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Abstract

In free-range (extensive) dairy farming the wealth and type of consumed vegetation positively
affects milk characteristics such as flavour. As free-range feeding is included as a requirement
in the specifications of certain protected designation of origin cheeses, there is a need to
develop methodology to identify different animal feeding regimes. This study evaluated
goat milk based on two feeding regimes, namely free-range and intensive (controlled diet
fed exclusively at the farm). Conventional mid-infrared spectroscopy (4000–400 cm−1)
using Fourier transformed infrared technology was assessed for the discrimination of 65
milk samples obtained during spring time from the same dairy farm and breed of animals,
which could be categorized as intensive and free-range feeding regimes. Chemometric ana-
lysis, whereby a supervised method of orthogonal partial least-square-discriminant analysis
was applied, was shown to be essential for interpreting the spectroscopic data. The produced
model returned distinct clusters of the two milk types, intensive and free-range with 95.4%
correct classification accuracy.

The characteristics of milk play a crucial role in determining the quality of cheese. The com-
position, quality, and treatment of milk can significantly impact the flavour, texture and overall
characteristics of the final cheese product (Bittante et al., 2022). For instance, the fat content in
milk contributes to the flavour, mouthfeel and creaminess of the cheese. Different cheese var-
ieties may require varying levels of fat for the desired characteristics (Laursen et al., 2022). In
addition, the balance of casein and whey proteins in milk affects the cheese’s texture and struc-
ture. Casein is essential for curd formation, which is crucial in the cheese-making process
(Lara-Castellanos et al., 2021). Moreover, lactose is converted into lactic acid during fermen-
tation by lactic acid bacteria, a key step in cheese production. The lactose content can influence
the final taste of the cheese (López Ruiz et al., 2023). Calcium is essential for the coagulation of
milk proteins, contributing to the formation and structure of the curd during cheese-making.
Different cheeses also have varying moisture requirements. The microbial content of milk,
including natural bacteria and enzymes, can affect the fermentation process and the develop-
ment of flavour in the cheese (Zheng et al., 2021). In the same concept, the heat treatment of
milk (pasteurization or raw milk) can influence the flavour and texture of the cheese. Raw milk
cheeses may have distinct flavours due to the presence of native microflora (Laursen et al.,
2022). Furthermore, homogenization breaks down fat globules in milk, affecting the texture
and melting properties of the cheese (Shao et al., 2023). Lastly, the diet of animals and, there-
fore, pasture may influence milk quality. Thus, milk composition can vary seasonally based on
dietary factors such as variations in pasture, hay, or supplementary feeds. This can also impact
the flavour profile of the cheese (Davis et al., 2020).

Nowadays, spectroscopy is a promising technology with many applications in dairy science
(Loudiyi et al., 2022). Both near (NIR) and middle infrared (MIR) are used to study milk qual-
ity. NIR is effective for assessing moisture, protein and fat content, while MIR provides
detailed information about molecular structures. Both techniques offer non-destructive and
rapid analysis, making them valuable tools in dairy industry research and quality control
(Coppa et al., 2021; Grelet et al., 2021; Yakubu et al., 2022). MIR spectra in foods and bev-
erages usually have the wide bands at 3386, 3390, and 3336 cm−1 arise from the O–H and
N–H stretching vibrations from polysaccharides and proteins, while the bands at 2927 and
2935 cm−1 correspond to CH2 asymmetric or symmetric stretch. The bands at 1650–1628
and 1543 cm−1 result from stretching or bending vibrations of the bonds which may be derived
from proteins. Absorption bands at 1435, 1404, and 1346 cm−1 correspond to CH2 bending
vibrations, rocking vibrations of C–H bonds, and bending vibrations of CH3 groups, respect-
ively. The most important area in the spectrum for distinguishing the origin of the samples is
the region 4000–2500 cm−1, which contains mainly the bands of proteins, polysaccharides,
unsaturated lipids and carbohydrates (Christou et al., 2018; Tarapoulouzi et al., 2020).
Furthermore, multivariate data analysis (MVDA) or chemometrics plays a crucial role in
dairy analysis, especially when dealing with complex datasets generated from techniques
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like NIR and MIR spectroscopy. Chemometric methods, super-
vised and unsupervised, help extract meaningful information
from multivariate datasets, enabling researchers to identify pat-
terns, correlations and trends in various parameters like fat, pro-
tein and moisture content. This facilitates accurate prediction,
quality control and overall optimization of dairy production pro-
cesses (Tarapoulouzi et al., 2020; Grassi et al., 2022; Frizzarin
et al., 2023).

