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G. C. SANDER !

(Received 14 December 1990; revised 19 March 1991)

Abstract

New exact solutions are presented for nonlinear diffusion and convection on a finite
domain 0 < z < 1. These solutions are developed for the conditions of constant
fluxes at both boundaries z =0 and z = 1. In particular, solutions for the flux
@, at the lower boundary z = 1, being a multiple of the flux @, at the surface
z=0, (thatis Q; = aQ,, where a = constant), are presented. Solutions for any
constant, a, are given for an initial condition which is independent of space z.
For the special cases (i) a =1, and (ii) @, =0 and hence Q; = 0, solutions are
given for an initial condition which has an arbitrary dependence on z.

1. Introduction

Consider the conservation equation

00  0dq
37" "3z (1.1)
where 6 is the concentration, g is the flux defined by
a=-DO)I +K(0), (1.2)

and D(@) is the concentration-dependent diffusivity. Equations (1.1) and
(1.2) combined, describe nonlinear diffusion-convection processes which arise
in many physical contexts, for example, porous media flow (Philip [17]),
dopant diffusion in semiconductors (King [12], Tuck [24]), and the evolution
of thermal waves in plasma (Grundy [9]). Without restricting the applications
of this paper, I shall adopt the terminology corresponding to the flow of
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water through soil, in which case 6 represents the moisture content of the
soil (appropriately scaled so that 0 < @ < 1), and K(6) is the hydraulic
conductivity representing the influence of the gravitational gradient. For soil
moisture flow, generally both dK/d6 and d’K /d 6? are positive. A value of
6 = 0 corresponds to a dry medium, while @ = 1 corresponds to a saturated
medium. For negligible gravity effects, (1.1) and (1.2) reduce to the standard
nonlinear concentration-dependent diffusion equation.

In deriving exact solutions to nonlinear diffusion problems (K = 0), the
general approach has been to seek similarity solutions. In fact, Hill [10]
notes that most known exact solutions turn out to be of this type. The
functional forms of diffusivities for which similarity solutions have been
found include the exponential D(8) = ae’? (Hill, [10]), general power law
D) = a(b + 0)’1 , (Parlange et al, [16]) where a, b and A are constants,
the Fujita diffusivities for 1 = —1 and -2 (Fuyjita [7], [8]), plus the re-
cently derived exact solution for A = —4/3 in Hill [10]. Presently, there
do not appear to be any exact similarity solutions to (1.1) and (1.2) which
include the nonlinear conductivity function K(8). However, Hogarth et al
[11] have used similarity methods to reduce (1.1) and (1.2) combined with
the boundary and initial conditions,

t>0, z=0, —D(e)gg +K(0) = Q,(1), (1.3a)
zZ — o0, 60=0, (1.3b)
t=0, z>0, 0=0, (1.3¢)

10 a two-point boundary-value problem for a power-law dependence of both
D and K on 6, when the surface flux Q, = at? , where o and f are
constants.

Storm [23] and Knight and Philip [15] have shown that for the Fuyjita diffu-
sivity (A = —2), exact solutions may be found without recourse to similarity
methods only if the boundary conditions specified are of the flux type. Addi-
tionally, Bluman and Kumei [2] prove that the nonlinear diffusion equation
is invariant under Lie-Bicklund transformations, and that it can therefore
be associated with some corresponding linear partial differential equation, if
and only if the diffusivity is of the Fujita type,

D(6) = Dy/(1 - v6)’ (1.4)

where D, and v are constants with 0 <v < 1.

