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A NOTE ON THE MEAN VALUE THEOREM FOR SPECIAL

HOMOGENEOUS SPACES
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Introduction

Let G be a connected linear algebraic group and X an algebraic variety, both

defined over Q, the field of rational numbers. Suppose that G acts on X transitive-

ly and the action is defined over Q. Suppose that the set of rational points

X(Q) is non-empty. Choosing x e X(Q) allows us to identify G/Gx and X as

varieties over Q, there Gx is the stabilizer of x.

Following Ono's terminology [02], we call G special if G has the Levi-

Chevalley decomposition of the form G — US over Q, where U is the unipotent

radical of G and S is the semisimple part. We also call a homogeneous space

(G, X) special if G and Gx, x ^ X(Q), are both special

After the works of Siegel [Si] and Weil [W], Ono [ibid] defined the uniformity

of a special homogeneous space (G, X) in the context of integral geometry over

the adele spaces attached to (G, X) and introduced the Tamagawa number

r(G, X) for a special and uniform homogeneous space, and gave a criterion in

terms of the homotopy groups of the complex manifold X(C) in order that

(G, X) satisfies the mean value property, τ(G, X) = 1.

The purpose of this note is to show that any special homogeneous space is

uniform and has a simple description of its Tamagawa number. It follows from

some observation on the fundamental groups of algebraic groups under inner

twisting and on local-global classes in X(Q), and the fundamental result of Kott-

witz [K] on the Tamagawa number of algebraic groups.

We wish to thank Prof. T. Ono for encouraging us to write up this note.

NOTATION For a field k of characteristic zero, k denotes a fixed algebraic

closure of k and Γk stands for the Galois group of k /k.

We shall use the standard notation of Galois cohomology (cf. [Se]).

For a set * , [ * ] denotes the cardinality of *
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1. Inner twisting and fundamental groups of special algebraic groups

In this section, we prove that the fundamental groups of special algebraic

groups do not change, as Galois modules, under inner twisting. Though this fact is

well known for experts, we include it and give a precise proof for the sake of com-

pleteness.

Let G and G' be connected linear algebraic groups defned over k of charac-

teristic zero. Suppose that Gr is a k-ίorm of G with k-isomorphism ψ'.G—* G'.

We say that G' is an inner form of G if for each σ ^ Γk, there is gσ ^ G(k) so

that φ~ ° φσ = lnt(gσ). Note that this definition is independent of the choice of an

inner twisting φ.

Suppose that G and G' are special (see Introduction) with the Levi-Chevalley

decompositions G = US, Gr = UrSr over k, where U, Ur are the unipotent

radicals and S, Sf are semisimple parts of G, G\ respectively.

LEMMA 1.1. Notation being as above, if Gr is an inner form of G, then Sf is an

inner form of S.

Proof Let φ:G—*G' be A;-isomorphism. By definition, for each σ €= Γk,

there is gσ ^ G(k) so that φ~l ° φ° = IntQ^). Since φ(U) = U', φ induces an

k -isomorphism ψ : S = G/U-* Gf /Ur = Sf. Then, we see that φ ° φ ° —

, where x — xU for x ^ G. Hence, 5 ' is an inner form of S''. Q.E.D.

For a semisimple group 5 defined over k, we define the fundamental group

τrι(S) to be the kernel of the universal covering of 5 over k ([01], App. I). For a

special algebraic group G defined over k with the Levi-Chevalley decomposition G

= US, we set τc1(G) = ^ ( 5 ) , which is a /^-module.

LEMMA 1.2. Let G and G' be special algebraic groups defined over k and suppose

that Gr is an inner form of G. Then, we have Γk-isomorphism πx(G) — 7Γ1(G0.

