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LOCALLY COMPACTLY LIPSCHITZIAN MAPPINGS
IN INFINITE DIMENSIONAL PROGRAMMING

B.M. GLOVER

In this note we show that a subgradient multifunction of a locally compactly Lip-
schitzian mapping satisfies a closure condition used extensively in optimisation
theory. In addition we derive a chain rule applicable in either separable or reflex-
ive Banach spaces for the class of locally compactly Lipschitzian mappings using
a recently derived generalised Jacobian. We apply these results to the derivation
of Karush-Kuhn-Tucker and Fritz John optimality conditions for general abstract
cone-constrained programming problems. A discussion of constraint qualifications
is undertaken in this setting.

0. INTRODUCTION

Recently several authors have considered the problem of deriving optimality condi-
tions for abstract programming problems involving locally Lipschitz functions (see (2,
6, 10, 15]). In the main, the tool used in these proofs has been Ekeland’s Theorem
[9] and, without exception, some closedness condition is required on a subgradient mul-
tifunction. In this paper we establish that a large class of locally Lipschitz mappings
satisfy the required type of closedness. These mappings are called locally compactly
Lipschitzian, and were first developed, as an attempt to extend the nonsmooth analysis
of Clarke [3] to the vector-valued setting, in the pioneering work of Thibault (see [19,
20, 21]). As an important consequence of this result we are able to derive an infinite
dimensional chain rule for these functions valid in either separable or reflexive Banach
spaces, thus extending the partially finite dimensional result due to Clarke {3]. This
result will be particularly useful as a tool in the derivation of optimality conditions,
via exact penalty techniques, for programming problems in infinite dimensional spaces.
As another immediate consequence of this we consider the problem of deriving Karush-
Kuhn-Tucker (KKT) type optimality conditions involving explicit Lagrange multipliers
for locally compactly Lipschitzian programming problems in separable spaces. This
extends the recent work of Flam [10]. In addition we develop a new Robinson-type reg-
ularity condition for nonsmooth mappings using a generalised Jacobian valid in reflexive
Banach spaces; this condition is compared with existing regularity conditions.
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1. MaAIN RESULTS

Throughout we shall assume that X and Y are Banach spaces. Reflexivity or
separability of ¥ will only be required where it is explicitly stated. The remaining
terminology to be used is standard in the field of nonsmooth analysis (see Clarke [3]).
We begin with some preliminary definitions.

DEFINITION: [21] A mapping f: X — Y is said to be (strongly) compactly Lips-
chitzian at a point T € X if there is a mapping K from X into the set Comp(Y') of
nonempty (strongly) compact subsets of Y, a mapping r of (0,1] x X x X into ¥ and
neighbourhoods U of £ and V' of zero in X satisfying:

(a) lim »(t,z;v) =0 for each v € X and im  »(t,z;v) =0;

tl0, z—zT t]0, z—T,v—0

(b) forall z €U, veV and te (0,1]
t7f(z + tv) — f(z)] € K(v) + r(t,z;v);

() K(0) = {0} and the set set-valued mapping K is upper semi-continuous
at the origin (that is, for every neighbourhood W of K(0) in Y there is
a neighbourhood L of zeroin X satisfying K(v) C W for every v € L).

If f is compactly Lipschitzian at every z € X then f will be said to be locally compacily

Lipschitzian.

It can be shown ([19]) that every locally compactly Lipschitzian mapping is locally
Lipschitz in the usual sense. In finite dimensions the concepts coincide. For a discussion
of the properties of these mappings and examples in the infinite dimensional setting the
reader is referred to [19] and [20].

Recently Ralph [16] has developed a concept of generalised Jacobian applicable to
locally Lipschitz mappings f : X — Y where X is a Banach space and Y is a reflexive
Banach space. Namely, the generalised Jacobtan of f at a is given by:

9f(a) = {4 € L(X,Y): (V(A,u) € Y' x X) AA(u) < (Af)"(a,u)}.