Usually the exact solutions derived from Lie-Bidcklund transformations are
obtained in parametric form, thus making it difficult to observe their gen-
eral features. However, a considerable variety of flux boundary conditions
on both semi-infinite and finite flow domains, with or without nonlinear
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convective terms in the flow equation, can be handled by this method, whereas
these types of problems do not appear to be amenable to similarity methods.
Broadbridge [3] notes that the integrability of partial differential equations
requires that they must possess Lie-Biacklund symmetries of arbitrarily high
order, and shows that, while this property holds for (1.1) and (1.2) in one
spatial dimension, it does not hold for even two spatial dimensions. Thus
for the rest of this paper, I shall only be considering exact solutions derived
for the Fujita diffusivity (1.4) by Lie-Biacklund transformations in one spatial
dimension. The most general nonlinear form of the conductivity KX which in
combination with (1.4) allows linearisation through the Lie-Bicklund trans-
formation is
K(6) = (K, + K,0 + K;6°)/(1 - v9). (1.5)
On the semi-infinite-domain flow problem given by (1.1) and (1.3), solutions
have been obtained by Broadbridge and White [5] and Sander et al [21] for a
constant flux Q. and a conductivity given by (1.5). Warrick et al [25] have
looked at the same problem but with an evaporative surface flux (Q, < 0)
for both the initial condition of (1.3c) and a step-function initial condition.
These solutions stem directly from Fokas and Yortsos [6] and Rogers et al
[19] where the hydraulic functions (1.4) and (1.5) were used to describe the
combined two-phase flow of oil and water subject to a constant-flux boundary
condition (Sander et al. [22]). Barry and Sander [1] have recently extended
these solutions to include an arbitrary time-dependent surface flux. In par-
ticular, they have presented concentration (moisture) profiles for a periodic
flux behaviour at the surface boundary.
Very few solutions have been developed with respect to the finite-domain
flow problems, i.e. (1.1) and (1.2) subject to the boundary and initial condi-

tions
t>0, z=0, —D(B)g—g +K(8) = Q.(1), (1.6a)
z=1, —D(G)S—Z +K(6)=Q,(1), (1.6b)
t=0, 0<z<l, 0 =6,z). (1.6¢c)

Note that, without loss of generality, only the region 0 < z < 1 is considered,
thus making all variables and functions in (1.1), (1.2) and (1.6) dimension-
less. The corresponding relationships to the dimensioned variables (starred
quantities) and functions are z = z*/L, t = Dot"/L2 , @ = LQ;/D,,
Q, =LQ;/D,, D(8) = D*(6)/D, and K(6) = LK"(6)/D,. In dimension-
less form then, the Fujita diffusivity D(6) will now be given by (1.4) with
D, =1 and K (@) will still be given by (1.5) but with K,, K,, and K, taken
as dimensionless.
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When K(6) =0 and Q, = @, = 0, Knight and Philip [15] solved (1.1),
(1.2) and (1.6) for the redistribution of some initial distribution of water
60,(z) . This solution was subsequently extended to include nonlinear convec-
tion by Sander et al [20] for K, = K; =0 and K, = K (1 —-v) in (1.5) where
K, is the saturated conductivity defined by K(6 = 1) = K_. The only other
solution I am aware of that includes nonlinear convection on a finite domain
is given in Broadbridge et al [4] (K, = K, =0, K; = K (1 — v)) being solu-
tions of (1.1) and (1.2) subject to (1.6) for Q. constant and Q, = 0 with
0,(z)=0.

This paper will centre around two problems. Firstly, when the initial water
content is constant and provided Q. and Q, obey the relationship Q;, =
a@,, it will be shown how the solution of Broadbridge et al, [4] (a = 0),
can be extended to include any nonzero constant flux boundary conditions.
The constant a can be either positive or negative, hence water can either
be draining from or entering across either boundary. For example, if we
consider evaporation at the surface through Q. < 0, and take a < 0, then
water is being removed from the medium at both boundaries. Secondly, for
the special case of a = 1(Q, = Q;), a new solution will be obtained which
places no restrictions on the initial water content distribution; that is, 8,(z) is
completely arbitrary. Additionally, for Q. and Q, zero,and K, =K; =0,
the redistribution solution of Sander et al [20] is recovered.

