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Abstract

This paper builds on Hsieh and Klenow’s (2009) model to offer a refined analysis of how input misallo-
cations impact aggregate total factor productivity (TFP). We enhance the original model by relaxing the
assumption of uniform input prices and adopting an econometric approach to estimate parameters using
firm-level data. Estimation of model parameters and allocation efficiency is based on the system of input
demand and the production function. We use an indirect inference approach to estimate the system to
avoid maximum likelihood estimation, which often faces convergence issues, when there are numerous
constraints. We demonstrate our model using the US firm-level manufacturing panel data from 1975 to
2010. Our final sample contains 55,518 observations. We divide the manufacturing industry into seven
major categories. Our findings indicate that between 1975 and 2010, the average productivity growth rate
was 2.8% but could have reached 3.2% without misallocation, highlighting the substantial gains possible
through better resource allocation.

Keywords: TFP; input demand system; multi-step estimation; indirect inference approach
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1. Introduction

Input misallocation refers to the inefficient distribution of resources, such as labor, capital, and
materials, between firms or sectors within an economy. When inputs are not allocated optimally,
firms that could use them more productively may receive fewer resources, while less efficient
firms may receive more than they can effectively use. This misallocation can result from mar-
ket distortions that obstruct the free flow of resources to the appropriate firms. Consequently, it
leads to significant losses in overall productivity and economic growth. From a macro perspective,
understanding the dynamics of input misallocation is crucial because it sheds light on how distor-
tions, such as policy interventions, market imperfections, or institutional constraints, can impact
aggregate productivity. By analyzing these dynamics, researchers and policymakers can identify
strategies to improve resource allocation, improve productivity, and stimulate economic growth.

In this paper, we build upon the foundational work of Hsieh and Klenow (2009) but dig deeper
into the effects of resource misallocation on aggregate total factor productivity (TFP) and revenue
loss across firms. The central contribution of our research lies in the refinement of the struc-
tural model proposed by Hsieh and Klenow (HK), which allows us to provide a more precise and
detailed estimation of allocation efficiency (AE), particularly when assessed through the lens of
revenue output.
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Although our model is grounded in the HK framework, it introduces several enhancements
that address limitations in the original model. One of the key improvements is our departure
from the assumption of uniform input prices across firms, which is unrealistic. By incorporating
heterogeneous input prices, our model seeks to offer a more precise estimation of input misalloca-
tion and productivity dynamics. Relying on uniform input prices would overlook these essential
cross-group variations. Our model includes three inputs, capital (K), labor (L), and materials (M),
allowing us to capture the complexities of firm-level production processes and the inefficiencies
in the allocation of these three inputs. The three-input production model is standard in structural
productivity models such as Olley and Pakes (1996) and many others that followed them. From
an empirical model specification standpoint, incorporating K, L, and M as key variables in the
production function aligns with standard practices in firm-level analyses. Unlike many macroe-
conomic models that consider only K and L, the inclusion of M addresses potential issues related
to omitted variable bias. By incorporating materials (M), our model provides a more accurate
representation of production processes and enhances the reliability of the results. This inclu-
sion captures a more comprehensive production structure, allowing us to account for additional
sources of misallocation that influence productivity dynamics.

In addition to this, we diverge from the conventional calibration methods commonly employed
in the macro literature. Almost all existing papers use calibration, and these papers set some
structural parameters a priori, instead of estimating them. However, the parameters used in the
calibration can lead to differences in the prediction and analysis of subsequent results. Take the
output substitution elasticity o, in HK as an example. Different values of o, make the predictions
of the hypothetical TFP gains of China and India significantly different. Whether the difference
in the prediction results is significant is determined based on robustness checks. Calibration often
relies on predefined assumptions that may not hold in all contexts, potentially leading to biased
or inaccurate results. To overcome this, we adopt an econometric approach to estimate the model
parameters; it is novel and has not been used before in the macro literature. Our process begins by
deriving the input demand function from each firm’s optimization problem. This derivation gen-
erates the input demand functions for the three endogenous inputs, while input prices remain
exogenous. We then employ firm-level data to estimate structural parameters across different
manufacturing subsectors, which allows us to account for the heterogeneity in production tech-
nologies that exist between subsectors. This approach allows us to obtain more accurate estimates
of firm-specific misallocations and the marginal revenue product (MRP) of inputs, independent
of variations in TFP.

The aggregation of these firm-level estimates enables us to analyze the effects of misallocation at
both the sectoral and industry levels. Our findings reveal that during the period 1975 to 2010, the
average productivity growth rate, as measured by revenue-based total factor productivity (TFPR),
was approximately 2.8%. However, through counterfactual analysis, we show that this growth rate
could have been as high as 3.2% if resource misallocation between firms had been eliminated.
This significant difference demonstrates the substantial impact that misallocation can have on
overall productivity and emphasizes the potential economic gains that could be achieved through
improved resource allocation.

Estimation of model parameters and AE is based on the system of input demand and the pro-
duction function. The coefficients in the demand system are restricted functions of the model
parameters, which poses challenges for convergence when applying maximum likelihood esti-
mation (MLE). These challenges are aggravated by the complexity introduced by numerous
constraints. To address this issue, we employ an indirect inference procedure. This approach
allows us to bypass some of the difficulties associated with direct MLE. Because our model does
not include exogenous variables, such as policy variables or firm-specific characteristics that could
affect resource allocation or TFPR, the scope of our discussion of the empirical results is lim-
ited. Therefore, our discussion focuses mainly on the estimation methods, the prediction of the
estimation results, and how our estimation method differs from existing methods. However, it is
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easy to generalize our model to explore more deeply the factors influencing resource allocation
or policy impact. For instance, these exogenous factors can be incorporated into our model by
including exogenous factors in the setting of the dynamics of TFPR in order to conduct more
in-depth empirical analysis.

The main contributions of the paper are as follows. First, our model extends the HK frame-
work by incorporating heterogeneity in input prices across firms. This extension acknowledges
that firms do not operate under uniform conditions. Second, we include three distinct inputs,
capital, labor, and materials, to better capture the complexities of production processes at the
firm level and the resulting inefficiencies that may arise from misallocation. Third, we employ a
state-of-the-art econometric approach to estimate the model parameters based on the system of
input demand and the production function. We use an indirect inference procedure instead of the
classical maximum likelihood method since there are numerous constraints. Conducting counter-
factual analysis using our proposed analytical framework is relatively straightforward and easy to
implement.

2. Relevant literature

The Hsieh and Klenow (2009) model has been instrumental in shaping our understanding of
how resource misallocation affects aggregate productivity. By quantifying productivity losses due
to misallocation, particularly in China and India compared to the United States, the model has
highlighted significant inefficiencies in the allocation of capital and labor within industries. Here,
we consider some extensions of the HK model, evaluating their contributions to the literature and
their implications for policy and future research. The purpose is not to provide a full review of the
literature.

Bartelsman et al. (2013) introduce a dynamic perspective by incorporating firm turnover (entry
and exit) into the analysis. It reflects the reality that inefficient firms exit the market while more
productive ones enter, thus affecting aggregate productivity. These authors argue that dynamic
selection plays a key role in explaining productivity differences across countries. However, they
assume that the selection process is purely efficiency-driven, potentially overlooking other factors
like market power or regulatory barriers that might affect firm turnover.

David et al. (2016) introduce information frictions, where firms may not fully know their pro-
ductivity and therefore may not allocate resources optimally. This extension is significant because
it draws attention to the role of information asymmetries in perpetuating misallocation. However,
it abstracts away from how firms might endogenously invest in acquiring better information and
how markets and institutions could evolve to reduce these frictions over time.

Bento and Restuccia (2017) extend the HK model by examining the impact of size-dependent
policies, such as subsidies, taxes, and regulations, on resource misallocation. Bento and Restuccia
argue that policies that disproportionately affect firms based on their size can distort resource
allocation, thereby reducing overall productivity. They primarily focuse on policy distortions in
isolation and do not fully explore how these policies interact with other forms of distortion, such
as financial friction and market power.