Furthermore, chemometrics and discriminant analysis play
crucial roles in spectroscopic studies in dairy science (Grassi
et al., 2022; Hayes et al., 2023; Smaoui et al., 2023). In the context
of milk analysis, spectroscopy can be used to study the compos-
ition of milk, including its fat content, protein content and
other constituents (Alami et al., 2023). Raw spectral data obtained
from instruments may contain noise and unwanted variations.
Chemometric techniques, such as baseline correction, normaliza-
tion and smoothing, can be applied to preprocess the data and
enhance its quality (Kharbach et al., 2023). Chemometrics
involves the application of multivariate statistical methods to ana-
lyse complex data sets. Principal component analysis (PCA) is
commonly used in spectroscopic studies to reduce the dimension-
ality of the data and identify the major sources of variation.
Discriminant analysis, on the other hand, is employed to differen-
tiate between different groups or classes. In the context of seasonal
variations in milk, discriminant analysis can be used to classify
samples into groups corresponding to different seasons. In
terms of variable selection, chemometrics can aid in selecting
the most relevant spectral features that contribute to the discrim-
ination between different seasons. This helps in identifying the
key components responsible for the observed variations in milk.
Understanding the results of discriminant analysis is essential.
Chemometric techniques allow for the interpretation of the load-
ings and scores obtained from the analysis, helping to identify
which spectral regions or compounds are responsible for the
observed seasonal differences. Discriminant analysis also helps
in pattern recognition, allowing researchers to discern patterns
in the spectroscopic data that correspond to different seasons.
This can provide insights into how seasonal variations affect the
composition of milk. In addition, by applying chemometric tech-
niques to spectroscopic data collected over multiple seasons, it
becomes possible to monitor changes in milk composition over
time. This information is valuable for quality control and under-
standing the impact of environmental factors on milk character-
istics. The integration of chemometrics and discriminant
analysis in spectroscopical studies enables researchers to extract
meaningful information from complex data sets, facilitating the
characterization of dairy products and beverages (Grassi et al.,
2022; Hayes et al., 2023; Ye et al., 2023).

This study addresses the hypothesis of whether the combin-
ation of MIR and chemometrics can determine different feeding
regimes in milk. The same methodology will be applied by
using cheese in future studies, to test this capability further.
Protected designation of origin (PDO) cheeses where free-range
is obligatory in the product specification could utilize results of
this study on milk. Halloumi, a traditional cheese from Cyprus,
has recently gained PDO status, thus, it is important to study
this product’s quality characteristics and enhance the official qual-
ity controls. The combination of MIR and chemometrics may be a
promising tool for rapid, non-destructive, ease of use and cost-
effective evaluation of milk quality regarding feeding regimes.
Especially, minimizing sample preparation is also a very import-
ant parameter in the dairy production chain. Lastly, the

generation of a robust and accurate chemometric model could
serve as a database for future predictions.

Material and methods

Sampling and pre-treatment

A total of 65 milk samples, approximately 200 ml each, were col-
lected during Spring time (March 2023 to May 2023) from the
same dairy farm in Choulou, Paphos, Cyprus. Of these, 34 were
from free-range (extensive) feeding goats and 31 from intensive
feeding goats, thus forming two study groups. Breed (cross of
Damascus and Machairas goats) and stage of lactation were the
same for both groups. All samples were freeze-dried (Zirbus,
Germany), for 24 h before spectroscopic analysis.

