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ASYMPTOTIC DISTRIBUTION OF THE NUMBER

AND SIZE OF PARTS IN UNEQUAL PARTITIONS

G. SzZEKERES

An asymptotic formula is derived for the number of partitions of
a large positive integer =z into »r unequal positive integer
parts and maximal summand K . The number of parts has a normal
distribution about its maximum, the largest summand an extreme-
value distribution. For unrestricted partitions the two
distributions coincide and both are extreme-valued. The problem
of joint distribution of unrestricted partitions with »r parts

and largest summand k remains unsolved.
1. Introduction.
Let qr(n) denote the number of partitions of »n into » unequal

positive integer parts (unequal partitions for brevity). The asymptotic

behaviour of qr(n) for fixed large 7z and variable r is known over

a wide range of »r[6] , but in a form which is not very easy to handle.
For applications it is better to have a simple expression which, although
valid in a more restricted range, is nevertheless sufficiently extensive

to include almost all partitions.
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It is well known (Erdos and Lehner [3], in a more precise form in
log 2

{6]) that the maximum occurs very nearly at ro = -—ff—- /m  where

(1) e = —— =0.90689968... ,

2v3

and the following is a fairly straight forward consequence of the main

asymptotic formula of [4]

THEOREM 1. Let

(2) o=r-82 foon!/?
Then asymptotically for large n
2
1 — ]
(3) q. (m) = ——— eapl(2eMm) exp|- = —
r in /5? Y h
where
log 2|%
(4) y=1- _oa_c_ = 0.41583918...

Hence the distribution about ro is Gaussian, with variance g%-#zi.

Note that

do

I3

%

exp(2e/n) fw exp - %

Y q. (n)
r T m/6y -

exp(2cvn)

= 4 31/% 374 = QM ,

the well known asymptotic expression for the total number of unequal
partitions. This shows that (3) is valid over almost all partitions. The
symbol = will always mean that the quotient of the two sides tends to 1

when 7n > o ,
Next consider Qk(n) , the number of those unequal partitions in

which Xk is the largest summand. Erdos and Lehner have shown [3] that

for almost all unequal partitions the largest summand is

e
k = 7?'109 /n + 0(/n w(n)) where w(n) tends to infinity arbitrarily

k-1
slowly. Using the generating function xk T (1+z°) = ) Qk(n)xn one
v=]1 n
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can obtain by the circle method the following more specific result:

THEOREM 2. Let X be determined from the equation

1 e ck
(5) logh=%1logn-— k , A =vVnexpl-—1.
2 e -

Then for large n and for X = 0(n1/6) , 1/x = 0(n1/6) s

(6) @, (n) = Qtn) ezp |- % X

>

The result of Erdos and Lehner follows from here immediately

(but not the other way round). Formula (6) represents a so called

n

n
extreme-value distribution about ko = 7;-log = with variance 2n ,

see for example [7, p.930].
What can one say about the distribution of unequal partitions of
7  in which both the number of summands, »r , and the largest summand, Xk,
vary? This problemcame up recently in the counting of spiral walks on
a triangular lattice [7] where it was assumed that for every fixed r in

a suitable neighbourhood of r_  , the distribution is still given by (6)

0
with Q(n) replaced qr(n) . That is, it was assumed that the

distributions with respect to »r and Xk are independent in a sufficiently
extensive region which embraces almost all partitions. We shall prove
the following more precise result which clearly contains both Theorems 1

and 2 as corollaries:

THEOREM 3. Let gq(n; r, k) denote the number of those unequal
partitions of n in which the number of swmmands is r and the size of
the maximal swmmand is k . Then for large n and for

(7) o=r- Z—o%—‘?- o= o(n1/5) , A=n e—("k//;= O(nl/a), 1/ = o(nl/s),

2
A A co
(8) qgn;r,k) ————s5 exp {20/7:1_ -—- —} .
/6y 052 °

We shall only deal with the main asymptotic term; error terms can
be obtained but they are fairly complicated. A similar problem arises of

course with unrestricted partitions. The distribution of the number of
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parts and maximal summand for unrestricted partitions has been studied
extensively by Szalay and Turan [5] and by Erdds and Szalay [4], but they
never write down asymptotic expressions like (8), not even like (4) or
(6). The latter can be obtained quite simply from the general asymptotic
formula of [6]:

