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Abstract

Upper deviation results are obtained for the split time of a supercritical continuous-time
Markov branching process. More precisely, we establish the existence of logarithmic
limits for the likelihood that the split times of the process are greater than an identified
value and determine an expression for the limiting quantity. We also give an estimation
for the lower deviation probability of the split times, which shows that the scaling is
completely different from the upper deviations.
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1. Introduction

We consider a one-dimensional continuous-time Markov branching process {Z(t); t ≥ 0}
with infinitesimal generating function f (s)− s, where f (s) = ∑

i≥0 pis
i with pi ≥ 0 for all

i ≥ 0 and
∑
i≥0 pi = 1 (see, e.g. [3]). We recall the construction of the process {Z(t)} and

introduce some required notation. Let {ξi, i ≥ 1} be a sequence of independent and identically
distributed (i.i.d.) random variables with generating function f , and let ηi = ξi − 1. We define
Sk0 = Z(0) = k for k ≥ 1, and Skn = k + ∑n

i=1 ηi for n ≥ 1. Let I := inf{n ∈ N; Skn = 0}.
If Skn �= 0 for all n ∈ N then I = ∞. Given the sequence {ξi}, let τ k1 , . . . , τ

k
I be mutually

independent exponential random variables with means

E[τ kj | {ξi}] = 1

Skj−1

.

We define the sequence of split times by T k0 = 0 and T kn = τ k1 + · · · + τ kn for 1 ≤ n ≤ I , and
let

Z(t) =
{
Skn−1 for T kn−1 ≤ t < T kn , 1 ≤ n ≤ I ,

0 for T kI ≤ t .

On the event I < ∞, we employ the convention that T kn = +∞ for any n ≥ I + 1. This
event corresponds to the extinction of the branching process. Let λ denote its probability, which
is the smallest root in [0, 1] to s = f (s). We also define λ∗ = f ′(λ).

We can now state our main theorem.
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Upper deviations for split times 1135

Theorem 1. In the above setting with 1 < f ′(1) < ∞, we define ξmin = min{i, pi > 0}. For
any x > 0 and k ≥ 1, we have

lim
n→∞

1

log n
log P

(
∞ > T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)
= −xg(ξmin, k), (1)

with

g(ξmin, k) = k 1(ξmin ≥ 2)+ k(1 − p1) 1(ξmin = 1)+ (1 − λ∗) 1(ξmin = 0).

Although split times have been studied in [2] (in the case where ξmin ≥ 2) and very precise
large deviations are known for supercritical Galton–Watson processes [4], [5], [8], [10], [11],
to the best of our knowledge, (1) cannot be obtained directly from results in the literature and
so we provide a complete proof in the next section.

To gain some insights about (1), we interpret the process Z(t) as a population process
describing living particles at time t . Note that if ξmin ≥ 2 then T kn is exactly the first time when
the population increased by an amount n, starting with an initial population of k. Thanks to
[2], the growth rate of T kn is of the order log n/(f ′(1)− 1). Hence, the upper deviation for T kn
analysed in (1) corresponds to an event where the population remains small for a large amount
of time. Since each initial particle gives rise to a population which cannot become extinct, each
of these subpopulations has to remain small and the linearity of g in k is then easy to understand.
When ξmin = 1, note that some split times are not real split times for the population since a
particle can replicate itself at a split. An easy change-of-time argument allows us to reduce this
case to the previous case and introduces a factor 1 − p1. Finally, when ξmin = 0, the situation
is radically different as extinction is possible. In this case, the function g does not depend on k.
Indeed, the typical event for a population starting with k particles to remain small but positive
for a long time is that k− 1 of these particles become extinct while only one particle replicates
itself for a very long time. This can be seen by the following argument giving an interpretation
of λ∗.