Feeding regimes

The free-range group were left to graze for approximately 12 h
during the day. The plants that comprise the general grazing vege-
tation of the sampling area include aromatic herbs (Thymus capi-
tatus, Satureja thymbra, Cistus creticus), vegetation (Malva
sylvestris, Sinapis arvensis, Trifolium pamphylicum, Onopordum
cyprium, Helichrysum siculum) and bushes/trees (Pistacia tere-
binthus, Olea europaea, Ceratonia siliqua).

The intensive farming group was fed indoors with a diet consist-
ing of concentrates in the form of pellets (18% protein, 8% fibre,
7.5% ash, 2.5% fats/oils, vitamins) and fodder in the form of hay.

FTIR measurements

The transmittance spectra were obtained under controlled envir-
onmental conditions on a Shimadzu IR Prestige-21 FTIR spectro-
photometer as a pressed KBr pellet. The spectra were recorded in
duplicate in the wavelength region of MIR, 4000–400 cm−1 with
20 scans and an 8 cm−1 resolution. A background was collected
before measuring each sample and then subtracted automatically
from the sample spectra before further analysis. In addition, the
subregion between 2700 and 2000 cm−1 was removed as it did
not contain any important information. The double peak near
2300 cm−1 which corresponds to CO2 is included in this spectro-
scopic region, thus it was also removed from all the samples to
avoid any interruption of the data analysis.

Spectral data were tested (using chemometrics) in several
forms: after baseline correction, and after the first or second
derivative of the spectra using the Savitzky–Golay method. The
baseline correction was performed to improve the eventual drift
of the spectrometric signal. Finally, the first derivatives were
used for the recorded transmittance spectra.

Data analysis

The data were subjected to multivariate statistical analysis using
SIMCA software (version 17.0, Umetrics, Sweden) to evaluate
the possibility of differentiating milk regarding the feeding
regimes. The data were treated with Pareto scaling, and the mod-
els were extracted at a confidence level of 95%. Initial variables
were 3995 in total.

OPLS-DA was performed to evaluate whether the discrimin-
ation of samples based on the production regimen could be
based on the determined spectral profile and to verify which sub-
region influences such a classification. By using the variable

Journal of Dairy Research 455

https://doi.org/10.1017/S0022029925000214
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 31 Jul 2025 at 07:03:52, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S0022029925000214
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


importance in projection (VIP) plot, we selected the most signifi-
cant variables. The data referred to the VIP values was com-
pressed, and the procedure generated a set of principal
components as discriminant parameters based on the selected
variables that provide the best discrimination between the groups.

The success of the discrimination was measured by the pro-
portion of cases correctly classified based on the calculations of
the misclassification table. Permutation tests evaluated the robust-
ness of the models. Permutation testing serves as a statistical
measure of significance for predictive power in cross-validation.
In this process, the X-data remains unaltered, while the Y-data
undergoes random permutation to assume a different sequence.
Subsequently, the model is fitted to the permuted Y-data, and
cross-validation metrics R2Y and Q2Y are calculated to assess
the effectiveness of the derived model (Eriksson et al., 2014).

Discriminant models need to be trained and this is usually
based on a common approach of splitting the data into training
and validation sets. Therefore, a subset of the data was created,
and their performance was validated on an independent set to
ensure robustness and reliability.

Results and discussion

FTIR spectra

Goat milk samples were studied between March and May, a per-
iod important in animal nutrition due to the flowering of wild
plants and shrubs. This allowed us to investigate how free grazing
affects the quality of milk. Initially, the spectra were recorded in
the whole wavelength range of 4000–400 cm−1 as shown in
Figure 1, and then studied for specific ranges of wavenumbers
to assess which is the most useful that provides better discrimin-
ation in terms of the goals of this study.