2. Theory

Following Rogers et al [19] and Kingston and Rogers [14], the Bicklund

transformation
00 v a0
— = =7 2.1
8z  (1-v6)’0z (2-12)
006 v a6 v a0 a0
o (1-v8)? [W"L 1-v0 (DB_E _K>5] ’ (2.10)
dzl=(1—u0)dz—u(D%Z——K)dt, (2.1¢)
{=t, (2.1d)
maps (1.1), (1.2) to
® 4 ( ,,..008\ 8K'(8)
—=—{D®)— ) - —— 2.2
- (re)- L2, 22)
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where
8=1/(1-v6), (2.3)
D'(8) =(1-v8)’D(h), (2.4a)
and
K'(©®)=vK(6)/(1 - v8). (2.4b)
The boundary and initial conditions (1.6) become
—D'(e)g—g +K'(©) =v8q, (2.5)
and
/=0, ©=6/7) (2.6)

where g = Qs(t') for (1.6a) and g = QL(t') for (1.6b). From (1.4), (1.5),
(2.3) and (2.4)

D'®)=1, (2.7a)
K®=de'+pe+y, (2.7b)
where
o =vK, +K,+K,/v, (2.8a)
B = —(K, +2K,/v), (2.8b)
and
Y = K,/v. (2.8¢)
From (A.3) in the appendix, the relationship between z' and z is given by
z I3
z’=/ (1—u0)d7+u/ 0, dt, (2.9)
0 0
so at the boundaries z =0
ll
7=v / 0,(t)dt, (2.10a)
0
and z =1 (see A.9)
t,
Z =.€”+u/ 0, (1 dt, (2.10b)
0
where .
3:/ (1-v6,(z))dz. (2.10c)
0
From (2.9) define the new independent variables
t’
x=z’-u/ 0.(1)dt, (2.11a)
0
t=t. (2.11b)
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Then (2.2) subject to (2.5) and (2.6) combined with (2.7), (2.10) and (2.11)
becomes
08 06 6 1,00 LS

5= o3+ o - Bz - 265>, (2.12)
subject to
06 ' '
t>0: % o6’ +vQ,(t)-B1®~-y =0, x=0 (2.13a)
LS
2= _Je’ +vQ,(t)-B18-9=0,x=Z+v | (Q, -
0x - / - (213b)
t=0: 0<x<.2, 6 =6,(x) (2.13¢)
where , N
=/ (1-v6)dz or z=/ Bdx. (2.14)
0 0

Since (2.12) is just Burger’s equation, then applying the Cole-Hopf transfor-

mation
1108c

and defining the new variables
E=x/Z, (2.16a)
=1t/ (2.16b)
F, =20, F,=20,, (2.16¢)
B==8, (2.16d)
a=%a, (2.16¢)
&= .?za'y' , (2.16f)
the equations (2.12) and (2.13) become
dc _d’c
9t 98 +(WF, - ﬂ)ag (2.17)
subject to
t>0:%+£c=0, =0, (2.18a)
ac ! _
57 HVIF, F]a€+sc—0 E=1+v [ (F, - F)dT,
0 (2.18b)
. e
z=o:c(¢)=exp(—a/ e,.(c)dg), o<e<l. (2.18¢)
0
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The solution of (2.17) and (2.18) for ¢(¢, 1) then allows 6(z, 1) to be
calculated parametrically from (2.3), (2.14), (2.15) and (2.16) as

-1
0, 1)= %[1 + ac(&, r)(?—g) ] , (2.19a)
and P €.
clé, 1
z(f,r):—;ln[c(o’t)]. (2.19b)

Thus the nonlinear diffusion-convection equation, (1.1) and (1.2), subject
to the boundary and initial conditions (1.6), has now been transformed to
the corresponding linear system of (2.17) and (2.18). For the rest of this
paper however, we shall consider only constant-flux boundary conditions,
so that the position of the moving boundary in (2.18b) is now given by
E=1+v(F - F)r.