Asker, et al. (2014) introduce dynamic inputs and adjustment costs into the HK framework.
This extension accounts for the reality that adjusting inputs, such as labor and capital, often
involves costs, leading to persistent misallocation. Although this model more accurately reflects
the challenges firms face in optimizing resource use, it could be criticized for its complexity, which
could limit its practical application, especially in policy-making contexts where simpler models are
often preferred.

Gopinath et al. (2017) apply the HK model to the specific context of Southern Europe, focusing
on the period before and after the financial crisis. This regional application shows how finan-
cial frictions and firm-specific shocks can exacerbate capital misallocation, particularly during
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economic downturns. The findings, while relevant to Southern Europe, might not be directly
applicable to other regions with different institutional or economic structures.

Uras and Wang (2024) examine how resource misallocation impacts productivity by influ-
encing firms” adoption of efficient production techniques. Thus, their paper extends traditional
models by allowing production techniques to be endogenous, meaning that firms can adjust
their production methods based on the resources available to them and the level of misalloca-
tion. This approach provides a more dynamic view of how misallocation affects productivity and
development. They find that misallocation affects productivity both directly and indirectly.

Our focus, distinct from the models mentioned above, is primarily on the input allocation at the
firm level, where misallocation occurs. We analyze the revenue loss resulting from misallocation
at the firm level, which is then used to assess the revenue loss at more aggregate levels. between
firms or across industries.

3. The model

In this section, we introduce the economic environment and show how the aggregate output
reflects the cross-sector misallocation.

3.1. Aggregate economy and intermediate goods sector

In this framework, the model follows Hsieh and Klenow (2009) and assumes a hierarchical struc-
ture. At the top level is the aggregate economy, followed by individual industries, with each
industry comprising constituent firms. There is a single final good Y produced/sold in a perfectly
competitive final output market. There are S industries and M; number of firms in each of the

industries s, where s=1, ..., S. Assume that the production technology (aggregator function) at
the top can be captured by a Cobb-Douglas function, that is,

qulﬁ, (1)
where

XiﬁzL )

Us

Y_< ”nf> 3)

denote the constant elasticity of substitution (CES) aggregator function of M; differentiated
products for industry s. The production technology for each differentiated product (firm
technology) is

Furthermore, let

Y= ASlKa51 LOZSZJ\/IO[S3 (4)

si 2
where the capital, labor, and material shares (o, a5, &ts3) are bounded between 0 and 1 and
allowed to vary by industry. Moreover, o1 + o5 + o3 = 1 satisfies the constant return to scale
(CRTS) production technology. The output elasticities o, o5z, and o3 are sector-specific, but
time-invariant and common across firms within a sector.
Let Ps denote the price of industry output Y;. The final good producer maximizes

S
max PY — _RK (5)
Y1,....Ys 1=

The FOC from profit maximization of the final goods subject to (1) and (2) gives
PsY; =6,PY, (6)
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which suggests the price of the final good is

P\ %
=L (5) ”

This implies that PY = ]_[SS=1 (P ;375>. These relate the final good price and revenue to industry

prices and outputs.

Let P; denote the price of differentiated product Y;;. Given that the aggregate of intermediate
goods of the industry Y follows the CES assumption in (3), the demand for the differentiated
output Y,; can be derived by maximizing the industry’s profit function

M;
max 7= P;Y;— Zi:1P5iY5i' (8)

Y1500 Ysus

The FOC suggests
os—1

1
PSYSUS Ysiax = Py Y. )

Thus, the output of firm 7 of industry s is

P\
Ysi=<P—;) Y.. (10)

3.2. Firm-level economy: TFPR and TFPQ

There are three input factors (capital, labor, and materials) for producing the intermediate goods.
Let the prices of capital, labor and materials be Wi, Wi, and Wyyi. Because of misallocation,
prices are distorted. Without any misallocations or distortions in the input prices, the first-order
conditions (FOCs) of cost minimization of firm i in industry s are!

WkiiKsi  as WnsiMsi a3

= — and =—.
Wisilsi  as Wisilsi  as
We introduce misallocation in the above FOCs (Schmidt and Lovell (1979)) by writing them as:
WisiKi ok — XL g WsiMsi oo — %3
WisiLsi A2 WisiLsi (227)

where (ks and i are the misallocation terms for the input pairs (K, L) and (M, L). ¢k and
CuMsi can take positive or negative values.? For notational simplicity, we let Ak = €% and Ay =
e®Msi, Thus, the misallocation-adjusted (shadow) prices of capital and materials are A Wi and
Amsi Wnsi-

Since firms face competitive output markets, Pg; is known and the expression for Y; shown in
(10) is determined from the optimization problem in (8). Firm i minimizes its cost’ under the
misallocation-adjusted (shadow) prices of capital and materials:

min  Cg = Agsi WiisiKsi + WisiLsi + Aptsi Wi M

Ksi>Lsi>Msi
s.t. Yo = AgKg L2 M. (11)
The FOCs are
o Wisi
Ki=——2 1 (12)
asy Aksi Wksi
o Wisi
si— _53—L51 Lsi: (13)
oy Anisi Wi
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and

asy ( AksiWksi ol Wisi 2 Ansi Wi 3 Ysi
Lij=—|—— e . (14)
Agi A1 A2 053 Wisi

Furthermore, if there is no misallocation, then Axs = Ay = 1 and then (12) and (13) degenerate
to the standard FOCs from cost minimization problem.

Note that the maximization problem of the industry s in (8) and its FOC in (9) imply that the
MRPs of the three inputs are

os—1P;Y;
MRPK;; = o) —— —* (15a)
O K
o —1P;Y
MRPLg; = oty — . (15b)
O Ly
o, —1P;Ys
MRPM; = a3 —— — 2 (15¢)
O Ms;

The marginal revenue of capital is proportional to the revenue-capital ratio. Similar properties
hold for the marginal revenues of labor and materials. Moreover, the producer i’'s optimization
behavior should satisfy that the marginal revenue of an input equals the marginal cost of the input,

that is,
o; — 1 Py Yy
g ——— —— = A Wi (16a)
Os K
o; — 1 P Yy
(027] d == = Wisi (16b)
O L
os — 1 P;Y;
O3 ° - = Anisi Wsi- (16¢)
Os M

Foster et al. (2008) stress the distinction between physical productivity (TFPQ) and revenue
productivity (TFPR) because when industry deflators are used, differences in firm-specific prices
show up in the customary measure of plant TFP. Therefore, similar to HK (2009), we define the
physical productivity TFPQ as

Ysi
TFPQsi = Asi = —a7 a5 —as (17)
Kg‘ 1 Lg; 2 Mz 3
and define the revenue productivity TFPR as
PiY
TFPRy; = PiAs = —g—gs (18)

O] 7 0s2 A r0s3 °
Ksi Lsi Msi
Using (9), one can rewrite TFPQ; as

(Ps;Ygi)os—1 _ (TFPRgj) st (KO{leO{sz M"{ﬁ) ﬁ
KK LMY s e

si

TFPQsi = Ay =

1\ os—1
where «s = (PS Y ) , which is a sector-specific constant.
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Using (16a)-(16c) and (18), the TFPRy; can also be represented as

TFPR. — O MRPK; \ %! MRPL; @2 MRPM; \
T os—1 U1 (227) a3

o o o,
_0os (WKsi) o (WLsi> 2 (WMsi) 2 R
- Ksi”* Msi
05 — 1 051 52 O3

= A%I0%3 TFPR,

N

(19)

os—1 o1 as2 A3
allocation inefficiency, that is, Axs = Amsi = 1. Misallocation of inputs causes the MRPs of cap-
ital and materials to deviate from their respective input prices, Wiy and Wy, leading to a
discrepancy between the observed TFPRg; and its efficient benchmark, TFPRY,.

as N\ s \ U5
where TFPRY, = —Z~ (M) 1 (M> ’ <M> ’ denotes the efficient TFPR when there is no

3.3. Aggregation
To derive the impact of misallocation for the industry as a whole, we use the results from the indi-
vidual firm in section 3.2. Now we show how the aggregate TFPR reflects cross-sector distortions
as well as the individual sectors’ TFPR.

