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Abstract

We study the phenomenon of entrainment in processor sharing networks, whereby, while
individual network resources have sufficient capacity to meet demand, the requirement for
simultaneous availability of resources means that a network may nevertheless be unstable.
We show that instability occurs through poor control, and that, for a variety of network
topologies, only small modifications to controls are required in order to ensure stability.
For controls which possess a natural monotonicity property, we give some new results
for the classification of the corresponding Markov processes, which lead to conditions
both for stability and for instability.
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1. Introduction

Modern communications networks, such as the Internet, are able at any time to share their
resources, for example bandwidth, among those calls or connections currently in progress.
Such calls may require simultaneous capacity from several resources in the network. For
example, ‘streaming’ applications require, for their duration, a reservation of bandwidth on
each network link over which they connect. It may then happen that while each resource
in the network, considered in isolation, has sufficient capacity to service the demand placed
on it, the control of the network is such that the requirement for simultaneous availability of
capacity ensures that over time demand cannot be met, and that the network is unstable, that
is, that the number of calls present in the network tends to ∞. This is the phenomenon of
entrainment and has been previously studied in this context by various authors, notably Bonald
and Massoulié (2001), de Veciana et al. (2001), and Kelly and Williams (2004). In particular,
these authors have considered a broad class of so-called fair-sharing control strategies; see
below. Bonald and Massoulié and de Veciana et al. have shown that under any fair-sharing
control the instability problems referred to above do not arise, i.e. provided that the various
network resources have sufficient capacity individually, the network will remain stable. In the
present paper we study the phenomenon of entrainment in more detail and characterise some
of those conditions which give rise to its occurrence. In particular, we show that entrainment
frequently arises through poor control whenever there are no calls of certain classes in the
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network, and that only minor adjustments to control strategies are required in order to avoid
it. Thus, very flexible management schemes, including those utilising significant prioritisation,
may be safely implemented. We further establish, in Section 3, some new results for the stability
of Markov chains whose transition rates possess a natural monotonicity property, yielding both
necessary and sufficient conditions for the stability of a wide class of network controls. Since
network parameters, in particular call arrival rates, are unlikely to be known in advance, it is
of particular concern to identify controls whose stability is robust with respect to variations in
these parameters.

We take as our model the following, which is essentially that introduced by Roberts and
Massoulié (2000). Let R denote the finite set of possible call, or connection, types. We denote
the state of the network at time t by n(t) = (nr(t), r ∈ R), where nr(t) is the number of calls of
each type r in progress at that time. Calls of each type r ∈ R arrive at the network as a Poisson
process with rate νr and have sizes which are exponentially distributed with mean µ−1

r . Arrival
processes and call sizes are all independent. (As usual, the above distributional assumptions
make for simplicity of analysis. However, it seems likely that all the results of this paper remain
qualitatively correct for other distributions of interarrival times and call sizes, subject only to
these distributions having finite means, and to the same independence assumptions.) When the
state of the network is n, calls of each type r are allocated in total a bandwidth br(n) ≥ 0. We
always assume that br(n) = 0 whenever nr = 0. The process n(·) is thus Markov with state
space Z

|R|
+ and transition rates given by, for all r ∈ R,

n →
{

n + er at rate νr ,

n − er at rate µrbr(n),

where er denotes the vector whose rth component is 1 and whose other components are 0. For
each n, define also b(n) = (br(n), r ∈ R). We shall refer to b = (b(n), n ∈ Z

|R|
+ ) as the

control for the Markov process n(·). The set of feasible controls b is defined by a set of capacity
constraints ∑

r∈R

ajrbr (n) ≤ cj , j ∈ J, (1)

indexed in a finite set J , where each ajr ∈ {0, 1}. Here cj may be thought of as the capacity of
resource j , and a call of type r utilises resource j if and only if ajr = 1.

In order to allow some results to be stated with sufficient generality, it is convenient to
allow the possibility that, for any j , we may have cj = ∞ (corresponding to the effective
nonexistence of the resource constraint j ). However, we assume, without loss of generality,
that, for all r ∈ R, there exists some j ∈ J with cj < ∞ and ajr = 1.