We shall use 8f(a) to denote both the Clarke subgradient when f is real-valued and
the generalised Jacobian when f is vector-valued as no confusion should arise. Here
(Af)°(a,u) denotes the Clarke generalised directional derivative of the real-valued func-
tion Af at a in the direction u. In [16]it is shown that 3f(a) is nonempty, convex
and weak operator compact and, in particular, 8(Af)(a) = A@f(a) for every A € Y.
For other properties the reader is referred to {16]. The idea of a subgradient for a
locally Lipschitz mapping leads immediately to concepts of closure for the multifunc-
tion (A,z) — 9(Af)(z). The closure of this subgradient multifunction is of course
related to the upper semi-continuity of the function (A,z,u) — (Af)°(z,u). In this
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paper we shall concentrate on closure for convenience. In particular we shall say this
subgradient multifunction is weak* closed if for sequences A\; — A, w; —» w, z; = =
with w; € 8(A:if)(z:) it follows that w € 8(Af)(z). Of course the convergence here
is very important. We shall assume that sequences in the dual spaces X' and Y’ are
converging in the weak* topology and other sequences converging strongly (in the norm
topology). Note in [16] it is shown that if the convergence of ();) is taken in the strong
topology of Y' then every locally Lipschitz mapping will possess a subgradient multi-
function with this type of closure. The following theorem shows the connection with
locally compactly Lipschitzian mappings.

THEOREM 1. Let f : X — Y be locally compactly Lipschitzian. Then the
mapping (A, z) — 8(Af)(z) is weak* closed.

PROOF: Let A; N A, 2 o F, wy v @ with w; € 8(Aif)(z:) for each i. Now fix
e>0,v€eV,and i, then

wi(v) < (A:f)°(2:,v)
,\;f(z'z + tfv) - A.-f(::f-.)

=lim £
i t!

for some sequences t“i 1 0 and zf: — z;.
Xf (= + tv) = xif (<)
< 3
t

for j sufficiently large, say j > Ni(¢).

+€

<1/i, 0 <

i(sse)

We now select, for each i, j = j(i,€) such that j > Ny(e), zf.' —z;

7

tf < 1/i. This is possible since z] — z; and t‘! lOas j — 0. Let y; =z and

o; = tf(i") for each i. Clearly, as z; —» T, we have y; — T and a; | 0 with, for each i,

Aif(yi + aiv) — A f(w:) +

w;(v) < .
1]

E.

Now since f is locally compactly Lipschitzian it follows, by taking a subsequence if
necessary, that

f(yi + aiv) — f(wi) .

q

for some q € K(v). For convenience let

ooty = 1= 1)
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Then,
w(v) = lii'n wi(v)

< lim Ai(g(yi, @5 v)) +¢

= Lim [Ai(q(ys, @i;v) — g) + Ai(g)] + €

<lim kg, ai;0) — ql + X(g) + ¢
where (;) is norm-bounded (by k) using the uniform
boundedness theorem as Y is a Banach space and the
sequence is weak* convergent (see [23, p.69])

=Xg)+e

= ;\—(hfn q(y,-,a,-;v)) +e€

— lim Xg(us, a55)) + ¢

< lim sup Af(z + tv) — A f(=z) +e

z—Z,t|0 t
= (3f)°(=,v) +e.
Thus, since £ was arbitrary, we have W(v) < (Xf)o(i,v) for all v € V. Thus w €

(A f)() (since V is a neighbourhood of zero and using the positive homogeneity of
w(-) and (X f)o(i, -))- Thus the required mapping is weak* closed. 1]

REMARK. We can now derive an infinite dimensional chain rule which is directly ap-
plicable to locally compactly Lipschitzian functions. The approach we shall use will
require, critically, that a norm-bounded sequence in the dual space Y’ has a conver-
gent subsequence. It is an immediate corollary of the Banach-Alaoglu Theorem that
a norm-bounded sequence will possess a convergent subnet in Y’'. However to ensure
this subnet is actually a subsequence we require either separability or reflexivity of Y.