Let Xp be a Galton–Watson tree with offspring distribution p = (pi)i≥0, i.e. a random tree
where the root and all successive descendants have a random number of children independent
from the rest and with distribution p. Let X+

p ⊆ Xp be the set of particles of Xp that survive,
i.e. have descendants in all future generations. Then X+

p contains the root of the original
branching process with probability 1 − λ, and is empty otherwise. We denote by ξ the random
variable with distribution P(ξ = k) = pk . For η ∈ [0, 1], we let ξη be the thinning of ξ
obtained by taking ξ points and then randomly and independently keeping each of them with
probability η, i.e.

P(ξη = k) =
∞∑
r=k

pr

(
r

k

)
ηk(1 − η)r−k.

Note that the number of surviving children has the distribution ξ1−λ. Let ξ+ denote the offspring
distribution in X+

p . Conditioning on a particle being in X+
p is exactly the same as conditioning

on at least one of its children surviving, so that

P(ξ+ = 1) = P(ξ1−λ = 1 | ξ1−λ ≥ 1) =
∑
k≥0 kpkλ(1 − λ)k−1

λ
= f ′(λ) = λ∗.

Hence, the factor 1 − λ∗ in (1) is obtained by the same kind of change of time that led to the
factor 1 − p1 in the case ξmin = 1.
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1136 H. AMINI AND M. LELARGE

Theorem 1 will be used to establish the asymptotic of the diameter in random graphs with
exponential edge weights (see [6] for regular graphs corresponding to pr = 1 for some r ≥ 2),
which is the subject of our forthcoming paper [1]. We think that it is of independent interest as
it gives some insights into how slow the growth of a continuous-time branching process can be.

Remark 1. We describe here how to heuristically derive our main result using known
properties of continuous-time Markov branching processes. It is well known (see, e.g. [3,
Theorem 1, p. 111]) that Z(t)e−(f ′(1)−1)t has an almost-sure limit W . The limiting random
variable W has an atom at 0 of size λ. Furthermore, the random variable W , conditioned to be
positive, admits a continuous density on R

+, and we define Wλ
d= (W | W > 0). The random

variable Wλ is given by (see, e.g. [3, Theorem 3, p. 116], [9], and [12])

Wλ =
k∑
i=1

W̃ie
−(f ′(1)−1)Ei ,

where the Eis are i.i.d. Exp(1), independent of the W̃i which are i.i.d. with Laplace transform
φ̃(t) = E[e−tW̃ ] whose inverse function is given by

φ̃−1(x) = (1 − x) exp

(∫ x

1

(
f ′(1)− 1

f (s)− s
+ 1

1 − s

)
ds

)
, λ < x ≤ 1. (2)

Note that

P

(
∞ > T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)

= P

(
Z

((
x + 1

f ′(1)− 1

)
log n

)
< n, I < ∞

)

= P

(
exp

(
−(f ′(1)− 1)

(
x + 1

f ′(1)− 1

)
log n

)

× Z

((
x + 1

f ′(1)− 1

)
log n

)
< n−x(f ′(1)−1), I < ∞

)
.

Since the left-hand term in the above probability converges toW as n goes to ∞, it is reasonable
to analyze P(Wλ < n−x(f ′(1)−1)). Note that

ψ(s) := E[e−sWλ ] = (E[exp (−sW̃e−(f ′(1)−1)E)])k,
where E is an Exp(1) random variable and ψ(·) is the Laplace transform of Wλ. Moreover,

E[exp (−sW̃e−(f ′(1)−1)E)] =
∫ ∞

0
e−xφ̃(se−(f ′(1)−1)x) dx.

Combining (2) together with the Tauberian theorem [7, Section XIII.5], it is easy to infer that

P(Wλ < n−x(f ′(1)−1)) ≈ n−xg(ξmin,k).

In the next section we present the proof of Theorem 1. For completeness, in Section 3 we
give an estimation for the lower deviation probability of the split times which shows that the
scaling is completely different from the upper deviations.
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2. Proof of Theorem 1

Let us define αn := �log3 n�. In the sequel, we will use the following property of the
exponential random variables, sometimes without mention. If Y is an exponential random
variable of rate γ then, for any θ < γ , we have E[eθY ] = γ /(γ − θ).