Our interest is in identifying, for fixed values of the parameters νr , µr , cj , and ajr , r ∈ R,
j ∈ J (which we shall regard as defining a given network) those controls b which are both
feasible and stable, where we now take the latter to mean that the corresponding Markov
process n(·) is positive recurrent. A control b for which n(·) is null recurrent or transient is
referred to as unstable.

For any feasible control b, for any n, we shall say that a resource j ∈ J is saturated if
the corresponding constraint, (1), is satisfied with equality. Following Bonald and Massoulié
(2001), we shall further say that a feasible control b is Pareto efficient if, for all n and for all r

such that nr > 0, there exists j ∈ J with ajr = 1 such that j is saturated (so that br(n) may not
be increased without either decreasing br ′(n) for some r ′ �= r or else violating the constraints,
(1)). It is sometimes helpful to consider controls which are not feasible, so we note in particular
that the requirement of Pareto efficiency includes that of feasibility.
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For each r ∈ R we define κr = νr/µr , which may be thought of as the rate at which ‘work’
of type r arrives at the network. Many, but not all, stability results depend on the parameters
νr and µr only through the corresponding κr . As observed by Bonald and Massoulié (2001), a
necessary and sufficient condition for the existence of a stable feasible control is given by∑

r∈R

ajrκr < cj , j ∈ J. (2)

For the necessity of this condition, observe that if it is violated for some j , then since, for
any feasible control b, we then have

∑
r∈R ajr (κr − br(n)) ≥ 0, standard arguments—see, for

example, Asmussen (2003, Chapter 1, Proposition 5.4) or the argument of Kelly and Williams
(2004)—show that b cannot be stable. For the sufficiency of condition (2), define, for any vector
b̂ = (b̂r , r ∈ R), the corresponding complete partitioning control b by br(n) = b̂r whenever
nr > 0. Note that this defines a process n(·) which corresponds to |R| independent queues
and is such that, in each queue r , arrivals occur at rate νr and departures (when nr > 0) occur
at rate µrb̂r . Thus, a necessary and sufficient condition for the stability of this control is that
b̂r > κr for all r ∈ R. In particular, we may choose b̂ such that the corresponding complete
partitioning control is stable and feasible if and only if condition (2) holds. Furthermore, given
such a b̂, we may clearly define a Pareto efficient control b′ such that b′

r (n) ≥ b̂r for all n

and for all r such that nr > 0. The corresponding process n′(·) may then be coupled to the
process n̂(·) corresponding to b̂ in such a way that n′

r (t) ≤ n̂r (t) for all r and for all t ≥ 0.
Hence, condition (2) is also sufficient for the existence of some stable Pareto efficient control.

It is also clear that, in the case |J | = 1 of a single resource constraint, condition (2) is
sufficient to ensure the stability of any Pareto efficient control. This is not in general true when
|J | > 1, as is shown by Example 1 below, which is a simplification of one given by Bonald
and Massoulié (2001).

Example 1. Suppose that R = {1, 2}, J = {1, 2}, and that the matrix A = (ajr , j ∈ J, r ∈ R)

is given by

A =
(

1 1
0 1

)
.

Thus, calls of type 1 are constrained by resource 1 only, while calls of type 2 are constrained
by both resources 1 and 2. Suppose, without loss of generality, that c2 ≤ c1. We assume
condition (2), which here becomes

κ1 + κ2 < c1, κ2 < c2. (3)

Consider the Pareto efficient control in which complete priority is given to calls of type 1. Then
the long-run fraction of time in which the network is empty of calls of type 1—and so resource 1
is available for use by calls of type 2—is given by 1 − κ1/c1. Since, when this resource is
available, calls of type 2 are processed at rate c2, standard arguments for the stability of a
single-server queue now show that the control is stable if and only if κ2 < c2(1 − κ1/c1).
This is a condition which is generally more restrictive than (3), above. When it is violated we
have the phenomenon of entrainment referred to above; that is, from (3), each resource in the
network, considered in isolation, has sufficient capacity, but the given Pareto efficient control
is nevertheless unstable.

