 1.18 10.57 1.54 1.80 1.90
Mean 4.69 fail 7.43 3.88 3.66
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Figure 6. Point cloud map created by sequence 00 in the KITTI-odometry dataset. As shown in the
magnified part on the right, the resulting map does not contain semantic objects that may change over
time by maintaining semantic objects and the static map separately.

Table IT shows the localization accuracy of the proposed MLO system and other SLAM frameworks
in complex scenes with dynamic objects. Although the DSO-stereo system avoids the scale uncertainty
problem of monocular visual SLAM, it is found that the overall accuracy of lidar-based SLAM systems
using point clouds is better. Compared to the A-LOAM, LIO-SAM, and V-LOAM systems, the proposed
MLO system has higher robustness for localization in dynamic scenes. V-LOAM uses visual odometry
as a prior, but fails several times in dynamic scenes. The reason is that the system does not process the
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Table II. Evaluation for ego localization accuracy under KITTI-raw City and
Residential sequences.

Absolute Motion Trajectory RMSE [m]
Sequence A-LOAM DSO-stereo V-LOAM LIO-SAM MLO-gc MLO

0926-0011 0.13 0.33 0.11 0.12 0.13 0.13
0926-0014 0.22 fail 0.29 0.35 0.12 0.12
0926-0019 1.64 1.03 fail 0.25 0.13 0.16
0926-0022 0.66 24 2.02 0.67 0.62 0.59
0926-0039 0.23 0.86 fail 0.13 0.18 0.18
0926-0056 0.22 0.38 fail 0.41 fail 0.12
0926-0059 0.08 0.28 0.18 0.14 0.13 0.12
0926-0064 0.43 2.90 1.43 0.67 0.44 0.41
0929-0071 0.88 0.86 0.8 0.89 0.90 0.89
Mean 0.50 1.13 0.81 0.40 0.33 0.28

Table I11. Evaluation for multi-object tracking module under
the KITTI-tracking benchmark.

MOTAzd MOTPzd Time [mS]
AB3DMOT 68.83 87.23 4.82
PC3T 85.33 87.18 4.5
SGF-MOT 81.10 87.12 4.71

dynamic objects appearing in the image and could not achieve the ideal situation of providing a better
prior value. Meanwhile, the LIO-SAM uses the measurement of IMU, which is not affected by external
environments, thus improving the robustness and accuracy of the system compared with V-LOAM.
However, the IMU measurement can only estimate the ego localization of the robot, so it cannot correct
the relative motion distortion of extracted features on dynamic objects, which may also lead to estimation
errors in the system.

Taking sequence 0926-0056 as an example, there is a train that the object detection module cannot
detect. The MLO-gc system without Algorithm 1 to check geometric consistency (When Algorithm 1
is not used, the amount of dynamic data association for pose estimation will be significant) and the
V-LOAM system, which uses visual odometry as a prior, cannot deal with this situation. A-LOAM
and LIO-SAM can work stably in dynamic scenarios. However, their localization accuracy is slightly
lower because they do not filter the extracted features and directly use all features for localization and
mapping. Compared with the above framework, the MLO system, which considers static and dynamic
object processing, achieved the best localization results.

4.3. Object tracking accuracy and robustness experiment

First, we compare the SGF-MOT module proposed in this paper with AB3DMOT [21] and PC3T [57]
trackers under the KITTI-tracking benchmark. The tracking results are evaluated in 2D image, which
can be computed by the KITTI calibration matrix. AB3DMOT [21] only takes the point cloud as input
and uses the Kalman filter for 3D-BB tracking in the lidar coordinate. PC3T [57] uses the ground truth of
ego localization provided by the KITTI dataset to transform the detected object into the map coordinate
m. Then, it performs absolute motion tracking based on the kinetic model of the object.

As shown in Table III, thanks to the accurate point cloud, the three methods have little difference in
the MOTP metric, which illustrates the estimation accuracy of the proposed tracker. Since the object is
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Figure 7. The running time of SGF-MOT module in sequences filled with objects under the
KITTI-tracking dataset.

Table 1V. Evaluation for absolute object trajectory accuracy under KITTI-raw City and Road
sequences.