THEOREM 2. Let X and Y be Banach spaces with Y either reflexive or separa-
ble. Let f: X — Y be locally Lipschitz with the mapping (A,z) — 8(Af)(z) weak*
closed. Let a € X andlet g:Y — R be locally Lipschitz at f(a). Then go f is locally
Lipschitz at a and

(g o f)(a) C weak*-clco U 8(Af)(a).
A€dg(£(a))

Furthermore if Y is reflexive then this condition becomes

d(g o f)(a) C weak*<clco[Bg(f(a)) o 8f(a)].
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ProoF: Clearly g o f is locally Lipschitz. Let v € X and consider the following:
a, = max{w(v) : w € (Af)(a), A € 9g(f(a))}.

The result will follow if we can show that (g o f)°(a,v) < a,. Now, there are sequences
(z:) C X, z; — a and (¢;) C Ry, ¢; | O such that

(g0 f)°(e,v) = lim g0 f(= 'Hi:? —go f(z;)

Consider the quotient

go f(zi +tiv) —go f(z:)  Aif(zi +tiv) — Aif(=;)
i t;
for some A; € 8g(2;) where 2; lies on the line segment joining f(z; + tiv) and f(z;)
(this follows by a direct application of the Lebourg mean-value theorem (see [3])). Note
that z; — f(a) by continuity of f. Also the sequence (A;) is norm-bounded (by the
Lipschitz constant of g locally about f(a)). Hence, by using a subsequence (since Y
is either separable or reflexive) if necessary, it follows that ();) converges (weak*) to

some A € Y'. In addition, using the strong closure of the subgradient multifunction of
g, it follows that A € dg(f(a)). Now, we again apply the mean-value theorem to obtain

Aif(@i + tiv) — Mif(=:) _
. = wi(v)

for some w; € 8(X;f)(y;) where y; lies on the line segment connecting z; + ;v and

z;. Hence y; converges to a. Also since (J;) is norm-bounded and f is locally Lip-
schitz it follows that the sequence (w;) is also norm-bounded. We can therefore, by
using a subsequence if necessary, assume that (w;) converges to W. Now applying
the weak* closure of the subgradient multifunction it follows that w € 8(Xf)(a) with
X € 89(f(a)). Hence
o . go f(zi+tv) —go f(z

(90 1)(a,0) =lips LS X W) Zg 0 /()

— lim Aif(zi + ti:') - Xif(z:)

= lifn w;(v)
= w(v)

(Xf) o(a’”)

Qay.

VAN

Thus the result follows since v was chosen arbitrarily.
The final statement follows easily since 8(Af)(a) = A8f(a) using the generalised
Jacobian. 0
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REMARK. This result can be extended to the case in which ¢ : ¥ —» W with W a
reflexive Banach space along the lines of a similar extension in [16]. Using Theorem 1
and 2 above we can derive the following corollary.

COROLLARY 1. The result of Theorem 2 remains valid if f is assumed locally
compactly Lipschitzian and g is locally Lipschitz.

PRroOOF: Immediate by Theorem 1 above. 0

EXAMPLE. Consider the special case of Theorems 1 and 2 in which f is locally com-
pactly Lipschitzian, and g is defined as follows:

9(z) = d(z,~5) = inf {[lz + s|| : s € 5}

where S CY is a closed convex cone. Assume, additionally, that f(a) € —S. Then it
follows that

8(go f)(a) Cclco{v:v e d(Af)(a), A€ S*, ||A| £1, Af(a) =0}.

This is clear since g is a continuous convex function, hence it is locally Lipschitz. It is
well known that the convex subdifferential of g at a point y € —$ is given by:

99(y) ={ve S vl <1, v(y) =0}

Thus the result follows by a direct application of Corollary 1. 0

REMARK. Note that the above result provides a chain rule which would be immediately
applicable to abstract optimisation problems involving cone constraints (as discussed in
the next section) where optimality conditions are sought via exact penalty techniques;
see Burke [2] for an excellent survey of this approach. Note that, assuming reflexivity of
Y, we could extend this example using the generalised Jacobian. It should be noted that
Dien {5] has derived a version of this example in the more general setting of Lipschitzian
set-valued mappings in Hilbert space (see also Dien and Sach [8] where the result is
used in establishing metric regularity results in the multifunction setting).