Using (16a)-(16¢), the industry-specific aggregate inputs are

M; o;— 1 —M; PgYy os—1 6,PY
Ks = . Ksl = 01 d Z = = 01 d S— (20)
i=1 o i=1 A gsi Wi 0s MRPK;
M; 05 — 1 x\—M; PgYy; os—1 6,PY
L= - Li=oagp - Z — = = (027) : S— (21)
i=1 o i=1 Wi 0s MRPL;
M —1 M;  PgY —1 6,PY
M, = . Mg=ags % Z = = Os3 % —s . (22)
i=1 o i=1 A gesi Wi 0s  MRPM;
where
- M Pg;Yi 1 -
MRPK = — T
) <Zi:1 PsYs AgsiWksi
MRPL. — ZM5 %L - (23)
T i=1 PsYs WLsi

— M, PiYq 1 -
MRPM, = (Z silsi —)
i=1 PsYs ApsiWsi
are the weighted harmonic averages of the marginal products of capital, labor, and materials. The
last equality is due to the result
M;
PYc=) " PiYy=06.PY,
which can be shown using (3), (6), and (9).
If there is no input misallocation for all firms in industry s, then Ag =1 and Ap; =1 for
: PP M PyYs 1 -1 NRPM — M;s PgYs 1 -1
alli,s. Let MRPK, = (Y .= 552 w——) and MRPM, = () .=, 35%w—) denote the average

i=1 PYs Wksi i=1 PsYs Wi
optimal marginal product of capital and materials, then

Yk.s = MRPK;/MRPK,
Yu,s = MRPM,/MRPM_, (24)
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give a measure of the effect of input misallocation on MRP. yx s =ypm,=1 if all inputs are
allocated in an optimal way.
Using equations (20)-(22), the aggregate industry inputs can be written as

Ki=wk K, Ly = wp L and Ms = wp, M,

where
001 % /MRPK, ";j{‘s; o1 /MRPK!
wK,S = § r— e = s byoy —
S bvo S MRPR, Y0" lgylj‘, %=L /NRPK,
0502 2L /MRPL,
wL,S - M/ . 0./71 (25)
Z / 19 'Olg) ;T/MRPLS/
Oorsy 2t /MRPM @;3 %=1 /MRPM;
wM,S = S = 4 Ay
S bsaes S MRPM 3y, %o 2oL /MR,

are the input allocation weights. If there is no allocation distortion between sectors, then the
optimal input allocation weights should be

. Osets1 % | MRPK
e Zyiﬂs/as/ai;—:,l/ mj
W}, = Me/sasz i :{_@ (26)
o2 Osgr % MRPL
. Osors3 2 :1 / MRPM,
OMs = S0 bvaes %! | MRPIE,
The industry-specific TFPR is
P.Y;
TFPRe =t
_ o (MRPKS)(X“ (MRPLS)%Z <ms)“ﬂ @7)
o;—1 o1 a5 s3
Therefore, it follows that
TFPR; =yl vy TFPR}, (28)

* o\ O] *\ Ol * o\ (53
MRPK s MRPL s MRPM, s
*x _ _Os s s s
where TFPRY = P ( o ) ( s ) ( o ) .

Using (20)-(22), it can be shown the industry-specific TFPQ; is

Y

TFPQS = KgSILgSZMgss

os—1
M; PY; TFPR s
= § . TFPQsi——
i=1 P Y TFPRg

os—1
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The revenue output of sector s is
P;Y; = TFPQK{*' LT* M3

sl 53
= [(@kK)™ (@]sL)™ (0}, M)™ TEPRS] v i (ZK) (“’i>

K,s C()M,S
s] os3
WK,s WM,s
—p Y* Qs O3 > > s 29
sts J/K,s yM,s a)I*Cs w;\k/[)s ( )
where P,Y7 = (0} K)™' (0} L)* (0} M)"* TFPR! represents the revenue output when the
inputs are allocated optimally. Therefore, the sector-specific AE can be measured by
P;Y.
AE = ——. (30)
PY*
Therefore, (1 — AE;) x 100% represents the percentage revenue loss resulting from input misal-
location.

Now, consider the aggregate production function
S 05
Y= ]_Lzl (TFPQJKZ' L2 M%)
S 05
— KT )% % l_Lzl [TFPQSw%lswgfszwf\tfs] , (31)

where o] = ZSSZI a6, 0y = Zle ands, and a3 = Zle ags0s. It follows from (31) that the
overall TFPQ can be defined as

S 05
TFPQ = ]_L:l [TFPQswi iy 2wy ]™ .

[ 1 os—1

s _1 1
Since TFPQy; = KLS (TFPRg)#=1 (K" L Mg®) o7, where ks = (PS YSs ) cannot be observed

or estimated from the data, it is infeasible to estimate TFPQ,; and TFPQ,. Therefore, we estimate
the TFPR instead. The aggregate TFPR is defined as

PY
Ke[e2 M@
Since the aggregate revenue output is the sum of revenue output of each sector, we have

N
PY = ZS:1PS Y,

S
=K% LM% ( 1TFPR
s=

TFPR =

Q5] T As2 A[As3
K*™1L*M wasl o2 wa53
S Ko1 Loz M3 K,s™"L,s M, | >

where the expression in the parentheses is the aggregate TFPR.
Using (29), the aggregate revenue output can be represented as

S
— 5] T Os2 A fOs3 Os] g2 (3
PY = E s=1K L2 M TFPRSwK,sa)L,st,s’

S 51 O3
WK,s WM,s
— * U1, , 063 RS >
- E :s:1PSY5 “VKsYMs " :
K,s

*
wM \$

The last factor involving w captures the degree of misallocation between industries, while y! v,

represents the distortion of MRPs due to misallocation within each industry.
The aggregate AE can be measured as

PY

AE = ,
py*

(32)
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where PY* = Z§:1PSY5* represents the aggregate revenue output when the input factors are
optimally allocated. When there is no allocation inefficiency, MRPK; = MRPK, and MRPM; =

MRPM_, ¥, which suggests ylgssl = 7131535 =1, and the input allocation weights for each group satisfy
wk,s = W ; and wps = wM . for all s. Therefore, (1 — AE) x 100% represents the percentage of

aggregate revenue loss resulting from the misallocation of inputs.

4. Econometric model

4.1. The structural model

In order to estimate the structure model in section 3 using empirical data, we impose some
assumptions about the random components. Estimation of the model parameters and AE can
be based on the system of input demand and the production function. Since our focus is on
panel data, we introduce the subscript t into our econometric model and let i and s denote firm
and sector, respectively. Since we observe the revenue output P;;Y; empirically, we rewrite the
industry-specific production function? as

Rsit = Pyt Yit = ZsthO[SILO[SZ]VIO[53

sit sit
where Zsit = PsitAsit = TFPRSit.
Using (4), (12), and (13), we can obtain the nonlinear system of equations

In L — In Ky = In (Wisie/ Wisie) + cs1 + Cksit (33)
In Ly — In Mg = In (Wagsie/ Wisit) + €63 + Cusit (34)
as1 In Kgir + op In Lge + o3 In Mg; = In R — ¢50 — Vit (35)

It is worth mentioning that the input demands In Ly, In K, and In Mg are endogenous and
In Rgit, In (Wksit/ Wisie), and In (Wpysie/ Wisir) are exogenous in the individual’s optimization
problem. To estimate the model, we impose the following assumptions:

: 1 1 s — . .= . ,

[A1]: The misallocation terms ¢xsi; = In Ags and &arsir = In Apgg for the input pairs (K, L) and
(M, L) are i.i.d. random variables and are allowed to take both positive and negative values
(over- and under-utilization of inputs). The means of ¢k and i are assumed to be

zero.”