We first assume that p0 = p1 = 0, so ξmin ≥ 2. Thus, ηi ≥ 1 for all i, so Skn is increasing
in n and I = ∞. In this case, all the elements of the sequence {τ kn } are finite and this sequence
has been studied in [2].

We now prove the upper bound in (1) for this specific case. Note that, since Ski−1 ≥ k + i − 1
for all i ≥ 1, we have, for any θ < k + 1,

E[exp(θτ ki )] = E

[
Ski−1

Ski−1 − θ

]
≤ k + i − 1

k + i − 1 − θ
. (3)

We have, for any ε > 0,

P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)

≤ P

(∑
i≤αn

τ ki ≥ x(ε) log n

)
+ P

( n∑
i=αn+1

τ ki ≥ 1 + ε

f ′(1)− 1
log n

)
, (4)

where x(ε) = x − ε/(f ′(1)− 1).
For the first term, we have

P

(∑
i≤αn

τ ki ≥ x(ε) log n

)
=

∫ x(ε) log n

0
P

( ∑
2≤i≤αn

τ ki ≥ x(ε) log n− y

)
ke−ky dy,

since τ k1 is an exponential random variable with mean k independent of the τ ki s with i ≥ 2. We
need to bound the right-hand term and we proceed as follows:

P

( ∑
2≤i≤αn

τ ki ≥ x(ε) log n− y

)
≤ n−kx(ε)eky E

[
exp

(
k

∑
2≤i≤αn

τ ki

)]
(by Chernoff’s bound)

≤ n−kx(ε)eky
αn∏
i=2

k + i − 1

i − 1
(by (3))

≤ n−kx(ε)eky exp

( αn∑
i=2

k

i − 1

)
(since 1 + x ≤ ex)

< n−kx(ε)ekyαkn log n for sufficiently large n.

Hence, we obtain (for sufficiently large n)

P

(∑
i≤αn

τ ki ≥ x(ε) log n

)
< kx(ε)n−kx(ε)αkn log2 n < n−kx(ε)αk+1

n .

We now give an upper bound for the second term in (4). We first recall a basic result of
probability: for any ε > 0, there is a constant γ > 0 such that, for large enough n, we have

P

(
Skn ≤ k + n

f ′(1)− 1

1 + ε

)
≤ e−γ n.
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We define the event En = {Ski ≥ k + i(f ′(1) − 1)/(1 + ε/3), αn ≤ i ≤ n}, so that (by the
union bound) we have P(En) ≥ 1 − o(n− log n). Using the fact that

√
αn = o(αn), we have, for

sufficiently large n,

E

[
exp

(√
αn

n∑
i=αn+1

τ ki

) ∣∣∣∣ En

]
≤

n−1∏
i=αn

(
1 +

√
αn

k + i(f ′(1)− 1)/(1 + ε/3)− √
αn

)

≤
n−1∏
i=αn

(
1 +

√
αn(1 + ε/2)

i(f ′(1)− 1)

)

≤ exp

(√
αn(1 + ε/2)

f ′(1)− 1
log n

)
.

Now we have (by Markov’s inequality)

P

( n∑
i=αn+1

τ ki ≥ 1 + ε

f ′(1)− 1
log n

∣∣∣∣ En

)

≤ E

[
exp

(√
αn

n∑
i=αn+1

τ ki

) ∣∣∣∣ En

]
exp

(−√
αn(1 + ε)

f ′(1)− 1
log n

)

≤ exp

(
−

√
αnε

2(f ′(1)− 1)
log n

)
≤ o(n− log n).

Hence, we obtain

P

( n∑
i=αn+1

τ ki ≥ 1 + ε

f ′(1)− 1
log n

)
≤ 1 − P(En)+ o(n− log n) = o(n− log n). (5)

Note that in order to get (5), we only used the fact that p0 = p1 = 0 to ensure that T kn < ∞
for all n. In particular, the argument is still valid if p0 = 0.

