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1. Introduction

Let (X, || • ||) be a (real or complex) Banach space and let Kx be a closed subset of
X. Let CU(KX) denote the Banach algebra of all real or complex-valued, uniformly
continuous bounded functions defined on Kx endowed with the usual supremum norm:
given / e Cu(Kx), ||/||oo := sup{|/(x)| : x € Kx}- A closed subalgebra AU(KX) of
Cu(Kx) is said to be weakly normal if, given any subsets A and B of Kx with a positive
distance d(A,B) := inf{||a - b\\ : a e A,b e B}, there is an / 6 AU(KX) such that
|/(x)| > 1 for every x e A, and \f(y)\ ^ \ for every y G B.

In [5], Lacruz and Llavona characterized uniform continuity for maps between the unit
balls of two Banach spaces, Kx and Ky, in terms of composition operators of Cu(Kx)
into Cu(Ky). In this paper, we obtain similar results for weakly normal subalgebras of
Cu{Kx) and CU(KY), and use them to describe the linear isometries T between such
subalgebras. It is shown that T can be written as a weighted composition map. Thus T
induces a uniform homeomorphism h of Ky onto Kx; that is, h and its inverse are uni-
formly continuous bijections. We would like to remark that these results, though similar
to the Banach-Stone theorem and many of its generalizations (see [4] for a thorough sur-
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vey on this subject), are obtained in spite of the absence of any kind of local compactness
in KX-

We shall also deal with certain subalgebras of Au{Kx)'- namely, those whose elements
vanish at some fixed point x0 € Kx. With no loss of generality, we shall assume that
xo = 0. Such subalgebras will be denoted by a superscript 0; that is,

A°U(KX) := {/ € AU{KX) : /(0) = 0}.

We shall show that for A^(KX), characterizations similar to those for AU{KX) can be
obtained.

2. Preliminaries

Let N (respectively K) denote the set of positive integers (respectively the field of real
or complex numbers). Given a compact space X, we denote by C(X) the Banach algebra
of all K"-valued continuous functions defined on X endowed with its usual supremum
norm. If f € C{X) and U is a subset of X, then /|y stands for the restriction of / to U
and cl* U for the closure of U in X. By 1 we will denote the function such that l(x) = 1
for every x € X.

We will say that a linear subspace A of C(X) separates strongly two elements x\ and
X2 of X if there exists an / € A such that |/(a;i)| ^ |/(x2)|-

Let A be a linear subspace of C(X). We will denote by dA the Shilov boundary for A,
that is, the unique minimal closed boundary for A. Let us recall that a subset U of X is
a boundary for A if each function in A attains its maximum on U.

It is said that XQ € X is a peak point for A if there is a function f in A such that
l/(*o)| = Il/Hoo and | / (z) | < 11/Hoo for all x € X \ {x0}.

In the sequel, given a Banach space X, Kx will stand for a closed subset of X and
Au(Kx) for a weakly normal subalgebra of CU(KX)- Let f3Kx be the Stone-Cech com-
pactification of Kx- We define the quotient space ^X := 0Kx/~, where ~ is the equiv-
alence relation, denned as x\ ~ x^ if j(x{) = /(a^) for every / e Au[Kx)- It is straight-
forward to verify that jX is a compactification of Kx and that every function in Au(Kx)
can be continuously extended to ^X. Then we can identify Au(Kx) with a closed sub-
algebra A(X) of C^X). Likewise, we can identify A^(Kx) with a closed subalgebra
A0(X) of

3. Some previous results on algebras of uniformly continuous functions

Lemma 3.1. Let X be a Banach space. Then A(X) and A0(X) separate strongly the
points of'yX.

Proof. From §2, we know that A{X) and A0{X) are subalgebras of C(jX) that
separate the points of jX.
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Now take x, y G ^X. If / in any of these subalgebras satisfies f(x) ^ f(y) but |/(x)| =
\f(y)\, then, for some scalar a, we have |a/(x) + (/(x))2| ^ \af(y) + (f(y))2\. This implies
that both subalgebras strongly separate the points of ^X. D

Remark 3.2. Notice that A(X) is a uniform algebra, and, consequently, the Shilov
boundary for A(X) exists (see, for example, [3]). A similar argument works for Ao(X)
(see also [2, Theorem 1]).