[A2]: The logarithm of TFPR is InZg =Inzy + vsir, where Inzg is a sector-specific con-
stant. Moreover, the random component vy satisfies: (i) The random component vy =
PsVsit—1 + esir follows an AR(1) process that captures the dynamic adjustment of the TFPR.
The AR coefficient satisfies |ps| < 1, and ey is random. (ii) The logarithm of revenue,
In Rgjy, is correlated with the random component ey, where egir = ¢(1In Rgjr — InRy) + ¢*
and e, represents white noise.

sit

[A3]: The input system contains three random components and is denoted as &g =

(Cksit> Susits ej‘it)/ , which follows N(Os, %), where =, = diagonal(o2,, o, 02).

Assumption [A2](i) specifies the dynamics of TFPR in (35). Assumption [A2](ii) captures
the endogeneity of In R, which implies that Cov(esi, In Ryit) = ¢alfl p> Where 61%1 g =Var(In Rg;),

and their correlation coefficient is Corr(es, In Rgie) = ¢ /,/p? + (062* /olf1 R), which is bounded

between 0 and 1. If ¢ =0, then Corr(ess, In Rgjr) =0, which suggests In Ry is exogenous. The
endogeneity of In Ry;; can be tested by the estimate of ¢.

https://doi.org/10.1017/51365100525000033 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100525000033

Macroeconomic Dynamics 11

Let ¢s; =1In (as2/as1) > €3 = In (a2 /@0s3) 5 €0 = In 250, 50 In Zgjy = ¢g + vsi¢. After imposing the
CRTS restriction o) + o052 + @3 = 1, one can use equations (33)-(35) to solve the input demand
functions as functions of the exogenous variables:

Wksi Wssi
In Lgs = ars + In Rgir + a5 (111 Km) + o3 <1n Mm) + eLsit (36)
Wisit Wisit
Wksi Wassi
In Kyir = aks + In Ry — (052 + as3) (ln Km) + a3 (hl Mw) + EKit (37)
Wisit Lsit
Wksi Wassi
In Mgt = aps + In Ryt + o (ln Ks”) — (as1 + 52) (ln ﬂ) + emsit> (38)
WLsit WLsit
where ars = Os1Cs1 + As3Cs3 — €505 ags = 053653 — Cs1 (02 + Cs3) — €05 apMs = 0s1Cs] —

cs3 (051 +@s2) — 0. Moreover, the composite —errors — ergr = ots18Ksit + A3 EMsit — Vsits
eksit = 0ts38Msit — (2 + 0s3) Cksit — Vsits and Epfsir = os1Cxsit — (o1 + s2) Evsie — Vi are lin-
ear combinations of ¢yt Cksir and vg;r. It follows that ey, eksir and e+ are correlated with each
other and also across time since v, follows an AR(1) process.

In the system (36)-(38), the intercepts ars, aks, and ay, are functions of the structural param-
eters and so are the slope coefficients. Since all coefficients of the demand system in (36)-(38) are
restricted as functions of the model parameters, it is difficult to achieve convergence when using
the MLE. Therefore, we use an indirect inference approach to estimate the model.

Let Inli = (InLg;,In K, In Mg)',  InXg = (ln R, In WKS” ,In WMS”) > &sit = (ELsits

Woisit
eksits EMsit) > and  Csir = (Cksits CMsit» €si¢)’ - Then the matrix form of the structure model in
(36)—(38) can be written as

In L = as + T's In Xi¢ + €5irs (39)
where
&sit = Vslsit — OsVsit—1)3>
1 51 O3 Q51 s3 -1
Fi=11 —(a2+as) as3 » V= — (a2 +03) os3 11,
1 (027) — (51 + 0g2) Os1 — (o1 +a2) —1

and as = (ars, ags, ays)’ is a vector of constants, whose elements are nonlinear functions of the
parameters o, &2, &s3. Moreover, the unconditional variance matrix of &g is

Var(es) = L50% B+ ToZ,T, (40)
—p7
where E3 = €3£5. The unconditional covariance matrix of &5 and &gi;—1) is
3.2
plo
Covl(esit: &si(t—1)) = ———5 E3. (41)
1 — p;g

Let O, = (ln Ag, 01, A5, GI%S, 01\245, aezs, ,Os) denote the vector of the parameters in (36)-(38).
Then the coefficients in (39), (40), and (41) give enough conditions for identifying ;.
The remaining parameter to be estimated is the parameter o, contained in the CES aggre-

gate output function. Define Sk 5 = = Wik ' g, 5= Wiilsi and Sy 5= WMS’MS’ . After taking into
> P iYsi > PgiYi > P
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account the randomness of the data, equations (16a)-(16c) suggest the following moment

conditions :
) o;—1
E eIKS“SK)Sit — 01 =0 (42a)
Os
os—1
E (SL,sit —agp— ) =0 (42b)
O
. o;—1
E <6§MﬂrSM,sit — a3 ) =0, (42¢)
Os

which can be used to identify ;. For simplicity, denote the sample counterpart of (42a)-(42c) as

1 Tksi o,—1
Nrs Zi,t e{KSlrSK,sit — U1 Sgs

. _ 1 os—1
W = M(Sk sit> SLsit> SMsits T s> Us2> s3) = | 57— D_ip SLsit — 52 %5 , o (43)
Z 1

1 ; os—
Nrs Zi,t e{MS”SM,sit — O3 SUS

where EKsit and EMS,-t are functions of ®; and can be predicted using (33) and (34) and Nt rep-
resent the total number of observations in industry s. Therefore, the estimates of ® and o, can be
identified using (39), (40), (41), and (43). We have an overidentified system.

4.2, Estimation procedure

Since all coefficients in the structural model given in (36)-(38) are restricted and functions of the
parameters, achieving convergence when using MLE may be difficult. We suggest using indirect
inference (II) estimation to estimate the model instead. See Gourieroux et al. (1993) for more
details. The II estimation identifies the model parameters through the estimates of an instru-
ment model. We now briefly introduce how to implement this method in estimating the structural
model.

To implement the II approach, we consider an approximation of the structure model and
refer to it as the instrument model. Although the estimates of the instrument model may be
biased, these estimates provide a link to the model parameters and are used as the identifica-
tion conditions. One can then use simulations performed under the initial model to correct for
the asymptotic estimation bias from the instrument model. The II approach replaces the model
with an approximated one that is easier to handle or estimate when an initial model leads to a
complicated or intractable likelihood function.

Let W, = (®j, 05) denote the whole set of parameters contained in the system and moments and
B(W) denote the set of binding functions, then

A =B(Y,) = (a, T's, s, ps> ms)

where B: ©®gy — ©4 represents the binding function, which maps the structure parameters (®y)
to the parameters in the instrument modeland moments (®4 ). For the indirect inference estima-
tion, it is required that the dimension of the binding functions be greater than the dimension of
the structure parameters so that the structure parameters are identified. Below, we briefly describe
the estimation procedure:

Step 1: Given the approximate or instrumental model, we estimate ®; by seemingly unrelated
regressions (SUR) for the system in (36)-(38) using the observed data and estimate o
using the moments in (42a)-(42c). Let
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& = IB("IJS,O) = (asa FS) ?sa )6\53 T/ﬁs)

denote the estimates.

Step 2: For a given O, we can simulate values of the endogenous variable {H?it(G)S)}i, , using the
model given in (36)—(38). In other words, given the model specification and a value of the
parameter ©;, one can draw g from their distributions and then generate the simulated
{Hg,(@ S)}i, , conditional on the exogenous variables In X;;;. The estimator of A in the hth
replication is denoted as

+h h “h ©h Ah ~h =h)’

At =B ()= (an Th Th 00
With the simulated data {H?jt((ﬂ 5) }1. ;> one can then replicate such simulations H times and
estimate the parameter A each time given W.