3. Equal constant fluxes (F, = F, #0 or F,=F; =0)

By taking
F, =F, (3.1)

in (2.17) and (2.18), the moving boundary is eliminated and the following
simpler linear system is obtained:

dc 9% ac
>0 c=e ", E=0, (3.3a)
c=e T ro, (3.3b)

¢
r=0:c(€)=exp(—a/0 e,.(:)dg):h(c), 0<é<l. (3.3

Physically, the solution of (3.2) and (3.3) which has the most practical in-
terest occurs for F;, = F, = 0, and describes the subsequent nonhysteretic
redistribution of soil moisture following the cessation of rainfall. In general,
the redistribution of soil moisture involves capillary hysteresis. To model
hysteretic redistribution, numerical schemes must be used, as it is not possi-
ble to obtain analytical solutions. However, the size of such hysteresis loops
tends to be small for fine-textured as opposed to coarse-textured soils (Wat-
son and Sardana [27]), and for in situ field soils as compared to laboratory
soil columns (Watson et al [26]). Ideally then, the solution is suitable for fine
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textured, in situ, field soils where hysteresis effects are minimal. Addition-
ally, this solution is of significant value for investigating the accuracy of the
numerical schemes designed to model hysteretic redistribution, as in Watson
and Sardana [27], when they are run for nonhysteretic redistribution. The
solution for F; = F, # 0 though, is of a much more mathematical than
practical interest, and is presented more for completeness as it requires no
extra effort to obtain. Let

B = vF, - B (3.4)
and define the new variable
w(E, 1) =e"ci¢, 1), (3.5)
so that (3.2) and (3.3) become

dw 8w _.Oow

5?=6§2+ﬂ ¥+£w, (3.6)
>0 w=1, =0, (3.7a)
w=e %%, £=1, and (3.7b)
=0 w=h(), 0<é<1. (3.7¢)
The solution of (3.6) and (3.7) can then be written as
w(¢, 1) =ul)+vE, 1), (3.8)
where (&) satisfies
Q.i_ﬁ‘d_ﬂ.'.g‘u:o (393)
d&? d¢ ’ ‘
p=1, =0, (3.9b)
e ¥, =1, (3.9¢)
and v(¢, 1) satisfies
v _0%v . .0v
.5?_6_52-*-5 -a—‘t+81/, (3.10)
>0v=0, =0, (3.11a)
v=0, ¢=1, and (3.11b)
T=0v =h(&) — u), 0<é< L. (3.11¢c)

The form of the solution of (3.9) depends on the sign of ﬁ'z /4—¢ and there
are three cases to consider.
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—a/¥ _m,
uE =e™ + (%)(6 £ _ ™), (3.12a)
where
_p* 4 1/2
m = f - (ﬂ4 —e) , (3.12b)
_pt *2 1/2
m, = f + <’B4 —e) . (3.12¢)
(i) B**/4-e=0
u() = e_%:c[l —¢ +§e(§"§’)]. (3.13)
(iii) B*%/4-¢e<0
u(&) = e_é’:f{cos(ré) + Asin(ré)}, (3.14a)
where
_ ﬂ*2 1/2
r—( Z ) , (3.14b)
[eﬂt/z_"/‘? - cos(r)]
A= 0 (3.14c)

Without loss of generality K(6 = 0) = K, = 0, then from (2.8), (2.16) and
(3.4)

% "t T3tk
For F,=F, =0, ﬂ‘z /4 — ¢ is always positive and u(&) will be given by
(3.12), however if F, < O then it is possible that /3'2/4 — & < 0 and the
solution for u(&) will be given by either (3.13) or (3.14) accordingly.

Using separation of variables, the solution of (3.10) and (3.11) for v(&, 1)
is found to be

v, 1) = Zb exp[ S ( ﬂ‘;z - nznz)r] sin(nné), (3.16)

*2 22 2
2K
A _vE K vZ (K2 —3) (3.15)

where the Fourier coefficients b, are given by

b, =2 /0 ThE) - w(@e? P sin(nre)de. (3.17)

https://doi.org/10.1017/50334270000007104 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000007104

[10] Nonlinear diffusion-convection on finite domains 393

From (2.19) and (3.5), 6(z, t) is given parametrically by

-1
6(¢, 1) = %[1 +ow(, r)(%zg) ] , (3.18)
26,0 = -2 Infw(e, D), (319
where
w(&, 1) =ul)+v(, 1), (3.20)

with u(&) given by either (3.12), (3.13) or (3.14) and v(&, ) given by (3.16)
and (3.17) above.