Proof. By Lemma 1.1, we may assume that G and Gr are semisimple. Choose

an inner twisting φ: G —• G\ Take universal coverings / : G—> G and / ' : G'—•

G' defined over k. We first show that Gr is an inner form of G. (This is in the

proof of Prop. 2, Sec. 2 in [T]. But, we make things more precise here). For each

σ e Γk, there is gσ e G{k) so that cσ : = φ~l ° φσ = lnt(gσ). Then, G' is the

twist of G by 1-cocycle c valued in Aut-^(G) ([Se], III, 1.3). Take gσ e G(k) so

that f(gσ) — gσ and let (G)^ be the twist of G by 1-cocycle c defined by (c)σ ".=
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lnt(gσ). Let φ : G—• (G)c be the map induced by the identity map of G and let/ c :

(G)c~-* Gc = G' be the map induced by / Then, fc is isomorphic to / ' because of

the uniqueness of the universal covering ([01], App. I) and, by our construction,

ψ ° /' = fc° φ, φ~ ° φ° = lnt(gσ). Thus, our assertion follows if we check that

the map πλ(G) ~^ 7^ (GO induced by φ is /^-homomorphism. In fact, for z^

π^G), φσ(z) = φ ° lnt(gσ)(z) = φ(z), since/ is a central /c-isogeny. Q.E.D.

2. Local-global classes

Let G be a connected linear algebraic group and X an algebraic variety, both

defined over Q, the field of rational numbers. Suppose that G acts on X transitive-

ly and the action is defined over Q. Suppose that the set of rational points X(Q)

is non-empty. By choosing x ^ X(Q), we identify G/Gx with X as varieties over

Q, where Gx is the stabilizer of x.

We introduce two equivalence relations on X(Q). Let y, z <Ξ X(Q). We say

that, y, z are globally equivalent, written y ~ z, if there is g ^ G(Q) so that z =

gy. We say that y, z are locally equivalent if there is gA ^ G(A) so that £ ^

^Az/, where A denotes the adele ring of Q. It is easy to see that y is locally equiva-

lent to z if and only if for each place v, there is gυ ^ G(QV) so that z = gυy ([0],

Lemma 6.1). Thus, the local class θx containing x e X(Q) is G(A)x Π X(Q). To

study the quotient set θx/~ , we put, for an algebraic group A over Q or a

i^Q-module A,

/'(Q, A) : = Ker(ff'(Q, A) - ΠH'iQ,, A)),
V

where v runs over all places of Q.

It is known that / (Q, A) is finite for a linear algebraic group A over Q ([B-S]).

The inclusion G^—• G induces the map / (Q, Gx) —* I (Q, G). The following

lemma is a refinement of [02], Lemma 6.2.

LEMMA 2.1. Notation being as above, we have a bijection

θx/~ - Kertf'ίQ, Gx) —/'(Q, G)).

Proof. Let z/ ^ θ x . We find ^ ^ G(Q) so that z/ = gx. Since .r, z/ are in-

variant under the Galois group ΓQ, yσ

:= g~ g° defines a 1-cocycle of Γ Q in

GX(Q). It is easy to see that the cohomology class c(y) ^ H (Q, Gx) does not de-

pend on the choice of g. It was shown in [02], Lemma 6.2 that the correspondence

y—*c(y) gives an injection φ : θx/ ~ -* I (Q, Gx). But, it is easy to see that
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c(y) becomes the trivial class in H (Q, G) under Gχ—* G. So, we obtained an in-

jection φ : θx/ • Ker(/ (Q, Gx) —* I (Q, G)). To show the surjectivity of φ,

take c = ( O e KerίAQ, Gx) ->/ 1 (Q, G)). Then, for each σ e Γ Q , there is

£ e G(Q) so that cσ = g~1gσ. Put z/ = gx. Then, for each σ ^ Γ Q , z/σ = gσχ =

gc^ = gx = y. Hence, y ^ X(Q) and c(z/) = c. Further, for each place υ of Q

and σ ^ ΓQ, there is gv ^ G x (Qf) so that cσ — gυ gv. From this, we see that

ggv1 = K e G(Qy) and 2/ = A^. Hence, 2/ e Θx. Q.E.D.

We write h(θx) for the cardinality of θ x / ~ , which is actually independent

of x ^ X(Q) as we shall see below. The set θx/ ~ has a natural structure of an

abelian group by the following

LEMMA 2.2. Let H be a special algebraic group over Q. Then, we have bijections

Iι(Q, W ~ / 2 (Q, π^

- /'(Q, π

where τz1(H) — ΐίomiπ^H), G m ) , ί/ie character module, and D stands for the Pontr-

jagin dual. Moreover, these bijections are functorial in H.