Geometry only Semantic only Fusion method

ATE RTE RRE ATE RTE RRE ATE RTE RRE

Sequence id [m] [m/m] [deg/m] [m] [m/m] [deg/m] [m] [m/m] [deg/m]
0926-0009 87 0.11 0.11 0.35 025 033 2.10 0.17 0.13 0.36
89 0.06 0.06 0.32 0.16 0.16 1.55 0.14 0.11 0.86

0926-0013 1 021 0.15 0.93 039 0.29 3.85 040 0.26 2.76
2 254 1.03 9.80 022 0.18 1.50 023 0.16 1.30

0926-0018 6 0.11  0.12 1.77 0.12  0.13 2.53 0.08 0.12 1.09
11 0.08 0.10 1.39 0.15 0.16 1.90 0.11 0.12 1.02

0926-0051 21 228 1.86 2.83 020 0.18 1.73 018 0.13 1.22
26 0.07 0.12 0.27 0.14 154 1.21 0.09 0.09 1.13

0926-0084 14 4.81 1.11 7.11 027 038 6.25 023 035 6.14

0926-0015 32 0.14 0.25 1.67 0.19 0.21 2.56 0.16  0.16 1.96
35 329 107 2.28 0.30  0.28 5.44 027 0.27 7.15

0926-0028 1  fail fail fail 031 0.22 222 031 0.21 2.06
0926-0032 15 0.18 0.16 0.43 020 0.21 1.06 0.17 0.18 1.31
Mean 1.16  0.52 243 022 034 2.64 019 0.17 2.19
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Figure 8. Comparison of different tracking methods in sequence 0926-0056 under the KITTI-tracking
dataset. Both semantic-only and fusion methods can track objects robustly, but geometric-only method
has the problems of object tracking loss and trajectory drift.
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transformed into the map coordinate m using the prior ego ground truth, PC3T [57] tracker only needs to
consider the uncertainty caused by absolute object motion between frames. Moreover, it achieves the best
results on the MOTA metric. The proposed SGF-MOT tracker does not use ego localization information
but also improves tracking robustness by introducing a least-squares estimator fusing geometric and
semantic constraints. So, we achieve better MOTA results than the AB3DMOT [21] tracker.

Like the other two methods, our method runs in real-time on the CPU. The running time of the
SGF-MOT module executed on sequences 0001 and 0015 is shown in Fig. 7. On the KITTI-raw City
and Road datasets, which are full of moving objects, we used the absolute tracking trajectory of objects
generated by the MLO system to verify the semantic-geometric fusion tracking method (Fusion Method).
The fusion method is compared to trackers that use only geometric object points (Geometry only) and
semantic box planes (Semantic only) for motion estimation.

As shown in Table IV, the object localization accuracy of the geometry-only method exhibits a distinct
“bipolar” distribution. There are two main reasons why the geometry-only method cannot reliably track
the object: (1) The estimator requires iterative matching to obtain the point-level data association and
places high demands on the initial value of the estimation. (2) Semantic objects are sometimes observed
only from a specific perspective within the lidar perception range, for example, when the vehicle is
directly in front of or next to the robot. In this case, the lidar sensor can only obtain a single planar
point cloud with 3-DOF constraints on the motion of the object. On the other hand, we also find that
the geometry-only tracking method can work better than the semantic-only tracking method in terms of
accuracy when the estimator is successfully convergent.

Therefore, semantic box constraints, which can provide complete motion constraints, should be con-
sidered together with high-precision measurement point clouds in the MOT task. In this way, the tracker
can well balance the accuracy of estimation and the robustness of tracking and achieve better overall per-
formance. The experimental results in Table IV support this conclusion. The object motion trajectories
of different tracking methods under sequence 0926-0056 in Fig. 8 can also confirm this qualitatively.

5. Conclusions

In this paper, we propose a novel MLO system to solve the problem of simultaneous localization, map-
ping, and MOT only using a lidar sensor. Specifically, we propose a fused least-squares estimator that
uses the semantic bounding box and geometric point cloud for updating the object SGF-MOT. In the
mapping module, dynamic semantic objects are detected based on the applied absolute trajectory track-
ing list, and the system can achieve reliable mapping in highly dynamic scenarios. Experiments with
open datasets show that the SGF-MOT module can achieve better overall performance compared to the
pure semantic and geometry tracking methods and other advanced MOT frameworks. Compared with
other lidar, visual, and multi-sensor fusion SLAM systems, the MLO system with the SGF-MOT tracker
can provide more stable and accurate robot and object localization in complex scenes. On the other hand,
the high-frequency IMU, which is unaffected by the external environment, can provide good guidance in
extracting static feature points and effectively cope with the intense movements of the robot. Therefore,
the correct integration of the IMU measurement into the MLO and the building of a fusion SLAM sys-
tem that can adapt to dynamic scenes as well as to the complex motions of the robot are meaningful
problems.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/
S0263574723001868.
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