Step 3: In this step, we match the estimate of A from the instrument model based on the real data
and the estimates of A from the simulated data. The II estimator of W is defined as the
one that has the minimum distance between the estimates of the binding functions from
the real data and simulated data, that is,

~ PO h / L1 g h
W =arg mq}n <A - ﬁhZBh (‘IJS>) Q (A - ﬁhZ:Bh (‘IQ)) )
=1 =1

where €2 is a non-negative symmetric matrix.

For simplicity, we choose the weighting matrix €2 as a diagonal matrix, which assigns a value
of 1 for each element of the binding function. In order to identify the parameter W, it is required
that the binding function B (- ) be a function of the true parameter ¥ and the dimension of the
auxiliary parameter A must be greater than or equal to the dimension of W.

5. An empirical application

In this section, we demonstrate our model using US manufacturing data collected from
Compustat. The firm-level panel data cover the period from 1975 to 2010. We excluded firms
with fewer than five periods of observations, resulting in a final sample of 55,518 observations. We
divide the sub-industries of the manufacturing industry into seven major categories, summarized
in Table 1. The classification of sub-industries into these groups is based on the North American
Industry Classification System (NAICS) and considers similarities in production processes, input
requirements, and output characteristics. For example, Group 1 includes industries such as food,
textiles, and wood manufacturing, which are characterized by shared production techniques and
material usage. In contrast, Group 2 comprises capital-intensive industries like petroleum, chemi-
cals, and plastics, which rely on complex chemical processes. Each group is formed by aggregating
subsectors with similar economic and technological characteristics. This classification facilitates a
coherent analysis of input misallocation and productivity dynamics across distinct industry types.
By grouping industries with comparable production functions and cost structures, the analysis
can better capture heterogeneity, providing deeper insights into the impact of misallocation both
within and across industries.

The sample statistics of the inputs, revenue output, and inputs prices are summarized in
Table 2. The input prices used in our analysis are computed as follows. The price of labor is cal-
culated by dividing the total payroll by employment, while the capital price is represented by the
rental rate. The material price is derived by dividing the material expenses by the total mate-
rial deflator, where the material expenses are defined as the costs excluding payroll and capital,
adjusted for inflation. Table 2 shows a significant variation in input prices across the seven groups,
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Table 1. Group classification by the North American Industry Classification System (NAICS)

Groupl Subsector 311. Food manufacturing

Subsector 312. Beverage and tobacco product manufacturing

Subsector 313. Textile mills

Subsector 314. Textile product mills

Subsector 315. Apparel manufacturing

Subsector 316. Leather and allied product manufacturing

Subsector 321. Wood product manufacturing

Subsector 322. Paper manufacturing

Subsector 323. Printing and related support activities

Group 2 Subsector 324. Petroleum and coal product manufacturing

Subsector 325. Chemical manufacturing

Subsector 326. Plastics and rubber product manufacturing

Group 3 Subsector 327. Nonmetallic mineral product manufacturing

Subsector 331. Primary metal manufacturing

Subsector 332. Fabricated metal product manufacturing

Group 4 Subsector 333. Machinery manufacturing

Group 5 Subsector 334. Computer and electronic product manufacturing

Subsector 335. Electrical equipment, appliance, and component manufacturing

Group 6 Subsector 336. Transportation equipment manufacturing

Subsector 337. Furniture and related product manufacturing

Group 7 Subsector 339. Miscellaneous manufacturing

particularly in labor and material prices. These differences reflect heterogeneity in industry char-
acteristics, cost structures, and potentially regional or firm-specific factors that influence input
costs. For example, the mean price of material is substantially higher in Group 5, which includes
the computer and manufacturing of electronic products, likely due to the specialized materials
required in this sector. Similarly, the variability in labor prices across groups indicates differences
in labor intensity and skill requirements among industries.

Using the manufacturing firm-level data, we use an IT approach to estimate the system of struc-
ture model given in (36)-(38) for each group. Once we obtain the estimates of group-specific
structure parameters, we can then estimate the firm-specific misallocation terms Agsir and Apgsit
using (12) and (13), and the firm-specific MRP of inputs using (16a)-(16c). The group-specific
MRP of inputs and the efficient MRPs when there is no misallocation can be estimated by (23).
With these estimates, we then compute the input allocation weights wg sit, @rsir and wpysir and the
efficient weights wg .., @7 ;; and @y, ;. using (25) and (26). The sector-specific and aggregate AE
can be evaluated using (30) and (32).

To examine the differences in model estimation results under the assumptions of heteroge-
neous and homogeneous input prices, we use the average input prices for each group at each time
point as the homogeneous input prices. These averages are then utilized to generate input price
ratios for estimation. The results from both scenarios are summarized in Table 3.

A comparison of the input—output elasticities across groups reveals notable differences between
the heterogeneous and homogeneous input price models. Specifically, Groups 2, 3, 4, and 6 exhibit
more pronounced discrepancies in the estimated elasticities, suggesting that these groups are
particularly sensitive to the assumption of input price heterogeneity.
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Table 2. Sample statistics of the seven groups of the manufacturing industry

L K M PY PL Pk Py

Group 1 (N =10, 104)

mean 8.87 1,060.49 1,155.01 2,340.69 28.73 0.13 0.54

s.d. 9.07 2,723.42 3,562.92 6,484.54 12.96 0.01 0.16
Group 2 (N=9, 755)

mean 7.55 2,351.21 1,686.97 5,299.12 49.44 0.13 0.51

s.d. 18.91 12,314.31 7,064.19 25,234.71 22.29 0.01 0.18
Group 3 (N =6, 026)

mean 4.60 637.19 476.10 1,124.34 36.36 0.11 0.51

s.d. 8.31 1,406.98 947.41 2,042.04 13.10 0.01 0.17
Group 4 (N=6,816)

mean 5.07 424.60 476.43 1,101.24 39.06 0.13 0.61

s.d. 15.86 1,679.95 1,586.79 3,417.28 13.33 0.01 0.15
Group 5 (N=14,174)

mean 4.97 355.09 303.46 639.24 45.93 0.15 1.55

s.d. 16.94 1,528.81 2,021.71 3,469.44 19.54 0.02 17.00
Group 6 (N=4,735)

mean 17.86 2,130.92 1,622.90 4,027.82 44.63 0.14 0.67

s.d. 65.20 13,441.20 8,216.90 17,535.91 19.00 0.01 0.18
Group 7 (N=3,908)

mean 2.51 161.94 189.00 449.71 36.59 0.14 0.65

s.d. 5.43 380.95 437.74 979.39 15.18 0.01 0.13
All (N =55, 518)

mean 7.03 1,011.22 845.98 2,152.72 40.77 0.13 0.82

s.d. 24.89 6,723.63 4,316.10 12,404.26 18.82 0.02 8.60

Our discussion will primarily focus on the estimation results derived from the heterogeneous
input price model, as it better reflects the underlying variations in input costs across industries
and provides a more nuanced understanding of input-output relationships.

This table presents a detailed overview of the key parameters and outcomes derived from our
model for all the groups under consideration. Each column of the table corresponds to a specific
group, while each row highlights the estimated values for various parameters such as the elasticity
of substitution, MRP of inputs, and the degree of misallocation for capital, labor, and materials.
Thus, Table 3 provides a straightforward and brief overview of the impact and contribution of vari-
ous industry groups to input misallocation. This comprehensive analysis is crucial for pinpointing
sectors that could gain the most from better resource distribution and for directing future policy
measures to boost productivity.

Our estimates of the parameter o, in the CES aggregate production function, as specified in
equation (3), range from 2.61 to 3.74 for Groups 1 to 7. This parameter, oy, represents the elasticity
of substitution between differentiated outputs within an industry.

