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All elements mentioned herein are in a group G. A well-known definition
states that x and y are conjugate if there exists an element a such that y = a~ 1xa.
Conjugacy is an equivalence relation in G. In the present paper this will be
called 1-conjugacy.

When k> 1, the following definition is in effect: y is fc-conjugate to x(ytx)
if there exist r and s such that y = r~lxs and s^^r. While fc-conjugacy is
not generally an equivalence relation, it will be seen that there are groups
(for example, all finite groups) in which it is so for some A:>1. Moreover,
this concept is related to that of the number of commutators required to express
each element of the commutator subgroup.

These properties are easily verified:

PI. If y ix, then yHx for every n>k.

P2. &-conjugacy is reflexive.

P3. fc-conjugacy is symmetric.

P4. If ytx, then y'1 fx'1.

To prove PI, let y^x. Then y = x~lxy, so y kXi x, and the result follows
by induction. Also, since x j x is always true, P2 is a direct consequence of
PI for every k.

P3 and P4 are proved simultaneously by induction. If y j x, then x j y and
y~1jx~1,so both are true when k = 1. Now assume P3 and P4 when k = m,
letting vAu and y = u~lxv. Then x = uyv~l, but v~l^u"1, so xm+i y. Also
y'1 = v~1x~iu, but ug,v, so y'1 m~1 x~l. Thus the results are true when
k = m +1 and hence for every k.

If 1 is the identity element of G, and x = a~Yb~xab, then 1 = axb~1a~lb,
so l j * . Conversely, if 1 = c~lyd~1cd, then y = cd~ic~id. Therefore 1 is
2-conjugate to an element if and only if the element is a commutator.

Theorem 1. 2-conjugacy is not always transitive.

Proof. There exist groups in which the product of two commutators is
not necessarily a commutator. Let x = (a~ib~1ab)(c~1d~lcd) be such an
element. Then dxd~l = d{a.-lb-xab)C-ld-^c, so dxd~l

 a a-
lb~lab. Now

1 za~1b~1ab, but 1 is not 2-conjugate to dxd~l since the latter, like x, is not
a commutator.

E.M.S.—A
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Theorem 2. y ix if and only if there exist alt ...,ak+1 such that x = at...ak+l

and y = ak+1...al.

Proof. Let x = a1...ak+l and y = ak+l...a1. Since a2aY = ai
y%x when k = 1. Assume that j s x when k = m. Then

and j m+1 x when fc = m +1. Therefore y j x for every fc.

Conversely, let j> j x. When k = l,y = a~x (xa) for some a, and x = (xa)a ~x.
Now assume the result when k = m. Let ym^.lx,ory = u~lxv, vmu. By the
inductive hypothesis, u — b1...bm^.1, v = bm+l...b1. Select 2>m+2 such that
x = (&i".&m+1)6m+2. Then y = bm+2---b1, and the theorem is proved.

Let C be the commutator subgroup of G. It is known from (2) that C
is the set of all elements expressible in the form a~1...ak~

1a1...ak, for some k.
This result may be strengthened by the following:

Theorem 3. (a) Any product of k commutators is expressible in the form
ay1...a2-k

xa1...a2k.

(b) Conversely, the element a'[1...a~ia1...am, in which m = 2k or 2k + 1,
may be written as a product of k commutators.

Proof, (a) This is true when k = 1; assume it when k = n. Let cu ..., cn,
and u~1v~1uv be commutators. Then

= u-lv~1uv(a;1...a2-n
1a1...a2n)

= (a1v-1r\uva-1
1r\a1v~iu-1vr1a2X...a2n

i(a1v-1)

(uva~[^(a^Au~lv)a2.. .a2n

= bi1...b2^+2bi..-b2n+2.

(b) Since ai1a2
1a1a2 and

al^<h. la31a1a2a3 = (a2a1)~
1(a2a3)~

1(a2a1)(a2a3)

are both commutators, the statement is true when m = 2 and m = 3. Suppose
it is true when m = r. Then

ar1...ar"+
1

2a1...ar+2

By the inductive hypothesis, the expression ai1...a~1a1...ar may be written
as \r or \{r— 1) commutators, according as r is even or odd. The remaining
expressions constitute a single commutator, and the proof is complete.

Remark: Clearly, when m is odd, the product a'[1...a~ia1...am may be
reduced to bi1...b~i1b1...bm-1.
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Theorem 4. teC if and only if t = y ~l x and y^x for some k.

Proof. If teC, then t = a^ 1...ak~+1al...ak + l for some k (Theorem 3).
Let x = ai...ak + l and y = ak + 1...a1. By Theorem 2, ytx. Conversely,
assume that y^x. Then x = al...ak+i and y = ak+l...al (Theorem 2), and
y~lx e C (Theorem 3).

As a generalisation of the fact that 1 2 x if and only if x is a commutator,
we obtain the following:

Theorem 5. If y^x, then x equals y times \k or i(k + l) commutators
according as k is even or odd. Conversely, if x equals y times m commutators,
theny?mx.

Proof. By Theorem 2, if j>{ x, then}1"1* = a'[1...ak+1a1...ak+1, which may
be written as a product of \k or $(k + l) commutators, according as k is even
or odd (Theorem 3). This proves the first part.

Now suppose that x = yCi...cm, each cf being a commutator. If m = 1,
x =ya~lb~ 1ab=(yay~ 1)~iy(yb)~l(yay~l)(yb)iy. Assume thaty£rx whenm =r.
If m = r + l, then x = yci(c2---cr+1), so x^yc^ Therefore x = u~i(yc1)v,
in which v 2r~ t u. Then since jc t j y, we have

x = w~1(s~V~1sOy = (su)~1yt~1(su)(u~1tv).

NOW U~itVirU SO ?
A variation of this proof may be obtained by using an alternative definition

of jfc-conjugacy; namely, that j> j x if there exist au ..., ak such that

y = x(x~1ai~1xa1)(ar1a2-
1a1a2)...(afc-_

1
1a";1 a*_iat).

This definition may be shown without difficulty to be equivalent to the one
we have used. The number of commutators may then be reduced by noting
that a product (a~1b~1ab)(b~1c~1bc) reduces to a single commutator [(1),
p. 37, Ex. 11], for example, (a~1ba)~i(a~ic)~i(a~1ba)(a~1c). This process
may be reversed to prove the converse.

Theorem 6. Let there be a fixed k such that teC implies t — a^1...ak
1al...ak.

(By the remark after Theorem 3,.we may assume k to be even.) Then k-conjugacy
is an equivalence relation separating G into the cosets of C. Furthermore, each
element of C is expressible as a product of \k commutators.

Proof. For any k, if y * x, then y~1xeC (Theorem 5), so x and y are in the
same coset of C Conversely, assume y~1xe C. By hypothesis,

and therefore is a product of \k commutators (Theorem 3). By Theorem 5,
it follows that j jx , and this establishes jfc-conjugacy as an equivalence relation.
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