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THE CONVERSE OF THE DOMINATED ERGODIC 
THEOREM IN HUREWICZ SETTING 

LÂSZLÔ I. SZABÔ 

ABSTRACT. The converse of the dominated ergodic theorem in infinite measure 
spaces is extended to non-singular transformations, i.e. transformations that only pre­
serve the measure of null sets. An inverse weak maximal inequality is given and then 
applied to obtain related results in Orlicz spaces. 

Introduction. According to Birkhoff's ergodic theorem, the ergodic averages 
An(f) = (1/'")£i!=o Tf converge a.e. if T is a measure preserving point transforma­
tion and/ E L\. Wiener's [10] dominated ergodic theorem asserts that iff E Lp,p > 1, 
then supn An(f) E Lp, and, in finite measure spaces, iff E LlogL, then supn An(f) E L\. 
The converse of this last result was obtained by D. S. Ornstein [8], after the particular 
case of translations in Rd was proved by Stein [9]. In infinite measure spaces, of inter­
est are the ratios Rn(f9 g) = (£?~o ?Y)/ (E^rJ Vg\ and the right form of the converse 
of the dominated theorem, still for measure preserving transformations 7, was found by 
Derriennic [2]. Using his method we extend this to the Hurewicz setting: the point trans­
formation r only preserves the measure of null sets, and T appearing in Rn(f,g) is the 
Markov operator induced by r . At the same time, we generalize the result so that the 
correspondence is established not only between Lp and Lp(p > 1), or between LlogL 
and L\, but, more generally, between appropriate Orlicz spaces. Here our approach is 
similar to that of Edgar-Sucheston [3], and we prove below the needed variant of their 
Orlicz norm inverse inequality. 

1. Let (X, f, /x) be a a -finite measure space. That is, X is an abstract set, J is a 
a -algebra of measurable subsets of X, \x is a a -finite measure on J. All considered sets 
and functions will be assumed measurable. A mapping r : X —-*• X is called measurable if 
r ~ 1 J C jF. A transformation is a bijection of X such that both r and r ~1 are measurable. 
Thus we consider here only invertible transformations. A transformation r is called non-
singular if //(A) = 0 implies ^L(T~1A) = fi(rA) = 0. A set W is called wandering if 
the sets r~n W (n = 0,1,2,...) are disjoint. A non-singular transformation r is defined 
to be conservative if there are no wandering sets of positive measure; incompressible if 
A C r~lA implies H{T~XA \ A) = 0. It is easy to see that r is conservative if and only 
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if it is incompressible (see [7], p. 16). From now on we assume that r is a non-singular 
transformation. Denote by un the a.e. uniquely defined function satisfying for all A 

/ x ( A ) = / ujnd[i. 

Write UJ for uj\. Define an operator T by 

Tf(x) = uj(x)f(r(x)) 

for/ G L\. Then T is a Markovian operator: a positive linear operator on L\ that preserves 
the integral: JTf d\i — Jfdfi for all / G L\. Such an operator is necessarily a contraction 
onL,: | |7Jf | | ,< H/H,. 

The following properties are easy to prove. For every/ G Li, A G F̂ and n = 
0,1,2, . . . , we have 

(1) JAfd^i = lnA(forn)-u;nd^, 

(2) Tnf=(forn).u;n, 

and the adjoint operator T*: L^ —> Loo is given by 

A positive contraction T is defined to be conservative if h > 0, r*/i < ft implies 
7*/z = h. A transformation r is called ergodic if /x(AAr_1A) = 0 implies fi(A) — 0 
or /x(Ac) = 0. An operator T is called ergodic if r*l^ = 1A implies that n(A) = 0 or 
H(AC) = 0. We note that the operator T defined above is conservative (resp. ergodic) if 
and only if r is conservative (resp. ergodic). 

Let I A denote the operator of multiplication by 1^. One can prove by induction that if 
/ G L i andA,£G 7, then 

(3) fE(TIA)nfdLi = fEnT
nfdn, 

for n = 0 ,1,2, . . . , where En = EPi f)t\ r~lA. 
From now on let us assume that two functions/ and g are given with/ G L\,f > 0, 

g > 0. Define 

The next lemma and Theorem 1, for measure preserving transformations, were proved 
by Derriennic [2]. Here our method is similar to his. 