In previous studies, this parameter has often been set to specific values based on either empir-
ical findings or theoretical assumptions. For example, Hsieh and Klenow (2009) set o5 at 3 in
their paper on misallocation and manufacturing TFP in China and India. Similarly, Gopinath
et al. (2017) used the same value of 3 in their analysis of capital distribution and productivity in
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Table 3. Estimation results for each group

Parameters Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
|.Hetero 1. Homo |.Hetero Il. Homo |I.Hetero Il.Homo I. Hetero Il. Homo I.Hetero 1. Homo I. Hetero Il. Homo I. Hetero II. Homo
Constant 0.8014*** 0.2131*** —0.1024 —0.5918 1.4178*** 1.7466™** 0.1582 —0.9981 —0.0092 —1.0477 1.1723** 3.1261*** —0.5185"* —0.5703***
(0.1533)  (0.1951)  (0.1352)  (0.1155)  (0.1565)  (0.1298) (0.1985)  (0.1153)  (0.0251)  (0.0510)  (0.1224)  (0.2471) (0.1356) (0.1185)
os1 0.2228***  0.2478*** 0.1620™** 0.4533*** 0.2540™** 0.4189*** 0.1733***  0.0940***  0.2073*** 0.2143** 0.2223*** 0.3705"*  0.2615"** 0.2380***
(0.0151)  (0.0426)  (0.0175)  (0.0335)  (0.0334) (0.0317)  (0.0346) (0.0129) (0.0325)  (0.0239)  (0.0247)  (0.0203) (0.0336) (0.0301)
asy 0.5727** 0.4763*** 0.5317*** 0.3626™** 0.4734™* 0.5178"** 0.5676™* 0.8747*** 0.5828™** 0.6656™* 0.4251*** 0.5780***  0.4285***  0.4869***
(0.0166)  (0.0509)  (0.0200)  (0.0253)  (0.0294)  (0.0281)  (0.0401) (0.0112) (0.0516)  (0.0136)  (0.0208)  (0.0246) (0.0283) (0.0308)
os3 0.2045 0.2785 0.3063 0.1841 0.2726 0.0632 0.2591 0.0312 0.2099 0.1201 0.3525 0.0515 0.3100 0.2751
OKs 0.6089*** 0.6519*** 0.8326™* 0.5893*** 0.8304™** 0.2869*** 0.7437***  0.3640™*  0.6093*** 0.9443"** 0.6668*** 0.1136™*  0.7025"** 0.6244***
(0.0620)  (0.1041) (0.0428) (0.0552)  (0.0554)  (0.0324) (0.0828)  (0.0477)  (0.0244)  (0.0294)  (0.0450)  (0.0270)  (0.0571) (0.0562)
oms 1.2393** 1.1403*** 1.3544** 0.5623*** 1.5680*** 0.3409*** 1.7940***  0.5842***  0.6111*** 0.3612*** 1.0231** 0.9697***  0.8107***  0.8428™**
(0.0439)  (0.1247)  (0.0534)  (0.0633)  (0.0620)  (0.0483)  (0.1123) (0.0889) (0.0250)  (0.0451)  (0.0460)  (0.0404) (0.0914) (0.0698)
Oes 0.5011*** 0.3353*** 0.6190*** 0.4920*** 0.4504*** 0.2641*** 0.2634*** 0.1025"* 0.0273*** 0.0494*** 0.2645™** 0.1520***  0.7783*** 0.6143***
(0.0286)  (0.0567)  (0.0270)  (0.0154)  (0.0383)  (0.0355)  (0.0557)  (0.0203)  (0.0005)  (0.0055)  (0.0263)  (0.0564) (0.0389) (0.0357)
Ps 0.4177**  0.8693**  0.2884* 0.1725* 0.1018 0.0862 0.5986™**  0.1884***  0.0004 0.2281 0.1910 —0.8933 0.0104 —0.0664
(0.1645)  (0.0279) (0.1617)  (0.1014) (0.1485)  (0.1041) (0.2275)  (0.1902)  (0.0243)  (0.0951)  (0.1591)  (0.0291)  (0.1257) (0.1441)
o5 2.6090***  3.4756*** 2.8164™** 3.1708™** 3.2228"** 7.8564™** 2.5844***  25979***  3.1524*** 27392*** 3.8358*** 13.5318*** 3.7431™*  3.7045"**
(0.1584)  (0.1990)  (0.1551)  (0.1259)  (0.1465)  (0.1256)  (0.2172) (0.2101) (0.0560)  (0.1141)  (0.1319)  (0.3193) (0.1508) (0.1515)
¢ 0.1166™* 0.0055*** 0.0444* —0.0467* 0.0486 0.3917 —0.0952**  —0.1237** 0.4969*** 0.0945*** 0.0600**  0.8905** —0.3125"** —0.3064™**
(0.0345)  (0.0113) (0.0248)  (0.0223)  (0.0302)  (0.0479)  (0.0457)  (0.0326)  (0.0253) (0.0136) (0.0207)  (0.0627) (0.0512) (0.0475)
N 10,104 9,755 6,026 6,816 14,174 4,735 3,908

Note: ***,** "and * denote 1%, 5%, and 10% level of significance, respectively. Numbers in parentheses are the bootstrapped standard errors based on 200 replications.
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Southern Europe. More recently, Bils et al. (2021) set o; at a slightly higher value of 4 in their study
of factor shares and productivity.

According to Hsieh and Klenow (2009), the estimated TFP gains from reallocation are highly
sensitive to this elasticity o;. They found that China’s hypothetical TFP gain in 2005 increases
from 87% under o5 = 3 to 184% with oy =5, and India’s in 1994 increased from 128% to 230%.
When o5 is higher, the convergence of TFPR gaps slows in response to the reallocation of inputs
from low to high TFPR plants, resulting in greater potential gains from equalizing TFPR levels.

The variation in our estimated values of o5, which range between 2.61 and 3.74, suggests
that the elasticity of substitution may differ across different groups or sectors, reflecting varying
degrees of flexibility in response to input reallocation. These estimates are slightly lower than the
values commonly assumed in the literature, indicating that, for some groups, the ability to substi-
tute between differentiated outputs may be more constrained than previously thought. This has
important implications for understanding the dynamics of input misallocation and the potential
productivity gains from more efficient resource allocation within these groups.

Table 3 provides crucial insights into the variability and significance of the misallocation terms
and dynamic adjustment parameters across different groups within the manufacturing sector.
Specifically, the table reports the variances of ¢xs and {ui (denoted as ogs and oy, respec-
tively). The results indicate that these misallocation variances vary significantly across the groups
analyzed. The statistical significance of og; and oj; shows the importance of accounting for firm-
specific misallocation when assessing overall productivity. The differences in these parameters
across groups suggest that some sectors may experience more pronounced misallocation issues,
which in turn can have a substantial impact on those sectors’ productivity and, by extension,
on aggregate economic performance. This variation also highlights the need for targeted policy
interventions that address the unique misallocation challenges faced by different industries.

In addition to the misallocation terms, Table 3 also reports the dynamic adjustment parameter
in TFPR, denoted as p,. This parameter reflects the persistence or inertia in the revenue-based total
factor productivity (TFPR) over time within a group. The values of p, vary substantially across the
groups, and these variations are statistically significant. This finding indicates that the dynamic
behavior of TFPR is not uniform across sectors—some groups exhibit higher levels of persistence,
meaning that past productivity levels have a more prolonged influence on current productivity. In
contrast, other groups may show more rapid adjustments in TFPR, suggesting that productivity
in these sectors is more responsive to changes in input allocation or external shocks.

The substantial variation in ps across groups also points to the existence of different underlying
mechanisms driving productivity dynamics in different sectors. For instance, industries with high
ps values might be characterized by longer production cycles or more rigid structures, making
it harder for them to adapt quickly to changes. In contrast, industries with lower values of p;
might be more flexible and better able to adjust their production processes in response to changing
conditions. The estimate of ¢ can be used to test the endogeneity of In R. With the exception of
Group 3, all ¢ values are highly significant across the other groups, indicating the presence of
endogeneity in the revenue variable.