Firstly consider the redistribution solution which occurs for F;, = F, =
0 (i.e. B* = —pB from (3.4)) and represents the extension of the solution
of Sander et al [20] (¢ = 0) to include both K, and K, nonzero. The
redistribution solution of Knight and Philip [15] (no convection) is obtained
by taking the limit 8* = a =¢ =0 in (3.16) to (3.20) along with (3.12). To
demonstrate the solution take an initial profile 6,(z) as follows (Sander et
al [20])

~ (1-0.956) 1-0.950 (3:21)
then the subsequent redistribution of this profile with » = 0.85, and for
simplicity K, =20, K; =0 and K, = K (1 —v) = 3 is shown in Figure 1.
The value of B* is given from (2.8b), (2.16d) and (3.4) as 8* = ZK, =3.2.
From (2.10c) and (3.21) above . = 0.745 thus B~ = 2.235. Lastly from
(2.8a) and (2.16¢) a = .ZK, = " = 2.235 also.

The numbers on the curves in Figure 1 correspond to the various times (z)
at which these profiles are realised, with ¢ = oo being the steady-state pro-
file. For this same initial moisture distribution, the effects of the parameters
B*,a=pB", and v are as follows. Increasing 8* is equivalent to increasing
the saturated conductivity K, if v is kept fixed, and results in water drain-
ing from the surface much more quickly, with more water reaching deeper
into the soil profile. When K is fixed, then as v increases then so too does
nonlinearity of D(0) and K(8) given by (1.4) and (1.5). This reduces the
influence of the gravity gradients, resulting in increased capillary effects and
more water remaining near the surface.

The solution of (3.16) to (3.20), when F;, = F, #0 (i.e. B"=vF,— B in
(3.4)) will only apply as long as the boundary conditions can be maintained
physically, that is, until one of the boundaries either dries (8 = 0) or satu-
rates (6 = 1) depending on the sign of F, or F,. For example if F, > 0
then the surface z = 0 is wetting while the boundary z =1 is drying. Thus
the solution applies as long as 8(z =0,7) <1 and 0(z =1, 1) > 0, with

_0285(1-6) 0.015111( 0.056 )
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the precise times at which either of these conditions are violated being found
iteratively from (3.16) to (3.20)).

4. Asymptotic solution for redistribution (F, = F; = 0)

Consider the asymptotic limit 7 — oo for the redistribution solution (F, =
F, =0, B* = —B) of the previous section. As T — co, v — 0 and w — u(¢)
with u(&) given by (3.12). It has already been noted before, that for this
steady-state limit to hold for soil moisture flow, the water content at z = 1
must remain less than or equal to one. Thus from (3.12) and (3.18)

-1
1+aﬂ<g—g—) ‘ <v, (4.1)
=1

af/¥

or

e—a/.i’

a (™ -e"™<w-1) [(ml —m)e™*m) 4 o7 (™ mlem‘)].

4.2)
Whether or not (4.2) will hold depends on both the volume of water in the
initial profile, expressed through % in (2.10c), and the saturated conductiv-
ity K, = (K, +K;)/(1 —v), expressed through o, f and ¢, being a measure
of capacity of soil to conduct water to the lower boundary. For the exam-
ple given in the previous section, (4.2) holds and the steady-state solution
is shown labelled as 7 = co. If (4.2) does not hold, then (3.16) to (3.20)
only apply until the time taken for the lower boundary to saturate, defined
as 0(z=1,7t=1)=1. The value of 7, is found iteratively from (3.16) to
(3.20). Even in the steady-state limit, £ cannot be eliminated between (3.18)
and (3.19) to obtain 8(z) or z(#) except when & = 0 as in Sander et al.
[20]. For ¢ =0, K;=0, K, =K,(1-v), m,=0, m; = "= =-K,,
a = —f and (3.12a), (3.18) and (3.19) give z(0) as

2 fu-vh)(ef - )
‘=B ln{ V0(1 — &%) } (43)
and (4.2) simplifies to
(1 —veh)e!'¥ < (1 - v)e?, (4.4)

which are equivalent to (37) and (38) of Sander et al [20].