To summarize in the case p0 = p1 = 0, we obtain, for any ε > 0 and with x(ε) =
x − ε/(f ′(1)− 1),

P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)
≤ n−kx(ε)αk+1

n + o(n− log n),

and the upper bound for (1) follows.
We now prove a lower bound for (1). We start with (for any ε > 0)

P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)
≥ P(τ k1 ≥ x̃(ε) log n)P

( n∑
i=2

τ ki ≥ 1 − ε

f ′(1)− 1
log n

)
,

where x̃(ε) = x + ε/(f ′(1)− 1). Since P(τ k1 ≥ x̃(ε) log n) = n−kx̃(ε), we need to show that

lim inf
n→∞ P

( n∑
i=2

τ ki ≥ 1 − ε

f ′(1)− 1
log n

)
> 0.
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This follows from the almost-sure convergence of (1/ log n)
∑n
i=2 τ

k
i to (f ′(1) − 1)−1 (see,

e.g. Corollary 1 in Section 2 of [2]).
We now consider the case where p1 > 0 while p0 = 0. We start with the upper bound and

decomposition (4). Note that f ′(1) > 1 implies that p1 < 1. Let the τ̃ ki be the real split times
of the process Z(t), i.e. the times where Z(t) increases. LetN be a geometric random variable
with parameter p1, i.e. P(N = j) = p

j
1(1 − p1), independent of everything else. Then τ̃ k1 has

the same law as a sum ofN mutually independent exponential random variables with mean k−1.
Hence, it is distributed as an exponential random variable with mean 1/k(1 −p1). For the first
term, note that τ̃ ki ≥ τ ki , so we obtain

P

(∑
i≤αn

τ ki ≥ x(ε) log n

)
≤ P

(∑
i≤αn

τ̃ ki ≥ x(ε) log n

)
.

It was shown in [3, Section III.9] that the branching process Z̃(t) associated to the split times
τ̃ ki is still a Markov branching process with the same infinitesimal generating function but with
p̃1 = 0 and with

E[τ̃ kj | {ξ̃i}] = 1

(1 − p1)S̃
k
j−1

,

where {ξ̃i} is a sequence of i.i.d. random variables with generating function

f̃ (s) = f (s)− p1s

1 − p1
=

∞∑
j=2

p̃j s
j ,

and with S̃kj = k + ∑j
i=1 ξ̃i − j .

Thanks to previous analysis, we therefore obtain

P

(∑
i≤αn

τ̃ ki ≥ x(ε) log n

)
≤ n−k(1−p1)x(ε)α

(1−p1)k+1
n .

Since (5) is still valid, the upper bound follows from (4).
The lower bound also follows from a simple adaptation of the argument above:

P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)
≥ P

(
τ̃ k1 ≥ x̃(ε) log n,

n∑
i=N

τki ≥ 1 − ε

f ′(1)− 1
log n

)
.

At time τ̃ k1 we haveZ(τ̃ k1 ) = k+ η̃, where the random variable η̃ is distributed as η1 conditioned
on being greater than 1. Let j be such that P(η̃ ≤ j) ≥ 1

2 . The process {Z(t); t ≥ τ̃ k1 } has the
same law as the original process starting with k + η̃ particles and is independent of τ̃ k1 . Since
τ ki is stochastically decreasing in k, we have

P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

)

≥ P(τ̃ k1 ≥ x̃(ε) log n, N ≤ αn)P

(
η̃ ≤ j,

n−αn∑
i=1

τ
k+j
i ≥ 1 − ε

f ′(1)− 1
log n

)

≥ (n−k(1−p1)x̃(ε) − p
αn
1 )

1

2
P

(n−αn∑
i=1

τ
k+j
i ≥ 1 − ε

f ′(1)− 1
log n

)
.
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Since we still have the almost-sure convergence of (1/ log n)
∑n−αn
i=1 τ

k+j
i to (f ′(1) − 1)−1,

we obtain the lower bound.
We now consider the case where p0 > 0, so that the probability of extinction P(I < ∞) = λ

is positive and strictly less than 1 (because f ′(1) > 1). Following [3], we define

Z̃(t) =

⎧⎪⎨
⎪⎩

0 if I < ∞,

the number of particles among Zt which have

an infinite line of descent if I = ∞.