The upper left panel of Figure 1 provides a dynamic visual representation of the distribution of
revenue output among the seven groups analyzed during the sample period. This panel captures
the relative contribution of each group to overall revenue, providing insight into how output is dis-
tributed among different segments of the manufacturing sector. By examining this panel, one can
observe the variations in revenue shares across groups, noticing which sectors are more dominant
in terms of output and how this distribution might have evolved over time.

The remaining three panels in Figure 1 complement this analysis by illustrating the alloca-
tion of capital (K), labor (L), and materials (M) in the same seven groups. Each of these panels
presents the proportion of each input that is used by the different groups, providing a detailed
view of how resources are distributed within the manufacturing sector. These panels are crucial
for understanding the relationship between input allocation and revenue generation, as they allow
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Figure 1. Shares of PY, K, L, and M of groups 1-7 from 1975 to 2010

for a comparison of whether groups with higher revenue shares are also those that receive a larger
portion of the inputs.

By analyzing input allocation alongside revenue shares, these panels help identify potential mis-
allocations of resources. For example, if a group with a relatively low share of revenue is receiving
a disproportionately high share of one or more inputs, it could indicate inefficiencies in resource
distribution. Conversely, if a group with a high revenue share is allocated fewer inputs, it might
suggest that the group is operating more efficiently or is more productive with the resources it has.

The subgraphs in the upper panel of Figure 2 illustrate the comparison between the actual
capital allocation weight and the optimal capital allocation weight across Groups 1 to 7. These
weights are derived using the formulas provided in equations (25) and (26), which calculate the
proportion of total capital allocated to each group relative to the theoretically optimal distribution
based on the predictions of our model. By visualizing these weights, the graphs allow us to assess
the extent of misallocation within each group, highlighting discrepancies between the current
capital distribution and what would be considered efficient under optimal conditions.

Similarly, the subgraphs in the lower panel of Figure 2 present comparisons of the material
allocation weight against the optimal material allocation weight for Groups 1 to 7. These weights,
also calculated using equations (25) and (26), represent the share of total materials allocated to
each group versus the optimal distribution as suggested by our model. The visual comparison in
these graphs enables us to identify patterns of material misallocation, revealing how closely the
actual allocation of materials aligns with the optimal scenario.

The upper panel of Figure 3 illustrates the temporal dynamics of MRPK s and MRPK . , where
their ratio, yx, compares the actual and optimal marginal revenue products of capital (MRPK)
across sectors. This comparison provides insights into key misallocation patterns in capital allo-
cation. The lower panel of Figure 3 highlights material allocation patterns, with deviations from
unity indicating inefficiencies in capital or material usage. Collectively, these panels emphasize the
sector-specific nature of misallocation, demonstrating that inefficiencies vary significantly across
industries. By addressing these misallocations, particularly in sectors with pronounced discrep-
ancies in capital and material inputs, targeted policy interventions could significantly enhance
aggregate productivity. These findings underscore the potential gains from reducing misallocation
to improve overall economic efficiency and sectoral performance.
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Figure 3. MRPK, MRPM and the ratios of MRPK and MRPM for groups 1-7 from 1975 to 2010

Figure 4 presents a detailed examination of the efficiency of allocation in the seven groups
of the manufacturing sector, as evaluated using the equation specified in (30). An allocation is
fully efficient when AE = 1. This figure is central to understanding how well resources are being
utilized within each group relative to the optimal allocation that would maximize productivity.
We used the estimation results from the homogeneous input price model in Table 3 to calcu-
late allocative efficiency. Overall, the time trends of allocative efficiency estimated under both the
homogeneous and heterogeneous input price assumptions appear largely consistent. However,
the allocative efficiencies across all groups under the homogeneous input price assumption are
significantly higher. This finding aligns with the results of Bils et al. (2021), where the assumption
of homogeneous input prices was maintained. These observations suggest that the homogeneous
input price assumption may lead to overestimation of allocative efficiency. A similar result was
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Figure 4. Allocation efficiency for groups 1-7 from 1975 to 2010

also found in De Loecker (2011), where he found that correcting for unobserved prices leads to
substantially lower productivity gains. By comparison, the heterogeneous input price model pro-
vides a more detailed perspective, capturing variations in input prices across sectors and reflecting
a more realistic measure of allocative efficiency.

In the context of this analysis, AE measures the degree to which the actual distribution of
inputs—capital (K), labor (L), and materials (M)—within each group aligns with the ideal dis-
tribution that would lead to the highest possible output or productivity. A higher value of AE
indicates that a group is effectively using its inputs in a manner close to the optimal scenario, min-
imizing waste, and maximizing output. In contrast, lower efficiency values suggest that there are
significant deviations from the optimal input allocation, leading to potential productivity losses.

The results shown in Figure 4 reveal variations in AE between the groups. For some groups, the
AE may be relatively high, indicating that they are utilizing their input close to the optimal level.
On the other hand, groups with lower AEs are identified as having suboptimal input distributions,
which could be due to various factors such as market imperfections, regulatory constraints, or
lack of access to necessary resources. These inefficiencies suggest that there is room for significant
improvement in how resources are allocated, and addressing these issues could lead to substan-
tial gains in productivity. This figure highlights the importance of efficient resource allocation in
driving productivity and highlights the potential gains that could be realized by optimizing input
use across the different segments of the manufacturing industry.

The observed trends of rising and falling aggregate efficiency in Figure 4 align with macroeco-
nomic literature. First, economic recoveries often lead to reallocations of resources toward more
productive firms, a “cleansing effect” described by Caballero and Hammour (1994). The efficiency
gains observed in the early 1980s likely reflect post-recession adjustments after the stagflation
period. Second, the late 1990s efficiency surge corresponds to the tech boom, where advance-
ments in information technology reduced costs and improved resource allocation, as noted by
Oliner and Sichel (2000). Third, the declines in efficiency observed during the early 2000s and
the 2007-2009 financial crisis were likely driven by disruptions such as the Dot-Com Bust and
tight credit markets, which led to significant resource misallocation and operational inefficiencies.
These periods of economic turbulence were characterized by market uncertainty and constrained
access to capital, further exacerbating inefficiencies in production and investment decisions.
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Table 4. Loss of revenue output due to misallocation

1975 1980 1985 1990 1995 2000 2005 2010

I. Heterogenous input prices

vOutput loss - within group:

Sroup 1 138 4684 B 3917 R 4272 B 4604 B 4461 B 4519 B
Groupz S 4725 R 5295 S 4389 R 4803 S 5254 S 5297 o 5438 R
Group3 5227 5480 4626 5023 5405 5299 5382
Group4 B 4498 S 4926 B 4079 B 4465 B 4874 B 4861 B 4975 B
Groups A 4646 S 3870 R 4228 S 4572 S 4458 o 4528 R
”Groqu v 6 ” 59.67 o 50.34” 6 59.15  59.16 60;45 -
! Group7 A 5821 B 4932 B 5345 B 5751 B 5673 B 5770 B
Output loss - between groups:
Overall 48.43 52.83 43.94 49.08 51.63 51.41 52.83 54.07
Il. Homogenous input prices
Output loss - within group:
Group 1 42.51 47.07 37.46 43.23 47.26 48.81 50.41 53.39
Group 2 40.42 37.15 27.33 33.08 38.07 36.65 35.68 40.25
Group 3 26.91 17.80 10.87 14.76 19.12 15.26 11.92 16.64
Group 4 9.21 7.80 5.30 6.72 8.09 7.50 7.06 8.40
Group 5 25.61 25.30 18.66 22.52 25.75 25.55 25.57 28.42
Group 6 23.70 15.10 8.99 1241 16.32 12.70 9.57 13.82
Group 7 42.15 46.91 37.37 43.10 47.08 48.70 50.36 53.28
Output loss - between groups:
Overall 35.37 33.40 24.67 30.87 34.90 33.42 32.18 35.36

Note: Loss of revenue output is defined as (1-AE)*100%.