Lemma 3.3. Let X be a Banach space.

(1) Every point of Kx belongs to dA(X). Moreover, dA(X) = jX.

(2) Every point of Kx \ {0} belongs to 0A0(X). Moreover, dA0(X) \ {0} = -yX \ {0}.

Proof. (1) By a well-known characterization of the elements of a Shilov boundary (see,
for example, [1]), it is enough to prove that given any xo G Kx and any open neighbour-
hood U oixo in ~fX, there exists an / G Au(Kx). such that supx€K-x\c/ | /(x)| < ||/||oo/2.
We have d({xo}, Kx \U) > 0, and, since AU(KX) is weakly normal, the assertion follows.

(2) Let x0 G Kx \ {0}. Take any open neighbourhood U of xo in jX, and suppose,
without loss of generality, that 0 ^ cl7^ U. Let us define / as in part (1). It is clear
that if /(0) = 0 since / G A0(X), then we are done. So we assume that /(0) = a ^ 0.
Then, as above, we can find a function g G AU(KX) such that g(Q) = 1 and \g(x)\ ^ \
for every x G Kx n U. Hence, it is clear that (/ — ag)(0) = 0 and | ( / — ag)(x)\ ^ \
for all x e Kx 1*1 U. It follows that there exists an n € N such that | / n ( / — ag)(x)\ <
\\fn(f -otg)\\oo/2 for every x&Kx\U. Since /"( /-ag)(0) = 0, we have the result. •

Lemma 3.4. Let X be a Banach space.

(1) Every x G Kx is a Gg-set in jX.

(2) Ifx € jX \ Kx, then x cannot be a Gs-set in jX.

Proof. (1) Fix xo € Kx- For each n € N, let us take a function gn € Au(Kx) such
that gn(xo) ^ 1 and |<7n(aOI ^ \ for every x € Kx with ||x — xoll ^ l/«- Now we
consider Un := {z e jX : \gn(z)\ > | } - It is clear that xo € DneAf Un- It suffices to check
that there is no other point in this intersection. So, suppose that z$ € jX, z0 i=- xo.
Then there exist open subsets U and V of 'yX with xo e U, ZQ € V, and C/ n V = 0.
Now, if B(xo,l/n) stands for the open ball with centre xo and radius 1/n in Kx, it
is clear that there exists n' € N such that B(x0,1/n') C Kx n U. Thus we infer that
(Kx n Unl) n ^ C B(x0,1/n') D V = 0, and then f/n n V = 0, which implies that
zo $• rineiv ^n- As a consequence, xo is a G^-set in *yX.

(2) Assume that there is an xo G ^X\Kx which is a G^-set in jX. Then there exists a
countable family of open subsets of jX, say {Bn}n(EN, such that {xo} = Dne/v &n- With
no loss of generality, we can assume that c lSn + i C Bn. Now we construct a sequence
(xn) in Kx such that xn € Bn PI Kx for every n £ N and claim that (xn) converges to
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XQ. Indeed, if we consider an open neighbourhood U of XQ, then -yX \ U is a compact set
that does not meet p) n £ j v c lB n . Hence, there is an n' G N such that cl Bni C U, and,
consequently, if n > n', then xn G U.

Next, we deduce that no subsequence of (xn) is Cauchy. Otherwise, since Kx is a closed
subset of a Banach space, such subsequence would converge to some x\ G K\ and then
x\ — xo £ Kx- As a consequence, since (xn) is not relatively compact, we can choose
e > 0 and a subsequence (xnm) of (xn) such that d(xnm,xnk) > e for every m,k G N.
Thus, as Au(Kx) is weakly normal, there is an / G Au(Kx) such that |/(xn2m+1)| ^ 1
and | /(xn 2 m) | ^ \ for every m G N. This implies that we cannot extend / to jX, which
is absurd. •

4. Linear surjective isometries

Lemma 4.1. Let (xn), (x^) be sequences in Kx with the property that

lim\f(xn)-f(x'n)\ = 0,

for every f 6 Au(Kx)- Then lim \\xn — x'n\\ = 0.