Regarding band assignments in the IR region of spectra (as
presented in Fig. 1), hydroxyl and phenolic functional groups
were most closely correlated with antioxidant capacity and ter-
penes found in plants consumed by goats. Menthol, thymol and

borneol are terpene alcohols and exhibited an O–H stretching
vibration at 3300–3400 cm−1. Camphor displayed a strong
absorption band at 1739 cm−1, which is a characteristic of ketones
having a C = O stretching vibration. Furthermore, symmetrical
and asymmetrical –CH2 stretching vibrations correspond to the
bands at 2958 and 2867 cm−1, respectively. These bands are
superimposed upon the O–H stretching. These terpene molecules
present a hydrogen bond between the oxygen atoms and the
hydroxyl groups. Moreover, the inclusion of fresh plants in the
diet is known to increase the level of unsaturation of milk fat.
In addition, lactose is a significant parameter affected by nutri-
tion. Thus, the detection seems to take place based on bands
around 1150–1750 cm−1 and the region 2800–3000 cm−1 and
they were the most important subregions for the correct classifi-
cation of the samples based on feeding regime. The last regions
and the bands around 1175 cm−1 and 1740–1750 cm−1 are attrib-
uted to the absorption by milk fat and antioxidants.

Data analysis

Using the variable importance in projection (VIP) parameter
(not shown here) we selected the most significant variables
(those with VIP >1, since 1.16 was the maximum obtained
value) to exclude redundant variables from the model. Variables
with VIP values between 1 and 1.06 were tested to check if they
should be kept in. Therefore, it was observed that they were not
affecting positively the OPLS-DA model, and they were excluded.
Subsequently, based on the VIP outcome, only variables with VIP
values greater than 1.06 were kept for the OPLS-DA model,
comprising 351 variables out of 3995. The spectroscopic data of
ranges 1071–1233, 1734–1752, 2754–3080, 3312–3505 cm−1 was
compressed, which generated a set of principal components as
discriminant parameters based on the selected variables that pro-
vide the best discrimination between the groups.

The above spectroscopic subregions highlighted by the VIP
plot confirm the findings of characterization presented in the

Figure 1. Average FTIR spectrum for the two milk types, free range (green) and domestic (blue) ones.
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previous part, entitled FTIR spectra. Therefore, 1071–1233 cm−1

is assigned to lactose and milk fat, 1734–1752 cm−1 refers to anti-
oxidants and camphor, 2754–3080 cm−1 is accredited to lactose
and camphor, as well as 3312–3505 cm−1 includes the vibrations
of the terpene alcohols. The feeding regime of goats was obvious
in the goat-origin samples, as the samples were discriminated in
domestic and free-range feeding regimes after interpretation by
multivariate data analysis (chemometrics). Overall, in comparison
with the MIR regions corresponding to the absorption of fats, lac-
tose, terpenes and antioxidants, the spectral subregions related to
the absorption of proteins were found to contribute less to the
extracted model.

Subsequently, the chemometrics application underlined the
significance of the results, in two ways; (1) by producing and

validating a model based on a discriminant analysis method (as
shown in Fig. 2A–D), and (2) by extracting the most significant
spectral regions based on which the model was built (as described
above). Figure 2 presents the validation results, therefore the score
plot for the OPLS-DA training set in Figure 2A, as well as the mis-
classification table for the OPLS-DA training set in 2B, the score
plot for the OPLS-DA test set in 2C, as well as the misclassifica-
tion table for the OPLS-DA test set in 2D. Correct classification of
samples were 95.56 and 100% for the training and test sets,
respectively.

Figure 3A&B show the overall model and clear discrimination
of the samples in two groups is shown in the plane. R2X(cum) =
0.968, R2Y(cum) = 0.913, and Q2(cum) = 0.735 have been calcu-
lated for the model. In addition, Table 1 summarizes the correct

Figure 2. Validation results, (A) score plot for the OPLS-DA training set, (B) misclassification table for the OPLS-DA training set, (C) score plot for the OPLS-DA test
set, and (D) misclassification table for the OPLS-DA test set.

Figure 3. OPLS-DA scatter plots (R2X(cum) = 0.968, R2Y(cum) = 0.913, and Q2(cum) = 0.735); (A) 2D plot, and (B) 3D plot.
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classification rates for all samples (overall and validated model) by
using the PCs of 1st derivatives in 2500–4000 cm−1.

Figure 4 shows a random permutation test with 200 permuta-
tions used for the validation of goodness of fit and the predictabil-
ity of these results. The R2Y values of all permuted models were
lower than the original model’s R2Y value (0.735); most of the
Q2 regression lines showed negative intercepts (0.0, −0.311).