We have Z̃(0) = Bin(k, 1 − λ) and, for 1 ≤ j ≤ k,

P(Z̃(0) = j | I = ∞) =
(
k

j

)
(1 − λ)jλk−j

1 − λk
. (6)

By Theorem I.12.1 of [3], the process {Z̃(t); t ≥ 0} conditioned on the event I = ∞ is a
Markov branching process with infinitesimal generating function f̃ (s)− s, where

f̃ (s) =
∑
i

p̃is
i = f ((1 − λ)s + λ)− λ

1 − λ
for 0 ≤ s ≤ 1.

Clearly, f̃ (0) = p̃0 = 0, so this process survives and we define the corresponding split times
T̃n = τ̃1 + · · · + τ̃n for all n ≥ 1 as we did for the original process Z(t) (but now with
a random number of initial particles given by (6)). Note that we have f̃ ′(1) = f ′(1) and
p̃1 = f ′(λ) = λ∗ ∈ (0, 1).

On the event I = ∞, we clearly have τ̃n ≥ τn for all n ≥ 1; hence, thanks to the previous
analysis, we have, for any 1 ≤ j ≤ k,

lim sup
n→∞

1

log n
log P

(
T kn ≥

(
x + 1

f ′(1)− 1

)
log n

∣∣∣∣ I = ∞, Z̃(0) = j

)
≤ −xj (1 − λ∗),

and the upper bound follows in the case I = ∞. We now consider the case I < ∞. First note
that T kn ≤ T 1

n ; hence, we need to consider only the case k = 1. It follows from Theorem I.12.3
of [3] that, conditioned on the event I < ∞, the branching process has the same law as a Markov
branching process Z̄(t)with infinitesimal generating function f̄ (s)−s, where f̄ (s) = λ−1f (λ).
The total progeny is finite and f̄ ′(1) = f ′(λ) = λ∗ < 1. Moreover, we have

P

(
T 1
n ≥

(
x + 1

f ′(1)− 1

)
log n

∣∣∣∣ I < ∞
)

≤ P

(
Z̄

((
x + 1

f ′(1)− 1

)
log n

)
> 0

)

≤ E

[
Z̄

((
x + 1

f ′(1)− 1

)
log n

)]

= n−x(1−λ∗)−(1−λ∗)/(f ′(1)−1),

and the upper bound follows.
We now derive a lower bound. First note that, using the Markov property, given Z(t) = j

for j ≥ 1, the random variable Z̃(t) is distributed as a binomial random variable with j trials
and probability of ‘success’ 1 − λ. Let {Xi, i ≥ 1} be a sequence of independent Bernoulli
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random variables with E[X1] = 1 − λ. To ease notation, let xn = (x + 1/(f ′(1) − 1)) log n
and, for ε > 0, let E be the event E = {∑m

i=1Xi ≥ (1 − λ− ε)m for all m ≥ 1}. We have

P(∞ > T kn ≥ xn) = P(Z(xn) ≤ n, I = ∞ | Z(0) = k)

≥ P

(
Z(xn) ≤ n, Z̃(xn) =

Z(xn)∑
i=1

Xi, I = ∞, E

∣∣∣∣ Z(0) = k

)
.

On the event E , we have
∑Z(xn)
i=1 Xi ≥ (1 − λ− ε)Z(xn). Thus,

P(∞ > T kn ≥ xn)

≥ P

(
Z̃(xn) ≤ n

1 − λ− ε
, I = ∞, E

∣∣∣∣ Z(0) = k

)

≥ P

(
Z̃(xn) ≤ n

1 − λ− ε

∣∣∣∣ Z̃(0) = 1

)
P(Z̃(0) = 1 | Z(0) = k)P(E | Z(0) = k).

We have P(Z̃(0) = 1 | Z(0) = k)P(E | Z(0) = k) > 0, and the process {Z̃(t); t ≥ 0}
conditioned on the event Z̃(0) = 1 is a Markov branching process with infinitesimal generating
function f̃ (s)− s with p̃1 = λ∗. Hence, the lower bound follows from the previous analysis.