Proof. The idea of the proof of [5, Lemma 2.2] remains valid for this theorem.
Just the first step of that proof needs some changes. So we assume that the result
is not true, and suppose that there is an e > 0 and an increasing sequence of nat-
ural numbers (rij) such that \\xnj — x'n.\\ ^ e for every j . The first step consists of
proving that the sequence (xnj) does not have any convergent subsequence in Kx- So
we suppose that there exists a subsequence {xnjk) converging to XQ. Then, for each
/ € Au(Kx), we have that lim/(x^. ) = /(xo). Now suppose that there exists an accu-
mulation point ZQ of {x^. : k G N} in jX, ZQ ^ XQ. By the definition of jX, we have
that there exists an /o G Au(Kx) such that fo(xo) ^ fo(zo)- This implies clearly that
lim/o(x^. ) ^ /o(xo), which is impossible. Consequently, xo is the only accumulation
point of{x^. : k e N} in *yX. This contradicts our hypothesis on (x'n.), and the first step
is proved.

The rest of the proof, which we now sketch, follows as in that of [5, Lemma 2.2], with
slight changes. Thus, as a consequence of the first step, there is an r\ with 0 < 77 < e
and an increasing sequence of positive integers (jk)k such that ||xnj. - xnj \\ ^ 7? and

The second step consists of checking the existence of another increasing sequence of
positive integers (ki)i with the property that

for all r ^ s.

Finally, we deduce from the second step that the distance between the sets

A = {xnjk[ :1>1} and A' = { x ^ : / > 1}
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is strictly positive. Hence, there exists / £ Au(Kx), such that \f(xnjk )| ^ 1 and
\f(x'n. )| ^ 5 for every / ^ 1. This fact contradicts the hypothesis and we are done.

•
Also with the same proof as in [5, Theorem 2.3], but using Lemma 4.1 instead, we

have the following result.

Theorem 4.2. Let h : Ky —> Kx he a map with the property that f o h £ Cu(Ky)
for every f £ Au(Kx). Then h is uniformly continuous.

Theorem 4.3. Let X and Y be Banach spaces and let T : Au(Kx) —> Au(Ky) be
a linear surjective isometry. Then there exists a uniform homeomorphism h of Ky onto
Kx and a function a £ CU(KY), such that \a(y)\ = 1 for all y £ Ky, and (Tf)(y) =
a(y)f(h(y)) for allyeKy and all f £ AU{KX).

Proof. By Lemma 3.1 and [1, Theorem 4.1], there exists a homeomorphism h! of
dA(Y) = jY onto dA{X) = jX and a continuous map a' : jY -* K, such that
\a'(y)\ = 1 for all y £ jY, and {Tf)(y) = a'(y)f(h'(y)) for all y £ jY and all / € A{X).
We shall define a := a',Ky.

Claim 4.4. h'(KY) = Kx.

Since h! is a homeomorphism, it suffices to check that h'(Ky) C Kx- Suppose that
there is a y 6 Ky such that h'(y) £ jX \ Kx- By Lemma 3.4(2), h'(y) cannot be a
G<5-set in 7X, whereas, from Lemma 3.4 (1), we know that every y £ Ky is a G^-set in
jY. This contradicts the fact that h' preserves G^-sets. As a consequence, h := h',Ky is
a homeomorphism of Ky onto Kx •

Claim 4.5. The functions a and I/a belong to Cu(Ky).

First we prove that a is uniformly continuous. Suppose this is not the case. Then there
exist an e > 0 and two sequences (yn) and (y'n) in Ky such that lim \\yn - y'n\\ = 0 and
\a(yn) — a.{y'n)\ ^ e for every n € N. It is easy to see that we may assume without loss of
generality that the set {yn : n £ N} U {y'n : n £ N} is not dense in Ky. Consequently,
{h{yn) '• n £ N} U {h(y'n) : n £ N} is not dense in Kx, and, since Au(Kx) is weakly
normal, we can find an / £ Au(Kx) such that \f{h(yn))\, \f(h(y'n))\ > 1 for every n £ N.
Taking into account that Tf is uniformly continuous, we have that lim(a(yn)f(h(yn)) —
a(y'n)f(h(y'n))) = 0, and, for the same reason, \im(a(yn)f

2(h(yn))-a(y'n)f
2(h(y'n))) = 0.