We further compute the loss of revenue output due to misallocation, which is defined as the
percentage loss of the group-specific efficient output, that is, (1 — AE;) * 100%. We summarize
the results for the models under both heterogeneous and homogeneous input price assump-
tions at 5-year intervals, spanning from 1975 to 2010, in Table 4. The results also indicate that
under the homogeneous input price assumption, the losses caused by the suboptimal allocation of
production inputs are relatively overestimated.

Figure 5 illustrates the dynamic behavior of the logarithm of revenue-based total factor pro-
ductivity (TFPR) for each group, represented as In (TFPR;), alongside the logarithm of efficient
TFPR, denoted as In (TFPR}), fors=1,...,7.

This dynamic comparison allows us to visualize how the actual TFPR for each group diverges
from the theoretically optimal TFPR, providing insights into the efficiency of resource allocation
within each group over the study period. The graph highlights periods where significant misallo-
cation may have occurred, as indicated by a widening gap between the actual and efficient TFPR
lines, and, conversely, periods of more efficient allocation when these lines converge.

In Figure 6, we further explore the implications of this misallocation by comparing the aggre-
gate revenue output across the seven groups. The blue line in this figure represents the actual
aggregate revenue output, calculated by summing the revenue output of each group based on
the existing input allocation. In contrast, the red line depicts the aggregate revenue output that
would have been achieved if inputs had been allocated optimally across all groups, as derived
from our model’s predictions. The difference between these two lines over time provides a visual
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Figure 6. Aggregate revenue output and allocation efficiency from 1975 to 2010

representation of the potential productivity gains that could be realized through more efficient
resource allocation.

Additionally, Figure 7 includes a measure of aggregate AE, which is calculated using equation
(32). This efficiency metric quantifies the degree to which actual resource allocation falls short
of the optimal scenario, offering a single value that summarizes the overall efficiency of resource
distribution across the entire economy. The AE measure is crucial for understanding the broader
economic impact of input misallocation, as it directly relates to the potential increase in aggregate
revenue output that could be achieved by reallocating inputs more effectively.

Together, Figures 4 and 7 offer a comprehensive view of both group-specific and aggregate-
level misallocation dynamics. By visualizing the actual versus optimal TFPR and revenue outputs,
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these figures help to clarify where inefficiencies lie, how they evolve over time, and the scale
of the economic benefits that could be gained from improving resource allocation across the
economy.

Figure 7 provides a comparative analysis of the aggregate logarithm of revenue-based TFP,
In (TFPR), and the logarithm of the efficient aggregate TFPR, In (TFPR*), over the period from
1975 to 2010. This figure is crucial in illustrating the broader trends in productivity growth across
the economy when considering actual versus optimal resource allocation.

The graph presents two distinct lines. One line represents the actual aggregate In (TFPR), which
is the cumulative measure of productivity derived from the observed allocation of inputs between
all firms within the study. The other line represents In (TFPR*), which is the hypothetical produc-
tivity level that could have been achieved if the inputs had been perfectly allocated according to
the predictions of the model.

To quantify the difference in productivity growth between the actual and optimal scenarios,
we calculate the average growth rate of In (TFPR) and In (TFPR*) during the study period. This
average growth rate is determined by regressing the logarithm of the TFPR on time and thus
capturing the trend of productivity growth. Our analysis reveals that the average growth rate of the
actual aggregate TFPR from 1975 to 2010 is approximately 2.8%. In contrast, if inputs had been
optimally allocated according to the efficient scenario, the average growth rate of the aggregate
TFPR could have been as high as 3.2%.

This comparison highlights the significant impact of input misallocation on overall produc-
tivity growth. The gap between actual and optimal growth rates, as illustrated by the two lines
in Figure 7, underscores the potential productivity gains that remain unrealized due to inef-
ficiencies in resource allocation. During the 35-year period, these seemingly small differences
in annual growth rates accumulate, leading to substantial differences in aggregate productivity
levels.

Thus, Figure 7 not only provides a visual representation of the historical trends in aggregate
productivity, but also emphasizes the economic importance of improving resource allocation. By
addressing the inefficiencies that contribute to the divergence between In (TFPR) and In (TFPR*),
policymakers and firms could potentially unlock significant productivity gains, driving more
robust economic growth over time.
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6. Conclusion

In this paper, we propose a model for estimating input misallocation based on the firm’s profit
maximization problem. The model is designed to capture the intricacies of how firms allocate
resources, acknowledging that these decisions are influenced by various factors such as varying
input prices and the specific composition of inputs used in production. Building on the HK
model, our approach introduces several key enhancements that allow for a more accurate and
comprehensive analysis of resource AE.

First, our model extends the HK framework by incorporating heterogeneity in input prices
across firms. This extension acknowledges that firms do not operate under uniform conditions:
factors such as market power, location, and access to resources result in different input prices
for different firms. In addition, we refine the input structure by including three distinct inputs:
capital, labor, and materials. This more detailed input structure enables us to better capture the
complexities of production processes at the firm level and the resulting inefficiencies that may
arise from misallocation.

Second, rather than relying on calibration, we employ a rigorous econometric approach to esti-
mate the model parameters. The estimation of model parameters and AE is based on the system
of input demand and the production function. The restricted coefficients in the demand system
complicate the MLE, especially with numerous constraints. To overcome these challenges, we use
an indirect inference procedure. This method allows us to estimate the derived input demand
function from the firm’s optimization problem, making the analysis endogenous and directly tied
to the economic behavior of firms. By estimating these parameters using firm-level data, we are
able to provide a clearer and better understanding of how misallocation impacts productivity. The
resulting estimates of firm-specific misallocation, MRPs of inputs, and measures of total factor
productivity (TFPR and TFPQ) are then aggregated to provide insight at the sectoral and industry
levels.

Our findings highlight significant productivity losses due to resource misallocation.
Specifically, we observe that the average productivity growth rate (TFPR) from 1975 to 2010 was
approximately 2.7%. However, our counterfactual analysis indicates that this growth rate could
have reached 3.5% with optimal input allocation. This disparity underscores the substantial eco-
nomic cost of misallocation and suggests that policies aimed at reducing these inefficiencies could
lead to notable improvements in overall economic performance.

Our focus, distinct from the models mentioned above, is primarily on the input allocation at
the firm level. We analyze the revenue loss resulting from misallocation at the firm level, which is
then used to assess the revenue loss at the aggregate level.

By offering a more granular analysis of firm-level misallocation and its aggregate effects, our
study makes a valuable contribution to the ongoing discourse on the determinants of productivity
and the role of resource allocation in driving economic growth. It not only provides empirical
evidence of the magnitude of misallocation’s impact on productivity, but also offers a framework
for assessing and potentially improving AE across firms. Our findings have important implications
for policymakers, as they suggest that targeted interventions to enhance resource allocation could
yield substantial benefits for the economy as a whole.

Notes

1 Note that we are assuming that output Y; is determined from maximizing the industry’s profit and is assigned to the firm.
That is, Yy; is not a choice variable to the firm.

2 Allocative distortions refer to external factors, interventions, or market frictions (such as taxes, subsidies, price controls,
or monopolies) that distort the optimal allocation of resources in an economy. However, inefficiency can occur even without
explicit distortions if firms, industries, or regions fail to use resources optimally. Thus, distortions are often the causes or
sources of allocative inefficiency.

3 Note that profit maximization with a given output is equivalent to cost minimization.

4 We thank an anonymous referee for raising the issue of the endogeneity in revenue. De Loecker (2011) and Grieco
et al. (2016) provide alternative approaches to estimate a production function with unobserved input price heterogeneity.

https://doi.org/10.1017/51365100525000033 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100525000033

Macroeconomic Dynamics 25

Incorporating such methodologies into the current framework could be a promising direction for future research, particularly
in addressing firm-specific pricing and dynamic input adjustments
5 This assumption can be relaxed to include variables that can explain misallocation.
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