2. APPLICATION TO OPTIMISATION

In this section we shall consider the derivation of optimality conditions for the
following abstract cone-constrained programming problem:

(P) Minimise k(z)
subject to - f(z) € S, 2 € C
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where h: X - R, f: X > Y, X and Y are Banach spaces with Y separable; SCY
is a closed convex cone with nonempty interior and C is a closed set. Note that the dual
cone to S will be denoted by §* = {u € Y' : (Vs € S)u(s) > 0}, the Clarke tangent
cone to C at a is Tc(a) (see [3]) and the normal cone to C at a is Nc(a) = —(To(a))"
in our terminology (see [3]).

We begin by noting that Flam [10] has recently obtained a Fritz John type opti-
mality condition for (P) in the separable Banach space setting (see Theorem 3 below).
The proof relied critically on the Clarkson-Riefel renorming lemma (see [12]), and so
is restricted to the separable setting, as well as the weak* closure of the subgradient
multifunction. The method of proof was similar to the finite dimensional approach,
employing Ekeland’s Theorem [9}, used by Clarke [3]. This result corrects the main
theorem in Lai [15] where the strengthened closure of the subgradient multifunction
was overlooked. A similar result, in the Hilbert space setting, has been derived by
Dien [5) and [6] in the context of set-valued constraints under the assumption of the
Cl-property which reduces to weak* closure of the subgradient multifunction for single-
valued mappings.

THEOREM 3. For problem (P) assume h and f are locally Lipschitz with the
mapping (A, z) — O(Af)(z) weak* closed. Then if a € X is a local solution to (P)
there exists (0,0) # (7,A) € Ry x S* such that

1) 0 € 70h(a) + 8(Af)(a) + N¢(a), Af(a) =0.
If, in addition, we assume that Y is reflexive then (1) above becomes (using the gener-
alised Jacobian):
0 € 70h(a) + A3f(a)+ Nc(a), Af(a) =0.
Proor: Follows directly by [10, Theorem 3.2]. The final comment follows since,
for any A € Y', 8(Af)(a) = A8f(a) (see [16] for details). 1]

REMARK. It should be noted that, by Theorem 1, the result of Theorem 3 remains
valid when f is locally compactly Lipschitzian. It remains to consider now regularity
conditions which will ensure that in the Fritz John Theorem above the multiplier =
is positive. Various conditions have been used to ensure that Karush-Kuhn-Tucker
conditions (KKT) are established. This is of particular importance in the stability
analysis of the program. Below we shall present an extension of the Robinson regularity
condition [17].

DEFINITION: Let f : X — Y be locally Lipschitz with Y reflexive. We shall
say that the constraint system —f(z) € S, # € C satisfies the generalised Robinson
regularity condition (RRC) at a € X if

(2) (VA € 8f(a)) 0€ int (f(a)+ A(Tc(a)) + S).
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Using the generalised open mapping theorem (see [24]) it can be shown, under the
additional assumptions that C is a closed convex set with a € C and f(a) € —S, that
(2) implies the following

(3) (VA € 8£(a))(3p > 0) ¥, C (A((C - &) N X1) + (S + f(a) N V1)

where Y, denotes the closed ball in Y centred at the origin of radius p, similarly
X,, Y: denote the closed unit balls in X and Y respectively. It should be noted that
if f is continuously Fréchet differentiable then (2) reduces to the well known Robinson
regularity condition (see [17]).

For the case in which C is a closed convex set we shall say the constraint system
satisfies the uniform generalised Robinson regularity condition (URRC) at a if (3) holds
uniformly for each A € 8f(a) (in the sense that p is independent of A). Note that Yen
[22] has recently shown, in the finite dimensional setting using the Clarke generalised
Jacobian, that (2) is sufficient for metric regularity (see [1, 13, 14]) of the constraint
system. Namely, the constraint system satisfies the metric regularity condition at a € X
if

(3y>0)(3U C X,0¢€ int U)(Vz e UNC)d(z,F) < vd(f(=),—S)
where F = {z € C: f(z) € —S}. It is well known that metric regularity implies calm-
ness of (P). This regularity condition and its connection with exact penalty techniques
has been detailed in Burke [2] (see also Sach [18]).