Thus, since lim(a(yn)/2(%n)) - a(y'n)f(h(yn))f(h(y'n))) = 0, we deduce that

lim(a(y'n)f(h(yn))f(h(y'n)) - a{y'n)f
2{h{y'n))) = 0,

that is,
0 = \ima(y'n)f(h(y'n))(f(h(yn)) - f(h(y'n))).

Then it is clear that lim(f(h(yn)) — f{h(y'n))) = 0. On the other hand, since

l im%„)( / (%„)) - f(h(y'n))) = l im(/(%n)) - f{h(y'n))) = 0,
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we conclude, as 0 = lim(a(yn)f(h(yn)) - a(y'n)f(h(y'n))), that

lim(a(yn)-a(y'n))f(h(y'n))=O,

which contradicts our assumption above. Thus a is uniformly continuous.
Next, we are going to see that I/a is uniformly continuous. Choose two sequences (yn)

and (y'n) in Ky such that lim ||yn — y'n\ = 0. Then

lim
1 1

a{y'n)
= lim

a(y'n) - a{yn)
a(y'n) • a(yn)

= 0,

since a € Cu(Ky) and \a(y'n) • a(yn)\ = 1 for every n E N.

Claim 4.6. The mappings h and its inverse are uniformly continuous.

For every / G AU(KX), the function (Tf)(y) = a(y)f(h(y)) belongs to CU{KY). Hence,
from the above claim, we have that the function

(l/a)(y)-a(y)f(h(y)) = f(h(y))

also belongs to Cu{Ky) for all / € AU(K\)- Hence, by Theorem 4.2, h is uniformly
continuous.

It is a routine matter to verify that the inverse of T, T~l, can be written as (T~1g)(x) =
b(x)g(h^1(x)), where b 6 Cu(Kx), for all a; 6 X and all g 6 Au(Ky). Hence, an analogous
argument shows that the inverse of h, h~l, is uniformly continuous. •

The following straightforward consequence of the above theorem does not yet seem to
have made its way into the literature (see, for example, [4]).

Corollary 4.7. Let X and Y be Banach spaces and let T : Cu{Kx) —> Cu(Ky) be
a linear surjective isometry. Then there exists a uniform homeomorphism h of Ky onto
K\ and a function a € Cu(Ky), such that \a(y)\ = 1 for all y 6 Ky, and (Tf)(y) =
a(y)f(h(y)) for all y 6 Ky and all f e CU(KX).

Proof. By [5, Lemma 2.1], it is apparent that Cu{Kx) is weakly normal. Thus, the
result follows immediately from Theorem 4.3. •

Theorem 4.8. Let X and Y be Banach spaces and let T : A°U(KX) -• A°U(KY) be
a linear surjective isometry. Then there exists a uniform homeomorphism h of Ky onto
Kx with h(0) = 0. Furthermore, there is a function a € C(Ky \ {0}) with \a(y)\ = 1 for
all y&KY\ {0}, such that, for all f € A°U{KX)

(Tf)(y) = laMfMy»> V^KY\ {0},
1 0, y = 0.
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Proof. By Lemma 3.1 and [1, Theorem 4.1], there exists a homeomorphism h' of
dA0(Y) \ {0} = jY \ {0} onto dA0(X) \ {0} = -yX \ {0} and a continuous map a' :
iY \ {0} -+ K, such that \a'(y)\ = 1 for all j , 6 7 y \ {0}, and (Tf)(y) = a'(y)f(h'(y))
for all y G 7 y \ {0} and all / € A0(X). We shall define a := a\KyVQ}.

Arguments like those in Claim 4.4 show that h := ^KYXW}
 IS a homeomorphism of

KY \ {0} onto Kx \ {0}.

Claim 4.9. The weight function a is uniformly continuous in Ba := {y G Ky • \\y\\ ^
a}, for every 0 < a < 1.