LEMMA 1. Assume that r is conservative and ergodic. Let X be a positive number 
and define A = { s(f, g) > A }. ///x(Ac) > 0 then 
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PROOF. Since T is conservative and ergodic, 
oo 

(4) U = Z(lAT*)n\Ac. 
n=\ 

This is known, but for completeness we give a proof: 

f ^ r y i = jr(iAry\A + jr(iArT\Ac. 
n=\ n=\ n=\ 

On the other hand, T*l = 1, hence 

j2(iAryi = iA+NJ:(iArTiA. 
n=\ n=\ 

Therefore 

iA = (iAr)NiA^Z(iArnAC. 

Since 
(IAT*) lA = lAr\TAn-nTN

A> 

(IAT*)NlA converges a.e. as N —• oo to lD where D — Ç\™=x r
nA. Now D C r(D) implies 

that D = r (D) a.e. because r is conservative. But r is also ergodic, so ji (D) — 0, because 
D C A and //(Ac) > 0. This proves (4). 

By (3), we have 
- - oo 

}Afdn = jfY,(iArr\Acdii n=\ 
ç oo 

JA n=\ 
oo r 

= T,JB1nfdl*, 
n=\JB" 

where Bn = Ac D fl"=i r~lA. The set E^ = BkH T-(k+l)Ac contains exactly the points of 
Ac which first return to Ac at time k + 1. The sets £* for fc = n, rc + 1,... form a partition 
of Bn, hence 

(5) JAfdn = f:JF(tTif)dn. 

On Ac we have 

i = l i = 0 

for every n. Therefore, applying (5) with g instead of/, one has 

SAfdn<\tjE{tn)dn 
JA n=lJhn\i=0 J 

oo ç oo p. , n \ 

= *ZL8dn + \ZL(ZTig)dn 

= xL>A
gdfx-
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THEOREM 1. There exists Ao > 0 such that for all A > Ào, 

(6) / fd\x < X [ gd\i. 

PROOF. Let A0 = inf{ A > 0 : n(s(f,g) < A) > 0} . Note that/ > Xg implies 
s(f> g) > A, and also r~x{ s(f, g) > X } = { s(Tf, Tg) > X }, because 

s(f,g)(rx) = sup y 

E S Vg(rx) 
ETo1 rf<Tx)u(x) 

~n E ^ J rg(rx)o;(x) 
S UP ™ - l 

En ! 7V 

n 2^i=\ i 5 

Therefore (6) follows from Lemma 1 for A > Ao- • 

2. An Orlicz function is defined as an increasing, convex function O: [0, oo) —* 
[0, cx>), satisfying 0(0) = 0, nontrivial in the sense that <D(w) > 0 for some u > 0. Let <p 
be the left-continuous derivative of O. If <p is unbounded, or equivalently O(w)/ w —•+ oo 
as u —• oo , then the generalized inverse ip of (p exists, defined as follows: \jj(y) — 
inf{ JC G (0, oo) : (p(x) > y}. Let ^(u) = $ \j) (t) dt. Then *F is also an Orlicz function, 
called the conjugate of O. Recall Young's inequality: for all w, v > 0, 

(7) uv < O(w) + ¥(v). 

Equality holds if and only if v = ip(u) or w = ^ (v). Let 

£(M) = ULP(U) - O(M) = *F(y>(n)). 

The modular for £ of a real-valued function /i on X is defined asM^(/i) = J £ (| /i| ) dl. 
Assume that £ is an Orlicz function, then the Luxemburg norm of h is || h\\^ = inf{ a > 
0,M(:(h/a) < l} .LetL c = {h : \\h\\z < oo} = {h : M^(h/a) < ooforsomea > 
0} . L^ is a Banach lattice, called the Orlicz space for £. Define H^ = {h : M^(h/ a) < 
oo for all a > 0} . H^ is called the heart of the Orlicz space L^. It is a Banach lattice, 
closure in L̂  of integrable simple functions. The spaces H^ are often the right setting for 
ergodic theorems (see [1] and [3]). 

THEOREM 2. Let O be an Orlicz function with O(M)/ U —• oo as u —• oo, and let r, 
5 be positive functions on X. Suppose there is c > 0 and Ao > 0 such that 

(8) ( c / A ) / rdl<l(s>X) 
J{r>\} 

for all X > Ao. Then for each A > 0 there exists yo > 0 such that 

(9) M c (^ /A)>cM 0 ( r /A) + c M c ( r / A ) - / , 
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where 

I=(c/\)[yo[ rdldy. 
V ' J JO J{r>\iP(y)} J 

PROOF. Let C^ denote the set of points of continuity of ip, and let Q, be the set 
of points of continuity of -0. Since ip and 0 are nondecreasing, both C^ and Q, are 
countable. Let A — XC^U { 0} , and suppose that r and s have countably many values, 
all in the set A. Note that for each x G X, r(x)/ X G C^. For y £C^p, 

y<<p(*x)/\)iKxl>(y)<iix)/\. 