In Example 1 instability may be considered as occurring because such high priority is given
to calls of type 1 as to ensure that, when these are emptied from the system, resource 1 is
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thereafter consistently underutilized. As we shall show later, this problem may in general be
avoided by choosing Pareto efficient controls b such that, for each r , br(n) is usually small
whenever nr is small. In particular, this property is possessed by the class of (weighted) fair-
sharing controls introduced by Mo and Walrand (2000) in a generalisation of various classes
considered earlier; see, for example, Kelly et al. (1998). These are defined as follows: for
α > 0, α �= 1, and weights wr, r ∈ R, a weighted α-fair control, or bandwidth allocation, is
given by taking, for each n, b(n) to maximise the concave function

∑
r∈R

wrn
α
r

br(n)1−α

1 − α
, (4)

subject to the capacity constraints, (1). This class is further extended to each of the cases
α = 0, 1, ∞ by taking the limit of the α-fair control as α tends to each of these values.
(For the case in which α = 1, this is equivalent to replacing the quantity defined in (4) by∑

r∈R wrnr log br(n).) For the cases in which α = 1 and α = ∞, De Veciana et al. (2001)
used Lyapunov function techniques to show that condition (2) is sufficient for the stability of
(weighted) α-fair controls. Bonald and Massoulié (2001) showed that this result holds for
general α by using fluid limits and appealing to a result of Dai (1995) for multiclass queueing
networks. (In fact it is not certain that Dai’s result is directly applicable to the present networks
with their simultaneous resource requirements; however, Bonald and Massoulié’s approach is
essentially equivalent to showing that their function f defined by

f (n) =
∑
r∈R

wrµ
−1
r κ−α

r

nα+1
r

α + 1

is a suitable Lyapunov function for establishing the sufficiency of (2) for the stability of α-fair
controls, and this requires only a small extension to their argument.) We note, in particular, that
the stability of the fair-sharing controls is robust with respect to parameter variation, subject of
course to (2) being satisfied.

The resource underutilization of Example 1 may be further understood as resulting from the
nonsmooth nature of the call arrival process. Consider the analogous fluid model in which ‘work’
of each type r arrives steadily at rate κr and is processed at rate br(n), where each nr is now the
volume of work of type r in the network and where b is again subject to constraints of the form
of (1). Then, under condition (3) of Example 1, it is easy to see that every Pareto efficient control
is stable, in the sense here that the total volume of work in the system eventually becomes and
remains 0. For our stochastic model, the possible modified control discussed above, in which
b1(n) is kept small whenever n1 is small and n2 is large, may be seen as a smoothing operation
forcing the behaviour of the stochastic model to follow more closely that of the fluid model.
However, as Example 2 below shows, instability may also occur in ways such that even the
corresponding control for the analogous fluid model is also unstable.

For any control b and any function f on Z
|R|
+ , define the function Dbf on Z

|R|
+ by

Dbf (n) =
∑
r∈R

[νr(f (n + er ) − f (n)) + µrbr(n)(f (n − er ) − f (n))]. (5)

(Since, for n and r such that nr = 0, we also have br(n) = 0, there is no problem arising from
the lack of a formal definition of f (n − er ) in this case. Furthermore, Db may be thought of
as the generator of the Markov process n(·) under the control b.)
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Example 2. Consider the network defined by R = {1, 2, 3}, J = {1, 2, 3}, and

A =
⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ ,

with νr = ν, µr = 1 for all r , and cj = c for all j . Assume that condition (2) is satisfied,
i.e. that 2ν < c. Consider any control b such that, for all n �= 0, we have br(n) = c for
some r such that nr > 0 and bs(n) = 0 for s �= r . Then b is Pareto efficient. However,
for the function f (n) := ∑

r∈R nr and for all n �= 0, we have Dbf (n) = 3ν − c. Standard
martingale arguments—again, see Asmussen (2003, Chapter 1, Proposition 5.4)—now show
that b is unstable whenever 3ν ≥ c. In this example the instability is not simply the result of
poor control for n close to the boundary of Z

3+, and is equally present in the analogous fluid
model. We return to this example in Section 3.