THEOREM &4, Let pk(n) denote the number of unrestricted partitions

of n 1into precisely k parts, or what is the same, in parts with
largest summand k . Let e, = 1//6 , n(n) a positive function tending

monotonically to 0 , and

/— ke
u=-c—71 e:x:p-——o R u+ls/ﬁn(n)
2 n H
Then
ue
pk(n) = Pn) —2 ¥
/n
where
P(n) = exp(2 ¢ _/n)
4/3n o
18 the total number of unrestricted partitions of n .
We thus have an extreme-value distribution about ko = gZ:log gz
o [

(with variance n ) for both the maximal summand and the number of parts.
The two counting numbers of course coincide because of the one to one
correspondence between partitions in k parts and conjugate partitions
with largest summand Kk . For the same reason the joint distribution
must necessarily be symmetric in k and r , but no analogy of Theorem
3 has been found for unrestricted partitions. The proof of Theorem 4 is

omitted.
2. Proof of the asymptotic formula.
For fixed k consider

Fk(x,t) = (1+tx)(1+t32)...(1+txk) =] Qn;r,k)a " .
n,r

Clearly @(n;r,k) is the number of partitions of n into r unequal
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parts, each < k . Hence
k n,r
Gk(x,t) = Fk(x,t) - Fk_l(x,t) = tx Fk_lﬁx,t) =L qln;r,k)x’t
and so
1 1 -n-1 -r-1
qln;r,k) = 5= fd= T faw G (z2,0) 2 w
(9) k-1
= - Lg fdz fdw exp{ z log (lmzv)}z_(n-k+l) w T >
4w v=]1

integrated over the product Cb x Cz of two circles

. _ _—atld .
Cb rw=e B Cz 23

= e-B+¢e ,~ M <¢Sw,-1 <8 <7,

Here a,B8 can be any real numbers, but will be chosen so that the saddle

point conditions

k=1 kil ]
(10) —2 ek, —L -
v=1 ¢¥*VB, 1 v=1 %87

be fulfilled, at least in suitable approximation. To achieve (10) write

(11) a=_§£2, B___L+O_log__2_
YV/n n n

where ¢,y,0 are defined as in (1), (4) and (7). Then since o = o(nl/s),

+ o(1)

2. 2
(12) 1/B=ﬁ_01032+01332

2
Yy e Ye vn
Defining further u = log(/zyk) where XA is as in (5), we f£ind from (7)
and (1) that

(13) u = %‘log n - log A = ek/Vn

and

(14) kg = u + 23~1§ﬂ—§

The assumptions o = o(nl/s), A+ 1/x = O(nl/B) imply

(15) u=0(logn), e =2/t = o(n-l/s), k = 0(/n log n) ,
a=om %),

Using these and (7) we get from Euler-Maclaurin
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k1 g 14 a4t
—-I-F_—:E[ -_CJ..E—.*O(J)
v=1 e*"VP.71 ¢ ¥4
= %— log(1+e™) - log(l+e ®7%) ] + 0(1)
2
=£1092_ﬁ_21_09_2 +0(n1/61ogn)
e 2ec Y c2
2
=—'£—£10g2+-3—(1-(1—02—2))+0(n1/6logn)
=r+0(n1/6 log n)
Similarly
k-1 U
t
z S =L dt U + 0(1)

v=1 ea+v6+1 82 0 ea+t+1 Zs(ea+u+1)

2
LT _ log 2 + O(ue ™) } + 0(n/6 log n)
82 12
=5 + 0(n2/3 log #n) .

Since k = 0(/ log n) we see that in consequence of definition (11) and
our assumptions, (10) is replaced by

k-1 k-1
(16) ) —_ = n—k+0(n2/3log n, 1 1

1/6
= r+0(n"’ "log n) .
v=1 ea+v8+1 v=] ea+v8+1

Both seem fairly crude approximations to (10) but they will suffice.

Returning now to the evaluation of the repeated integral (9) in the

neighbourhood of ¢ = 0, 8 = 0 write

, el sa5 L el s 277

The integrals over the complementary arcs n_l/s < |¢| sT, n—5/7 < |e] <7

- e—a+z¢ 2 = e—B+Le

>

(17) t

are negligible compared with the dominant part (17); this can be seen
just as in [6] or in Andrews [2], chapter 6 and the estimates need not be
repeated here.