Fix 0 < a < 1. It is clear that 0 does not belong to the compact set cl7y Ba. Hence,
such a set is compact in ~/Y \ {0} and, consequently, /i'(cl7y Ba) is a compact subset
of •yX \ {0}. Then h(Ba), which turns out to be /i'(cl7y Ba) f](Kx \ {0}), is a closed
subset of Kx that does not contain the point 0. By definition, there exists a function
/ G A^(Kx) such that |/(x)| ^ 1 on h(Ba). Thus, if we assume that a is not uniformly
continuous on Ba, we can proceed, with slight changes, as in Claim 4.5, and obtain a
contradiction. This shows that a is uniformly continuous on Ba.

Claim 4.10. Let f G A°U{KY). Then (I/a) • / belongs to CU(KY \ {0}).

Choose an e > 0. Since / vanishes at 0, there exists 0 < c < 1 such that if ||a;|| ^ c,
then |/(z)| < e/4.

On the other hand, since / is uniformly continuous, there exists a 6' > 0 such that if
\\x-y\\<S', then \f(x)-f(y)\<e/2.

By Claim 4.9 and following the details in Claim 4.5, we yield the uniform continuity
of I/a on Bc. Hence there exists a 6" > 0 such that if ||x - y\\ < 5", x,y G Bc, then

1, ^ I,

c orLet us define d := min{<5',<5"}. Suppose first that ||x — y\\ < 6 and either ||x||
\\y\\ ^ c. Assume, without loss of generality, that ||y|| ̂  c. Then

i(x)(/(x)-/(y))-

If ||x - y\\ < 6 and both ||x||,

1 1
a a

> c, then

-(*)(/(*)-

\f(x) - f(y)\

/(y)

'211/H
— = e.

oo
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Consequently, (I/a) • / is uniformly continuous on Ky \ {0}.

Claim 4.11. h : Ky \ {0} —> K\ \ {0} and its inverse are uniformly continuous.

Prom Claim 4.10, we deduce that (I/a) • a • (/ o h) = f o h is uniformly continuous
on KY \ {0} for every / € A^(Kx)- On the other hand, a close review of the proofs of
Lemma 4.1, Theorem 4.2 and [5, Lemma 2.2, Theorem 2.3 and its remark] shows that
they remain true if we replace Au(Kx) (respectively Au{Ky)) by A^(Kx) (respectively
A^(Ky)). Hence, we infer that h is uniformly continuous on Ky \ {0}.

The uniform continuity of h~1 follows as in the last paragraph of the proof of Theo-
rem 4.3.

Claim 4.12. h : Ky \ {0} —> K\ \ {0} can be extended to a uniform homeomorphism
of Ky onto Kx •

Let (yn) be a sequence in Ky \ {0} converging to 0. It is clear, from the uniform
continuity of h, that (h(yn)) is a Cauchy sequence. Hence, as X is a Banach space, there
exists a point, say h(0), such that (h(yn)) converges to h(0).

The remainder of the proof consists of checking that h(0) = 0. Suppose h(0) = XQ ^ 0.
Since (j/n) converges to 0, then ((Tf)(yn)) = {a{yn)f{h(yn))) converges to (T/)(0) = 0
for every / e A^(KX)- That is, (f(h(yn))) converges to 0 for every / € A^(Kx), since
\a\ = 1 on Ky \ {0}.

On the other hand, since A^(Kx) is weakly normal, there exists an /o € A^(Kx) such
that |/o(a:)| ^ 1 for every x £ B||Xo||/2 (see definition in Claim 4.9). Thus, {fo(h(yn)))
does not converge to 0, which contradicts the above paragraph. •

The following example shows that we cannot strengthen Theorem 4.8 to the effect
a € CU(KY \ {0}).

Example 4.13. Let B be the unit ball of the complex numbers. Let a be a function
in C(B \ {0}) defined as

a(x) := x/\x\,

for every x G B \ {0}. It is then apparent that

(Tf)( ) = laWf{x)' xe
( >K '' [0, x = 0,

is a linear isometry of A^(B) onto itself. However, a is not uniformly continuous on
B\{0}.
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