Our aim in the remainder of the paper is to identify more general classes of stable controls,
to provide insight into how the phenomenon of entrainment rises, and to show how controls
may be modified if necessary so as to avoid it. In Section 2 we consider a number of fairly
simple network topologies, and use Lyapunov function techniques to show that, for these, any
Pareto efficient control b is stable, provided only that, as discussed above and for suitable r ,
br(n) is modified so as to be small whenever nr is small. In Section 3 we consider controls
which possess a natural monotonicity property, likely to be satisfied in any applications. We
introduce some new analytical techniques to prove some fairly general results for the stability
of the associated Markov chains. These give sufficient conditions for stability, which, for many
classes of control, are also close to being necessary. These results are applicable to a substantial
class of priority-based controls.

2. Simple network topologies

In this section we consider a number of network topologies and in each case show that, under
condition (2), any Pareto efficient control is stable provided only that it is suitably modified for
values of n close to the boundary of Z

|R|
+ .

The results of this section are based on simple Lyapunov function techniques, in particular
Foster’s criterion. Proposition 1, below, states the specialisation of this to the present problem;
see, for example, Asmussen (2003, Chapter 1, Proposition 5.3(ii)), noting that here jumps of the
process n(·) may only occur between neighbouring states, and also that the usual uniformiza-
tion argument translates statements for discrete-time processes to the present continuous-time
setting.

Proposition 1. Given any control b, suppose that there exists a positive function f on Z
|R|
+ , a

finite subset F of Z
|R|
+ , and some ε > 0 such that Dbf (n) ≤ −ε for all n /∈ F . Then b is stable.

In considering the various network topologies of this section, it is convenient to define, for
any a ≥ 1, the function ga on Z+ by

ga(n) =
⎧⎨
⎩

a

2
+ n2

2a
if n < a,

n if n ≥ a.

We first consider again the very simple Example 1 of the Introduction, but with a general
control b.
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Example 3. Let R, J , and A be as defined in Example 1 and again assume that c2 ≤ c1 and
also assume condition (3). We show that, given any δ > 0, there exists some a ≥ 1 (depending
on the parameters νr , µr , cj , and δ) such that a sufficient condition for the stability of any
Pareto efficient control b is given by

κ2 − b2(n) ≤ −δ whenever n1 < a and n /∈ F, (6)

for some finite set F (necessarily including {n : n1 < a, n2 = 0}). (Note that, from (3),
condition (6) may be satisfied for any δ ∈ (0, c2 − κ2].)

Observe first that, from (3) and the saturation of resource 1 whenever n �= 0, there exists a
δ′ > 0 such that, for any Pareto efficient control b,

2∑
r=1

(κr − br(n)) ≤ −δ′ for all n �= 0. (7)

For any fixed a, define the function fa on Z
2+ by

fa(n) = ga(n1)

µ1
+ n2

µ2
.

Elementary calculations show that, from (5), for any Pareto efficient control b satisfying
condition (6) for some finite F , and for any n /∈ F ,

Dbfa(n) = min

(
n1

a
, 1

)
[κ1 − b1(n)] + κ2 − b2(n) + 1

2a
h1,a(n)

≤ − min

(
n1

a
, 1

)
δ′ − max

(
1 − n1

a
, 0

)
δ + 1

2a
h1,a(n) (8)

≤ − min(δ, δ′) + 1

2a
h1,a(n), (9)

where the function h1,a is given by

h1,a(n) =

⎧⎪⎨
⎪⎩

κ1 + b1(n) if 0 ≤ n1 < a,

b1(n) if n1 = a,

0 if n1 > a,

(10)

and where (8) follows from (6) and (7). Since b1(n) ≤ c1 for any feasible control b, it follows
from (9) and (10) that a may be chosen sufficiently large that, for any Pareto efficient control b

satisfying (6) for some finite F ,

Dbfa(n) ≤ − 1
2 min(δ, δ′) for all n /∈ F,

and so, by Proposition 1, b is stable.
Thus, for this example, any Pareto efficient control is stable provided only that, outside of