3. On the lower deviation probability

In this section we consider the lower deviation probability for the split time of a branching
process.

Proposition 1. In the setting outlined in the introduction with 1 < f ′(1) < ∞, for any x > 0,
k ≥ 1, and a sufficiently large constant C, we have

P

(
T kn <

(
1 − x

f ′(1)− 1

)
log n

)
= o(nCe−nx ).

The proof relies on the following lemma.

Lemma 1. LetX1, . . . , Xt be a random process adapted to a filtration F0 = σ [∅],F1, . . . ,Ft ,
and let µi = EXi , �i = X1 + · · · + Xi , and 
i = µ1 + · · · + µi . Let Yi ∼ Exp(�i) and
Zi ∼ Exp(
i), where all exponential variables are independent. Then we have

Y1 + · · · + Yt ≥st Z1 + · · · + Zt .

Proof. By Jensen’s inequality, it is easy to see that, for a positive random variable X, we
have

Exp(X) ≥st Exp(EX).

Then, by induction, it suffices to prove that, for a pair of random variablesX1 andX2, we have
Y1 + Y2 ≥st Z1 + Z2. We have

P(Y1 + Y2 > s) = EX1 [P(Y1 + Y2 > s | X1)]
≥ EX1 [P(Exp(X1)+ Exp(X1 + µ2) > s)]
≥ P(Z1 + Z2 > s).
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We infer, by Lemma 1,

T kn ≥st

n∑
i=1

Exp(k + (f ′(1)− 1)i),

where all exponential variables are independent. Thus, we have

P(T kn ≤ t) ≤
∫

∑
xi≤t

exp

(
−

n∑
i=1

((f ′(1)− 1)i + k)xi

)
dx1 · · · dxn

n∏
i=1

((f ′(1)− 1)i + k)

=
∫

0≤y1≤···≤yn≤t
exp

(
−(f ′(1)− 1)

n∑
i=1

yi

)
e−kyn dy1 · · · dyn

×
n∏
i=1

((f ′(1)− 1)i + k),

where yk = ∑k−1
i=0 xn−i . Letting y play the role of yn, and accounting for all permutations over

y1, . . . , yn−1 (giving each such variable the range [0, y]), we obtain

P(T kn ≤ t) ≤ (f ′(1)− 1)n
∏n
i=1(i + k/(f ′(1)− 1))

(n− 1)!

×
∫ t

0
e−(f ′(1)−1+k)y

(∫
[0,y]n−1

exp

(
−(f ′(1)− 1)

n−1∑
i=1

yi

)
dy1 · · · dyn−1

)
dy

= n

∏n
i=1(i + k/(f ′(1)− 1))

n! (f ′(1)− 1)

×
∫ t

0
e−(f ′(1)−1+k)y

(n−1∏
i=1

∫ y

0
(f ′(1)− 1)e−(f ′(1)−1)yi dyi

)
dy

= n

n∏
i=1

(
1 + k

(f ′(1)− 1)i

)
(f ′(1)− 1)

×
∫ t

0
e−(f ′(1)−1+k)y(1 − e−(f ′(1)−1)y)n−1 dy

≤ cnk/(f
′(1)−1)+1(f ′(1)− 1)

∫ t

0
e−(f ′(1)−1+k)y(1 − e−(f ′(1)−1)y)n−1 dy,

where c > 0 is an absolute constant. Now we use the fact that

(1 − e−(f ′(1)−1)y)n−1 ≤ e−nx for all 0 ≤ y ≤ 1 − x

f ′(1)− 1
log n =: tn.

We infer that (for C > k/(f ′(1)− 1)+ 1)

P

(
T kn ≤

(
1 − x

f ′(1)− 1

)
log n

)
≤ c(f ′(1)− 1)nk/(f

′(1)−1)+1
∫ tn

0
e−nx dy = o(nCe−nx ).
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