ON k£-CONJUGACY IN A GROUP

by PETER YFF
(Received 2nd August 1963)

All elements mentioned herein are in a group G. A well-known definition
states that x and y are conjugate if there exists an element a such thaty = a~'xa.
Conjugacy is an equivalence relation in G. In the present paper this will be
called 1-conjugacy.

When k> 1, the following definition is in effect: y is k-conjugate to x(y ¢ x)
if there exist r and s such that y = r~'xs and s,~; r. While k-conjugacy is
not generally an equivalence relation, it will be seen that there are groups
(for example, all finite groups) in which it is so for some k>1. Moreover,
this concept is related to that of the number of commutators required to express
each element of the commutator subgroup.

These properties are easily verified:

Pl. If y;x, then y; x for every n>k.
P2. k-conjugacy is reflexive.

P3. k-conjugacy is symmetric.

P4. If yrx, then y~' ;x~1,

To prove P1, let yzx. Then y = x~'xy, so y,51 x, and the result follows
by induction. Also, since x ; x is always true, P2 is a direct consequence of
P1 for every k.

P3 and P4 are proved simultaneously by induction. If y ; x, then x; y and
y~1:x7Y, so both are true when k = 1. Now assume P3 and P4 when k = m,
letting v ;u and y = u " 'xv. Then x =uyv~ L, butv™ ' zu™", so x,,7; y. Also
y ' =0v"'x"1y but uzv, so y~',5;x"". Thus the results are true when
k = m+1 and hence for every k.

If 1 is the identity element of G, and x = @~ !5 'ab, then 1 = axb™'a™ b,
so 13x. Conversely, if 1 =c 'yd " 'cd, then y =cd ‘¢~ 'd. Therefore 1 is
2-conjugate to an element if and only if the element is a commutator.

Theorem 1. 2-conjugacy is not always transitive.

Proof. There exist groups in which the product of two commutators is
not necessarily a commutator. Let x = (@~ 'b"'ab)(c”*d 'cd) be such an
element. Then dxd™! = d(a*b~'ab)c™'d " 'c, so dxd™' 3a~'b"'ab. Now
13a" b~ 'ab, but 1 is not 2-conjugate to dxd ™! since the latter, like x, is not
a commutator.

LI 4 E.M.S.—A
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Theorem 2. y; x if and only if there exist a,, ..., a,,, suchthat x = a,...a, 4,
andy = a;,,...a,.

Proof. Let x =a,...a,,, and y = @ ,¢..-a,. Since a,a, = aj (a,a,)a,,
yixwhenk = 1. Assume that y;x when kK = m. Then

Qi@ = (@1...0p21) (@100 G 1 2)(@ms 1. A1),

and y ,%; x when k = m+1. Therefore y; x for every k.

Conversely, let y; x. Whenk =1,y =a~'(xa) for some g, and x = (xa)a™".
Now assume the result when k =m. Let y,3,x,0ry=u"'xv, v5u. By the
inductive hypothesis, u = b;...bp41, v = bpyy...by. Select b, , such that
x=(b;...bp4+1)bps,. Theny = b,,,...b;, and the theorem is proved.

Let C be the commutator subgroup of G. It is known from (2) that C
is the set of all elements expressible in the form a™'...a; 'a,...a;, for some k.
This result may be strengthened by the following:

Theorem 3. (a) Any product of k commutators is expressible in the form
atl...azla,...ay,.

(b) Conversely, the element a{'...a,'a,...a,, in which m = 2k or 2k+1,
may be written as a product of k commutators.

Proof. (a) This is true when k = 1; assume it when k = n. Letcy, ..., ¢,
and ™ o™ 'uv be commutators. Then

u" o7 uv(ey...c,)

1

=u" v uv(agt...a3la,...a,,)

1

= (a0~ ) M(uvay ) (a0 w o) a3 ez, (a7 )

(uvay M) av ™ 'u")a,...az,
= bl-l.-.bz_”ll'.zbl...bzn.pz-

(b) Since ay'a3'a a,and
aflaz'la:,"alazas = (azal)'l(aza3)'1(a2a1)(a2a3)

are both commutators, the statement is true when m = 2 and m = 3. Suppose
it is true when m = r. Then

-1 -1
a; veelpy281...Qp 45

= a1—1~--ar_101 ...aa,;,0y...a,)" 1(ar+ lar+2)_1(ar+ 181--.8, )8, 410,42).

By the inductive hypothesis, the expression a; 1 ..a] 'a,...a, may be written

as 4r or 1(r—1) commutators, according as r is even or odd. The remaining
expressions constitute a single commutator, and the proof is complete.

Remark: Clearly, when m is odd, the product ay'...a,'a,...a, may be
reduced to byt...b 1,b,...b,_,.
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Theorem 4. te Cifandonly if t = y~'x and y x for some k.

Proof. If te C, then t=a;'...a;} a,...axs, for some k (Theorem 3).
Let x=a,...a,,, and y =a;,,...a,. By Theorem 2, y;x. Conversely,
assume that y;x. Then x =a,...q,,, and y = a,,,...a; (Theorem 2), and
y~'x e C (Theorem 3).

As a generalisation of the fact that 1; x if and only if x is a commutator,
we obtain the following:

Theorem 5. If ygx, then x equals y times %k or Y(k+1) commutators
according as k is even or odd. Conversely, if x equals y times m commutators,
then y 53, .

Proof. By Theorem 2, if y; x,theny™'x = ay'...a;}14a;...a,+,, which may
be written as a product of 4k or 4(k +1) commutators, according as k is even
or odd (Theorem 3). This proves the first part.

Now suppose that x = yc,...c,, each ¢; being a commutator. If m =1,
x=ya 'b"ab=(yay~ )" y(yb)~*(yay ') yb)3y. Assume that y 5, x whenm =r.
If m =r+1, then x = yc,(c;.-.¢,+1), S0 x5 yc;. Therefore x =u~(yc,)v,
in which v ,,~; . Then since yc, 3 ¥, we have

x =u syt sty = (su)”" Lyt (su)(u Lew).

Now u~tv 1, ¢, s0 t1(su)(u™*tv) ;%1 su, and x 5,52 ).
A variation of this proof may be obtained by using an alternative definition
of k-conjugacy; namely, that y; x if there exist a4, ..., @, such that

y= x(x—la;lxal)(aflaz_lalaz)--~(alc——1107cl ay_1ay).

This definition may be shown without difficulty to be equivalent to the one
we have used. The number of commutators may then be reduced by noting
that a product (a~'b~*ab)(b™'c~'bc) reduces to a single commutator [(1),
p. 37, Ex. 11], for example, (@~ 'ba)"*(a~*c)"!(a 'ba)(@a™'c). This process
may be reversed to prove the converse.

Theorem 6. Let there be a fixed k such that t e C implies t = a;*...a; 'a,...a,.
(By the remark after Theorem 3,.we may assume k to be even.) Then k-conjugacy
is an equivalence relation separating G into the cosets of C. Furthermore, each
element of C is expressible as a product of tk commutators.

Proof. For any k, if y; x, then y~'xe C (Theorem 5), so x and y are in the
same coset of C. Conversely, assume y~!x € C. By hypothesis,

y Ix=arl..a7a,...a,

and therefore is a product of 1k commutators (Theorem 3). By Theorem 35,
it follows that y; x, and this establishes k-conjugacy as an equivalence relation.
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