The integrand of (9) over the range (17) then becomes

k-1 "y
(18) - exp { T log(14e™ @ VBFOFIVE) i n 1)4-i(n-kJb }d¢de :
v=1

https://doi.org/10.1017/50004972700026320 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026320

95
Unequal partitions

Here

k-1 ., .
log(1ee @ VEFLEFLVE) _ ¥ 10g {1+e"°“"3(1+4; ($+v8) -15(¢+ve)2
v=1

+ 0(|¢+ve]3)}

g_(vae)Z + 0(|¢+vel3)}

-a-vB i
Z log(l+e OVB) + z log {1 +———(¢+v6) -
+vB+1 2 ea+v8+1 ea+v6+1

[
e

-a~-vB . $ v
1 log(lte ) +1i ) +1 ) —
ea+v8+1 ea+VB+1

a+vB 3 3
_%Z_a_iv——s—-—Z(¢+ve)2+0(m_+Jiéj!_')
(e +1) 8 B

= T log(1te™%V8) 4 irg + itni)e + 0(|o| 7% 10g n) +0(|6]n% %109 n)
oFvR
-1 = wve)? 00 1717
(e®VP11)

by (16). All summations go from 1 to k-1 . But n1/€ b= o(n—1/30)

2/35 _ om1/21,

>

n , hence the expression in (18) is equal to
k-1 —a-vB. 1 k-1 ea+v6 2

(19) - exp { Z log(Il+e )—5 WZ’ (¢p+ve) +o(1)} dede .
v=] v=1 (e +1)

Summarising from (9) and (19)

k-1
ar+ (n-k) exp { z log(1+e_a—v8) } .

qn;r,k) = —lg-e
v=1

4w
n-1/5 n-5/7

at+t
W [ ew{ g [ oy (g 0 s
S VRV 0 (%41

But from (13) it is seen that u goes to © 1like log n throughout the
whole range of A and we can replace y by « in the ¢-integral, also

-1/6

a =0 ) by 0 . Furthermore

c 2

2 1.1 2
o2/ =Ln /10 . eespl = 1 ,3/85 ) 62/83 . %nz/u
<] [«

at the upper integration limits of ¢ and 8 and we can replace these
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limits by infinity in the asymptotic expression., Hence

k-1
(20)  qln;r,k) = LZ LarHBink) { T loglire™V8) } .
4 v=1
X exp{' e i (or £ 0)%a } o
—c0 -0 28 0 (et+1)2 8

To evaluate the double integral note that

o t @© t
1 e 1 1 te 1
A== dt = — B =— ————F dt = —5 log 2
28 %0 (etr1)? 48 ° 28 0 (%+1)® 262 ’
C = L : tzet dt = L ﬁ
283 0 (et+1)2 83 12
Thus
o ® 2 2 2y -1/2
[ ] o (AYTHEBOOICOT) g g T g2 [1_12__ (logn 2,
- Yac-B
- 1202 _ 2
3 n /5 n
and
1 k1 -a-vB
(21) qg(n;r,k) exp { z log(1+e ) + or + B(n—k)} .
4/3y n v=1

It remains to evaluate the expression in the exponent. Once more
by Euler-Maclaurin

k-1 -a-vB 1 u -o-t
Y log(lte )=§f log(1+e” ¥ ")dt -
0

v=1

1
2

-0-U

log(Ite™®) - -é—log(1+e )+0(1)

o]

i ¢ ¢ -t -a-t
[f log(1+e “)dt - [ log(1+e” ")dt-f 1og(1+e )dt]
0

8 0 u
1

-Elog2+o(l)

1 112 a -u 1
=E(ﬁ-alog2+-z-—e)-51092+o(1)
=c/77+g-log2+cL—l—ilogZ+o(1)

Y Y‘/n- e 2

and by (7), (11), (12)
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ar + Bn-k) = - 288 (6 + 2092 &) 4 e+ L 10g 2 - 1og-£z-+ o(1)
/— C Y A
y/n
Substituting these into (21) we finally obtain
A S A 002
q(n;r,k) = ————=— exp [Zc n-=- ———-) »
4/y n>/? S

that is, expression (8).
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