some finite set F , it is suitably modified for values of n such that n1 is small. However, in
practice the parameters νr in particular are unlikely to be known, and so it is desirable to choose
controls whose stability is robust. One such possibility is to choose any Pareto efficient control
which assigns complete priority to calls of type 2 whenever n1 < a for some a. Provided
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that only condition (3) is satisfied, the above result shows that this will be stable provided a is
sufficiently large. The precise value of a required depends on the slack in the inequalities in (3),
but calculations for the ‘worst case’, in which calls of type 1 have complete priority whenever
n1 ≥ a, show that in general a need only be small.

Note, in particular, that the various fair-sharing controls defined in the introduction always
satisfy (6) for some δ and for some sufficiently large F , and hence (as already remarked) are
always stable provided that (3) is satisfied.

We now extend the above example to each of two more general network topologies. In each
case it is again the case that only small modifications, identified below, are required to Pareto
efficient controls in order to ensure their stability.

Example 4. Consider the network with R = {1, . . . , |R|}, and in which each call type r requires
service from a dedicated resource of capacity cr together with service from a resource which is
shared by all call types and has capacity c0. The constraints, (1), defining the feasible controls b

are thus ∑
r∈R

br(n) ≤ c0, br (n) ≤ cr , r ∈ R.

We assume, without loss of generality, that c0 < ∞ and that

c0 ≤
∑
r∈R

cr . (11)

As usual we assume condition (2), which here becomes∑
r∈R

κr < c0, (12)

κr < cr , r ∈ R. (13)

The case in which |R| = 2 with c1 = ∞ is the earlier Example 3 (with c0 here corresponding
to c1 there). However, in the general case described above a little more care is needed in the
conditions for the stability of Pareto efficient controls.

For any n ∈ Z
|R|
+ , define nmin = minr∈R nr . We briefly show that, given any δ > 0, there

again exists some a ≥ 1 (depending on the parameters νr , µr , cj , and δ) such that a sufficient
condition for the stability of any Pareto efficient control b is given by∑

r : nr≥a′
(κr − br(n)) ≤ −δ for all a′ ∈ [1, a] and n such that nmin < a, n /∈ F, (14)

for some finite set F . (The existence of a δ > 0 such that condition (14) may be satisfied is
guaranteed by (12) and (13). Furthermore, it is not difficult to see that for the case in which
R = 2, this condition reduces to that of Example 3 taken together with a similar condition in
which the roles of calls of types 1 and 2 are interchanged.) The proof of this result is similar
to that of Example 3. First note that, from (11), it follows that, for any Pareto efficient control,
the resource 0 is necessarily saturated for any n such that nmin ≥ 1. Hence, from (13), there
exists a δ′ > 0 such that, again, for any Pareto efficient control b,∑

r∈R

(κr − br(n)) ≤ −δ′ for all n such that nmin ≥ 1. (15)
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For any fixed a, define the function fa on Z
|R|
+ by

fa(n) =
∑
r∈R

ga(nr)

µr

.

Elementary calculations show that, from (5), for any Pareto efficient control b satisfying (14)
for some finite F , and for any n /∈ F ,

Dbfa(n) =
∑
r∈R

min

(
nr

a
, 1

)
[κr − br(n)] + 1

2a

∑
r∈R

hr,a(nr)

= 1

a

a∑
a′=1

∑
r : nr≥a′

(κr − br(n)) + 1

2a

∑
r∈R

hr,a(nr)

≤ − min(δ, δ′) + 1

2a

∑
r∈R

hr,a(nr), (16)

where, for each r , the function hr,a is given by (10) with the index r replacing the index 1, and
where (16) follows from (14) for n such that nmin < a and from (15) for n such that nmin ≥ a.
It now follows, as in Example 3, that a may be chosen sufficiently large that, for any Pareto
efficient control b satisfying (14) for some finite F ,

Dbfa(n) ≤ − 1
2 min(δ, δ′) for all n /∈ F,

and so, again by Proposition 1, the control b is stable.
Thus, in order to ensure the stability of a general Pareto efficient control b, it is only necessary

to appropriately modify b(n) for n such that nmin < a. In particular, it follows from the above
result that a Pareto efficient control b whose stability is reasonably robust is given by requiring
that, for some a, for all n (such that nmin < a), and for all a′ ∈ [1, a], calls of type r , such that
nr ≥ a′, collectively have complete priority over calls of the remaining types, that is, requiring
that ∑

r : nr≥a′
br(n) = min

(
c0,

∑
r : nr≥a′

cr

)
.