It is well-known that plants accumulate minerals and metals
essential for their growth from the environment. Auerswald
et al. (2015) observed seasonal variation in long-chain fatty
acids in cow milk. This indicated a bypass of long-chain fatty
acids from fresh grass to milk. Feeding regimes consisted of con-
served grass and pasture with and without concentrate to total
mixed rations with up to 60% of maize. They considered para-
meters such as altitude above sea level, annual precipitation,
arable land within a farm, number of cows, stocking rate, average
lactation yield, breeds and, of course, feeding and livestock-
keeping regimes. The model considered dietary contributions of
C3 and C4 plants, contribution of concentrates, altitude, seasonal
variation in 12/13CO2, Suess’s effect, and diet-milk discrimination.
In addition, Osorio et al. (2015) detected Li, Ca, Mn, Zn, and Sr at
significantly different concentrations according to the production
areas of goat milk in Cyprus. The higher concentrations of some
of the minerals could be explained by the different diets (primar-
ily different types of grazing plants). In more detail, the mean
concentrations of 17 major and trace elements have been found
to show significant differences between different plants due to a
variety of environmental, biological and agronomical parameters.

Goats from Paphos graze for prolonged periods of the year out-
doors. Regarding geographical location, wide plant diversity exists
in the highlands of Paphos (Osorio et al., 2015).

Another very interesting study of Zacometti et al. (2023) mea-
sured volatile organic compounds (VOCs) in cow milk over two
production seasons (winter and summer). They tested three
indoor food systems (silage, silage/forage and dried forage).
FTIR was used to determine protein, casein, fat, lactose, urea,
pH and others, and VOCs were extracted by applying headspace
coupled to solid-phase microextraction (HS-SPME) and mea-
sured on a GC-FID. The milk from the two ensiled feeding meth-
ods showed reduced protein and casein levels compared to milk
from dried forage. The transition from winter to summer influ-
enced milk composition across all feeding systems, resulting in
decreased protein, casein and fat levels in summer milk.
Furthermore, summer milk exhibited notably higher pH and
urea values compared to winter milk. Moreover, a notable sea-
sonal impact on the volatile organic compound (VOC) profile
of milk was observed independent of the feeding system.
Winter milk exhibited elevated levels of carboxylic acids, whereas
summer milk showed enrichment in 2-pentanol and reduced
presence of methyl ketones. Specific branched aldehydes played
a crucial role in distinguishing the VOC profiles of summer milks.

The above results indicate that differences in several milk con-
stituents due to different feeding regimes could be reflected in
spectral data obtained by FTIR. These could be used either to elu-
cidate the possible differences in spectral data or serve as supple-
mentary analysis in distinguishing animal feeding regimes.
Nevertheless, it should clearly be mentioned that in order to
fully test the above hypothesis a much more robust model is
needed to be built. Therefore, a more complex sampling set
must be designed including samples from different animal spe-
cies/breeds, seasons, geographical regions and lactation stages.

In conclusion, we focused on spectral data obtained by FTIR in
the range of 4000–400 cm−1 in freeze-dried milk samples. Existing
knowledge on the detection of markers in milk, mainly terpenes
and antioxidants as well as fatty acids (present in milk and dir-
ectly affected by plant-based feeding regimes) was utilized. The
generated chemometric model gave a 95.4% success rate of correct
classification of the samples in terms of animal nutrition (free-

Table 1. Misclassification table for all samples (overall, validated model)

OPLS-DA Members Correct Free-range Domestic

Free-range 34 100% 34 0

Domestic 31 90.32% 3 28

Total 65 95.38% 37 28

Fisher’s
prob.

2.3×10−15

Figure 4. Permutation test took place based on
200 permutations, where both R2 (original
model) and Q2 (predictive model) located at
right, and permutated R2 (original model) and
Q2 (predictive model) located at left.
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range vs. intensive indoor). Future determinations of unknown
samples can easily occur based on the model depicted here. In
order to make the model more robust, larger sample sets would
be needed. Our findings are promising in determining character-
istics and important markers in Cyprus goat milk with a main tar-
get to secure product quality and authenticity.
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