5. Unequal constant boundary fluxes (F; = aF))

Consider a two-layer soil system, where both layers are initially dry. The
top layer represents a ploughed soil which consists of large pore spaces, is
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coarse textured and has a high saturated conductivity. The lower layer is
then the plough pan which is tightly compacted, fine textured and has a very
low saturated conductivity. If this field is irrigated until the top layer is satu-
rated and water begins to penetrate the bottom layer, the flux at the boundary
between the two layers will quickly approach a constant value given by the
saturated conductivity of the lower fine textured layer. Because there is now
plenty of water available in the coarse layer, then a constant drainage ap-
proximation into the fine lower layer is reasonable. After the cessation of
irrigation, water can then also evaporate from the surface of the top layer
at the constant potential evaporation rate governed by the prevailing atmo-
spheric conditions. Therefore under this physical situation the fluxes at both
boundaries differ only by a constant value.

To solve this problem we first consider the solution of Broadbridge et al
[4] where (2.17) and (2.18) were solved for F;, = 0 (a = 0), F, constant
and the soil is initially dry, i.e. 6, = 0 (6, = 1). Under these conditions the
moving boundary remains so that (2.18b) and (2.18c) become

T>0: %—qug—g+sc=0, {=1-vFr, (5.1a)
=0 &) =e%, 0<E<I. (5.1b)

The solution of (5.1a) is given by
¢ = Aexp(—[af + (¢ + av F))1]), (5.2)

where 4 =1 to satisfy the initial condition (5.1b). By applying (5.2) at the
boundary { =1 —vF,t, (5.1a) is replaced by

>0, Cc= e_(a+“) , E=1- VF;_‘[. (5.3a)
Similarly, (2.18a) can be integrated and replaced by
>0, c=e ", £=0. (5.3b)

The set of equations (2.17), (5.1b) and (5.3) is the problem solved by Broad-
bridge et al [4] using the Laplace-transform boost method of King [13].
It is a fairly simple procedure now to extend the solution of the above problem
to the desired nonzero constant lower boundary fluxes F, , provided that F;
and F, are related through
F, = aF, (5.4)
where a is some constant being either positive or negative. Taking F;, = aF;
in (2.18b) yields
gc _

P u(l—a)FS@+ec=0, {=1-v(l -a)F. (5.5)

o¢
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For a nonzero flux to exist at the lower boundary, then a nonzero initial
moisture distribution is required, hence taking 6, = 6;‘ = constant in (2.3)
(e,=1/(1~ u0;‘)) , (2.18c) yields

=0, c(&) = exp (l—_1/t9:‘)’ 0<¢<L (5.6)
By defining
F; =(1-a)F,, (5.7a)
B* =B —vaF,, (5.7b)
and
o =af/(1-v0)), (5.7¢)
(2.17), (2.18a), (5.4), (5.5) and (5.6) become
dc 9% * « 0c
52 = 55+ (WF — B)5E (5.8)
>0 c=e =, £=0, (5.9a)
c=e ", E=1-vF't, (5.9b)
and )
t=0: c®=e"% 0<é<l, (5.9¢)

which is again exactly the same set of equations solved by Broadbridge et
al [4]. Since the analytic solution of (5.8) and (5.9) is very involved and
complex, it is not repeated here, but given in detail in Broadbridge et al
[4]. The special case of @ = 0 and 6, = O returns the original results of
Broadbridge et al [4]. These new solutions will again only apply as long
as the boundary conditions can be maintained physically, that is, until 6
reaches either 0 or 1 at either boundary.

For the situation described at the beginning of this section where F, < 0
and given by the potential evaporation rate, and F, equals the saturated
conductivity of the lower layer, then a < 0. The solution of (5.8) and (5.9)
for this problem will apply until the time taken for the soil surface (z = 0)
to dry and is given by t 4" That is until (¢ =0, 7 = 7;) = 0 is satisfied.
Since the lower layer is compacted, it is extremely unlikely that the boundary
z = 1 will dry before the soil surface does. However this will not be true
under all conditions.