Proof. Let H = US be the Levi-Chevalley decomposition of H over Q, U —

the unipotent radical of H, S = a semisimple part. Since πλ(H) = π1(S) as

i^Q-modules, the first isomorphism in our assertion follows from [Sa], Proposition

4.1 and Theorem 4.3. The second isomorphism is a consequence of Tate-Poitou

duality. To show the functoriality in H, we may assume H is semisimple. Then, by

[B-T], Proposition. (2.24)-(i), a Q-homomorphism between semisimple Q-groups

extends uniquely a Q-homomorphism between their universal covering groups.

This yields the functoriality in H for the first bijection. For the second isomorph-

ism, it follows from the functoriality of Tate-Poitou duality. Q.E.D.

PROPOSITION 2.3. Suppose that (G, X) is a special homogeneous space over Q.

The number h(θx) is independent of x £= X(Q).

Proof. Since Gχy x ^ X(Q), are inner forms each other, π^GJ are all iso-

morphic by Lemma 1.2. Hence, our assertion follows from Lemmas 2.1 and 2.2.

Q.E.D.

We write h(G, X) for this cardinality, the number of global classes in a local
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class.

3. Tamagawa numbers

In this section, we assume that (G, X) is a special homogeneous space over

Q, namely, G and Gx, x ^ X(Q) are both special algebraic groups over Q. Then,

X is a quasi-affine variety over Q so that X(Q) is discrete in X(A). Denote by

dG(A), dX(A) the canonical measures on G(A), X(A) respectively ([0], §4).

We put

r(G) = I dG(A) = Tamagawa number of G.
JG(A)/G(Q)

We say that a homogeneous space (G, X) is uniform if there is a constant

τ(G, X) so that

f f(xA)dX(A) = τ(G,X)τ(GΓ1 f ( Σ f(gAy))dG(A)
JG(A)X(Q) JG(A)/G(Q) y G Z ( Q)

for any continuous function / on G(A)X(Q) with compact support. When that is

so, the number r(G, X) is said to be the Tamagawa number of (G, X), and we say

that (G, JO has the mean value property iί τ(G, X) = 1.

Firstly, we recall the following fundamental

THEOREM 3.1 (01], [K], [C]). Let H be a special algebraic group over Q. Then, the

Tamagawa number τ{H) of H is given by

The following two theorems strengthen Lemma 8.3 and Theorem 2.1 in [02].

THEOREM 3.2. Any special homogeneous space (G, X) is uniform and τ(G, X)

= τ(G)/(h(G, X)τ(Gx)), x e= X(Q)

Proof By [0], Lemma 8.3, (G, X) is uniform if and only if the number

Σ ί = 1 τ(Gx) is independent of the local class Θ, where xiy 1 < i < h(Θ), stand for

representatives for Θ / ~ . Actually, this is the case and the equality in our asser-

tion follows by Lemma 1.2, Proposition 2.3 and Theorem 3.1. Q.E.D
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THEOREM 3.3. Suppose that π^XiQ) = π2(X(Q) = 1. Then, we have r(G, X)

= 1, namely, (G, X) has the mean value property.

Proof. By our assumption, using the homotopy exact sequence attached to

1 — GX(C) -> G(C) - X(C) - 1,

we have

πι(Gx(O) - π^GiC)) for any x e X(Q),

which is translated into /^-isomorphism of algebraic fundamental groups:

πγ{Gx) - πλ(G) for any x e X(Q).

Therefore, h(G, X) = 1 by Lemma 2.1 and 2.2 and τ(G) = r(G x ) by

Theorem 3.1 Hence, our assertion follows from [02], Lemma 8.3 again. Q.E.D

THEOREM 3.4. Assume that I1 (Q, G) = 1 and let x ^ X(Q). Then, we have

[Pic(G)]

In particular, (G, X) has the mean value property if and only if [Pic(G)]

[Pic(GJ].

Proof By Theorem 3.1, we have

which is independent of x G X(Q).

By our assumption, Lemmas 2.1 and 2.2, we have

Since r(G, JO = τ(G)/(h(G, X)τ(Gx)), our assertion follows from Theorem

3.1. and [Sa], Lemma 6.9. (iii). Q.E.D.

Remark. The condition that / (Q, G) = 1 is satisfied if the semisimple part

of G is one of the followings. ([C] and [Sa], Theorem. 4.2, Corollary. 5.4.)

1) simply connected group,

2) adjoint group,

3) absolutely almost simple group,
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4) group which splits over a metacyclic extension.
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