Hence, for almost all y G (0, oo), 

{x G X : y < <p(r(x)/X)} = {x G X : VOO < K*)/A}. 

Now Fubini's theorem implies that the sets 

{(x,y) G X x (0,oo) : y < ip(r(x)/\)} 

and 

{(jc,y) GX x (0,oo) : 000 < K*)/A} 

agree except for a set of measure zero. The same holds for the sets 

{(*, v) G X x (0,oo) : v < <p(s(x)/\)}, 

{(x,y) G X x (0,oo) : ^(y) < s(x)/X}. 

Fix À > 0 and let yo = inf{j > 0 : À ip (v) > Ao}. Now we have 

XMz(s/X) = X JÇ(s/X)dl 

= \J*¥(<p(s/\))dy 

= A / / dl^(y)dy (by Fubini's theorem) 
J0 J{Xij)(y)<s} 

^x r Lu,<xdi'{,(y)dy 

Jyo J{\\l)(y)<s} 
= /'OO7(At/;(>')<s)AV0')^ 

> c / rdl dy (by the assumption (8)) 
7jo J{r>Xxlj(y)} 

rOO r ryo r 

= c / rdldy-c / rdldy. 
J0 J{r>\xP(y)} JO J{r>\iP(y)} 
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By Fubini's theorem, the first term is equal to 

f /• v(r/ À ) r 

c dyrdl = Xc hp(r/X)r/Xdy 

(applying the case of equality in Young's inequality) 

= Xc j ®{r/ X)d1 + Xc j ^far/ X))dT( 

= AcM0(r/A) + AcMc(r/A). 

The case of general r and s follows by approximating r and s with functions of the above 
special form, as in [3]. • 

REMARK. If (8) holds for all A > 0, then one can take yo = 0 and 1=0. This case 
was proved in [3]. 

Let 7 be the measure g • /i, i.e. for A G ^F, let 7 (A) = JA g dp,. 
We are now ready to state our main result. 

THEOREM 3. Let O be an Orlicz function with O(w)/ u —> oo as u —> oo, and as­
sume that £ is also an Orlicz function. Let r be a non-singular, conservative and ergodic 
transformation. Assume thatf G L\yf > 0, g > 0. Then: 

(a) s(f, g) + s(Tf, Tg) G Lc (7 ) implies f/ g G L«>(7 ); 

(b) s(f, g) + s(Tf, Tg) G //c(7 ) implies f J g G //«>(7 ). 

PROOF. Theorem 1 implies that assumption (8) holds for r = f / g and s = $(/*, g) + 
^(77, ?g) with c = 1. Note that for A > 0, 

I<(c/X)Jy° Jrdldy 

= (yoc/X) Jrdl = (y0c/X)Jfdfi < oo. 

Hence, by (9), if there is A > 0 with M^(s/ A ) < oo ( i.e. 5 G L̂  ), then M<&(r/ A ) < oo, 
therefore r G L#. Similarly, if M^(s/ X) < oo for all A > 0 ( i.e. s G H^ ), then 
M<&(r/ A ) < oo for all A > 0, hence r G //<D- • 

Several statements follow from Theorem 3 by taking particular cases of Orlicz func­
tions. Let 1 < p < oo; by considering O(w) = (1 / p)up, we get 

COROLLARY 1. Ifs(f, g) + s(Tf, Tg) G LP{1 ) then// g G Lp(J ). 

COROLLARY 2. //j(/\ g)+s(Tf, Tg) G L log*"l UT! ) then f I geL log*L(7 ). Ifs(f, g)+ 
5(7/, Tg) G //«>,_, rtew//* G H*k. 

PROOF. Let k > 1. Recall that the Orlicz space Llog* L(7) is defined by the Orlicz 
function O^(M) = u(\og+ u)k. Then £(u) = k&k-\(u). m 

The spaces H$>k are Fava's spaces R^ (Fava [4]); see also Frangos and Sucheston [5]. 
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