Another sufficient condition for metric regularity, applicable to nonsmooth map-
pings in infinite dimensional spaces, which has been used by several authors (see [6, 7]),
is the following. The point a € X will be said to be a regular point of the constraint
system f(z) € -5, z € C if there exist positive constants v, § and a neighbourhood
U of a such that for each z € UNC, XA € §* (with ||A|| =1) and w € 8(Af)(z) there
is u € Te(z) N X, satisfying

(4) —Af(z) - Buw(u) 2 7.

This condition was stated more generally for multifunctions in [8]; we have restricted
it to the single-valued case for our purposes. Note that under this regularity condition
and weak* closure of the subgradient multifunction Dien and Yen (7] have derived
an implicit function theorem which, essentially, establishes metric regularity of the
constraint system in (P). Consequently using Theorem 1 of this paper the results in [7],
particularly Corollary 2.2, would be applicable under the regularity condition (4) above.
We shall now show, under suitable upper semi-continuity assumptions, that (URRC) is
sufficient for a to be regular point of the constraint system in the infinite dimensional
setting. Consequently, by [7, Corollary 2.2], (URRC) is sufficient for metric regularity.
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DEFINITION: A multifunction I' : X — 2% is said to be strongly upper semi-
continuous at a € X if, for each € > 0 thereis a § > 0 such that whenever ||z —af| < §
we have I'(z) C T'(a) + € X, .

THEOREM 4. For the constraint system of (P) assume f: X — Y is locally Lip-
schitz with Y reflexive and C a closed convex set. Furthermore assume the generalised
Jacobian multifunction z — 8f(z) is strongly upper semi-continuous at the feasible
point a € X, and that the system satisfies (URRC) there. Then a is a regular point
for (P).

PRrROOF: Assume that (URRC) is satisfied at a. Hence there exists p > 0 such
that for each A € df(a),

Y, € (A((C - &) N X1)) + (f() + S)N Ya.

Now let D(A) = A((C — a) N X1)+(f(a) + S)NY,, then by (24, Lemma 5.1] it follows
that

(5) o(p, D(4)) 2 p

for each p € Y’ with ||g|| = 1. Here, for a set E C Y, we denote the support functional
of E by o(u,E) = sup{u(e) : e € E}, for each u € Y'. It immediately follows, from
(5), that for each A € S* with ||A]| = 1 there are u € (C —a)N X, and s € S such
that

— MA(u) — Af(a) — X(s) > g
(6) = —Af(a) - M(x) > £.

The final implication follows since A(s) > 0. Asin (7, Proposition 1.1] we choose § = 2
and T € (0,p/2) and let € = p/2 — 7. Now, by the continuity of f, thereis §; > 0
such that

(7) I£(2) - f(a)ll < £

whenever ||z — a|| < 8;. Also, since f is locally Lipschitz about a and Y is reflexive
it can be shown that, for some §; > 0, ||A4]| < k (where k is the Lipschitz constant of
f about a) for each 4 € 8f(z) provided |z — a|| < §2. Hence we shall assume

€
o=
By the strong upper semi-continuity of the generalised Jacobian it follows that there is
84 > 0 such that

9) 0f(z) C 9f(a) + 2B

(8) =z —all < bs.
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where B denotes the closed unit ball in L(X,Y). Let § = min{6;,1/2: ¢ =1,2,3,4}.
Now we let U denote the open ball centred at a of radius §.