For example, consider the following situation, which could be set up in the
laboratory by applying a suction across the lower boundary. Take F, and F,
positive (i.e. a > 0); then water enters the soil at the surface z = 0 and
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drains from the soil at z = 1. Initially, 86/9z = 0 and the flux of water in
the soil is K(6;) from (1.2). Equation (1.2) also shows that the greatest flux
which the soil can accommodate without the help of a concentration gradient
is K(6 =1) = K_, the saturated conductivity, thus if F, > K_ then the soil
surface must saturate (@ = 1) in finite time 7,. If F, > K, the lower
boundary will be extracting water at a greater rate than it receives water and
must therefore dry at some time 7,. The solution of (5.8) and (5.9) only
applies until 7 = T, if T,<T,0r T=71, if 7, < 7,. For F, < K, and
F; < K(6,), the surface will never saturate but the lower boundary will, since
water is draining at a slower rate than which it is arriving. The solution of
(5-8) and (5.9) under these circumstances will only apply until the time of
saturation of the lower boundary. Similar comparisons between the relevant
times of drying or saturation of either boundary would need to be considered
for any other combination of boundary fluxes.

While physically it is true that time-varying lower boundary fluxes are more
prevalent, it is not possible to obtain analytical solutions for these types
of boundary conditions and numerical techniques are required. Thus the
analytical solution for F, constant then provides an exact nonlinear solution
which can be used to determine the accuracy of any numerical technique
developed for time-dependent boundary fluxes F; .

6. Conclusion and future research

This paper has been concerned with the development of new exact solutions
using Lie-Backlund transformations for nonlinear diffusion and convection.
In particular, flow in finite domains and constant flux boundary conditions
have been considered. These solutions are derived especially for the flux
at the lower boundary F; being any multiple of the surface flux F, and a
uniform initial moisture distribution, and for equal boundary fluxes with an
arbitrary space-dependent initial moisture distribution. A variety of physical
situations can now be modelled with these new solutions; for example, water
drainage into a two-layer coarse over fine soil profile while water is evapo-
rating at the surface. Secondly, if the soil layer is overlaying impermeable
bedrock, then it would be possible to model the movement of water under
constant-rate rainfall and the subsequent redistribution following the cessa-
tion of rain. Obviously, there are many more useful situations which can be
modelled by simply varying the sign of the fluxes at either boundary.

In nature, rainfall rates are not always constant, and one area of future
research is to look for solutions which allow surface fluxes which depend
on time. This has already been achieved quite recently on the semi-infinite
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domain (i.e. for (1.3)) by Barry and Sander [1], but as yet there are no solu-
tions to the finite-domain problem of (1.6) for time-dependent fluxes. Solu-
tions to this problem will of course be beneficial in irrigation scheduling for
ensuring adequate water availability for crop growth.

Appendix

Following Rogers [18], the relationship between z and z' is obtained from

(2.1c) as
oz ac 9 dc _
5 - (D(T)——K) /0 o <Da—_—K) dz+vQ (1), (A1)
or using (1.1) and (1.2) in the integrand of (A.l)
/ z
9z =/ S (1-ve)dz+v0.0), (A.2)
il Y s
which becomes, after integrating with z'(0, 0) =0,
z t
/= / (1-v6)dz + u/ 0,(1) di. (A.3)
0 0
Hence at the boundaries z=0 and z =1
t
2 =v / 0,)d1, (A.4)
0
and \ ,
7 =/ (1 —u9)dz+u/ 0,0) d1, (A.5)
0 0

respectively. Since the z-dependent integral in (A.5) is a difficult quantity to
evaluate in its present form, we seek an alternative expression. To do this,
we apply (A.1) at both boundaries

[ ( D%+K>];=[/Oz%(l—uo)d'z"+uQs(t) ; (A.6)

and combining with (1.6) gives

V10, (1) — Q,(1] = / (1-v0)dz. %)

Integrating (A.7) from zero to ¢ and using the initial condition 6 = 6,(z) at
= 0 yields the desired new expression

/1(1 —u0)dz=/l(1 —ue.(z))dzw/'Q @ -0.@Ddi, (AS)
0 0 ! ok d ’
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and (A.5) can be written as

Z(z= l)=/01(1—uﬁi)dz+u/0tQL(?)d?. (A.9)
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