Take any z € UNC and A € §* with ||A]] =1, then thereis u € (C —a)N X,
such that (6) holds. Set v = u+a— =z then, by the construction of §, v € (C —z)NX,.
Now take any 4 € 8f(z), then thereis A € 8f(a) with ”A - Z“ < e/4 (by the strong
upper semi-continuity). Hence, combining (6), (7), (8) and (9) we have

=A(f(=) + A(v)) = —Af(a) — AA(u) + AM(f(a) — f(z)) + A4 -A)(x) + NA(u —v)

Now the result follows by noting that, forany u € Y', 8(uf)(z) = u8f(z). In addition,
since v € (C —z)NX; C To(z)NX, it immediately follows that v/ ||v|| € To(z)nX, . O

REMARK. As a final remark on nonsmooth Robinson-type regularity conditions, re-
cently the authors in [11] have shown, in the finite dimensional setting with C = X,
that condition (2) is sufficient for local solvability of the constraint system. Here we
assume that f is locally Lipschitz and directionally differentiable at a, that is the Limit

: _ i, flattd)— f(a)
f(a’d)—ltlﬁl 1

exists for each d € X. Then the constraint system is locally solvable (see [4] and [11]) at
a if whenever f(a)+ f'(a,d) € —S has a solution d € X (with ||¢| sufficiently small)
there is a solution z = a4+ ad+o(a) to —f(z) € S valid for all a > 0 sufficiently small.
This constraint qualification has been used to establish asymptotic KKT conditions
for quasidifferentiable programming problems. It is not difficult to adapt the argument
used in {11] to show, under the assumptions of Theorem 4, that (URRC) is sufficient for
local solvability. This result requires the metric regularity condition discussed above.

We complete our discussion of regularity conditions by showing that (RRC) is
sufficient for the Karush-Kuhn-Tucker conditions. Consider (P) with ¢ a minimum
under the conditions of Theorem 3 assuming C a closed convex set. Suppose that the
multiplier 7 = 0, hence there exists a nonzero A € §* such that

(10) 0 € 8(M )(a) + No(a), Af(a) = 0.

Let us further suppose that Y is reflexive and the regularity condition (RRC) is satisfied
by the constraint system at a. By (10) there is a A € 8f(a) such that —A4 € N¢(a)
and Af(a) = 0. Now, by (RRC) and the generalised open mapping theorem, there is a
positive constant pg such that

(11) Yoo S (A(To(a) N X1) + (S + f(a)) N Y1).
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As in Theorem 4, let D(A) denote the set on the right-hand side of (11) above. It
follows by (24, Lemma 5.1] that o(u,D(4)) > po for each p € Y' with |ju|| = 1. If
we take g = —A/||A|l and a > 0 with 0 < & < po then there is y € D(A) such that
—A(y) > a>0. Hence, as y = A(z1) + 5 + f(a) for some z; € Tc(a)NX,,and s € S,
it follows that —A4(z;) — Af(a) > a > 0. (Here we note that A(s) > 0.) However
this is a contradiction to (10) since AA(z;) > 0 (as 2, € Tc(a) and Af(a) =0). Thus
we must have r > 0 whenever (RRC) holds at the minimum. It is clear, following a
similar argument, that if a is a regular point of the constraint system of (P) then KKT
conditions follow; however we are not assuming the uniform Robinson condition in the
above. Hence this argument establishes the following KKT result:

THEOREM 5. For problem (P) assume that h is locally Lipschitz, f is locally
compactly Lipschitzian and C is a closed convex set. Furthermore assume Y is a
separable reflexive Banach space and that the constraint system satisfies (RRC) at a.
Then a necessary condition for a to be a local minimum of (P) is that thereis A € §*
such that 0 € 8h(a) + A3f(a) + N¢(a) and Af(a) =0.

ConcLusiON. We have shown that the class of locally compactly Lipschitzian mappings
possess an important closedness condition in relation to a subgradient multifunction.
This condition enables us to establish a chain rule, in either the separable or reflexive
Banach space setting, and to restate a number of recently derived optimality conditions
involving this class of mapping. In addition using a new concept of generalised Jacobian
available in the infinite dimensional setting we are able to suggest an extension of
the Robinson regularity condition to the infinite dimensional nonsmooth setting. This
condition is shown to be sufficient for Karush-Kuhn-Tucker conditions to be established
and is compared with existing regularity conditions. Following the recent work of Flam
[10] it is possible to apply this result to stochastic programming.
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