For sufficiently large a, depending on the slack in the inequalities in (12) and (13), any such
control is stable.

Now consider further the case in which R = 2. Note that the present topology is completely
general for a network with two call types. Let b be any Pareto efficient control such that

lim
n1→∞ b1(n1, n2) = c1 for all n2, (17)

lim
n2→∞ b2(n1, n2) = c2 for all n1. (18)

Then it is straightforward to show that, for δ < minr=1,2(cr −κr) and for any a, (14) is satisfied
for sufficiently large F , and so b is stable.

In particular, (17) and (18) are again satisfied by the various fair-sharing controls. The
present conditions are of course considerably more general. However, the development of
corresponding results for general networks with R ≥ 3 remains a challenging problem.

Our final network topology is a simple ‘backbone’ structure.
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Example 5. Consider a network with resource set J = {1, . . . , k}, where resource j has
capacity cj as usual. The set of call types is given by R = {0, 1, . . . , k}, where calls of each
type r = 1, . . . , k require service from the single resource j = r , while calls of type 0 require
service from each of the resources 1, . . . , k.

The constraints, (1), defining the feasible controls b are given by

b0(n) + br(n) ≤ cr , r = 1, . . . , k.

Again we assume condition (2), which here becomes

κ0 + κr < cr , r = 1, . . . , k. (19)

The state of the network is thus denoted here by n = (n0, n1, . . . , nk). For any such n, define
n̂max = max(n1, . . . , nk).

This example again generalises that of Example 3 with the call type 0 here playing the role
of the call type 2 in that example. In a fairly straightforward generalisation of the result of
that example, it is here the case that, given any δ > 0, there again exists an a ≥ 1 such that a
sufficient condition for the stability of any Pareto efficient control b is given by

κ0 − b0(n) ≤ −δ whenever n̂max < a and n /∈ F, (20)

for some finite set F . To see this, first suppose that µr = 1 for all r = 0, 1, . . . , k and that (20)
is satisfied. For any a ≥ 1, define the function fa on Z

|R|
+ by fa(n) = n0 + ga(n̂max). Then,

as in the case of Example 3, it follows straightforwardly from (19) and (20) that there exists a
δ′ > 0 and a sufficiently large a that Dbfa(n) ≤ −δ′ for all n ∈ Z

|R|
+ \ F such that additionally

n̂max = nr for a single value of r = 1, . . . , k. It is now easy to see that this latter restriction
may be removed (possibly at the expense of increasing a) by suitably smoothing the function f

in the neighbourhood of those n such that n̂max = nr for two or more values of r = 1, . . . , k.
The desired result thus follows in this case; for general µr only routine modifications to the
above argument are required.

Hence, we again have that any Pareto efficient control requires only slight modification—for
those n such that n̂max < a—in order to be stable. A robust Pareto efficient control is given, for
example, by assigning complete priority to calls of type 0 whenever n̂max < a, the necessary
value of a depending on the slack in the inequalities (19).

Examples 3–5, above, all consider fairly simple network topologies. In the analogous fluid
model defined in the introduction, it is easily seen that, for each of these topologies, condition (2)
is sufficient for the stability of any Pareto efficient control. (In each case this follows, for
example, by using the same Lyapunov function as for the stochastic model, except that the
function ga may be replaced by the identity function.) The examples illustrate a principle
which seems likely to be true for more general network topologies, namely that when a control
is such that it is stable for the fluid model, then there is a closely approximating control which
is stable for the corresponding stochastic model.

In the next section we consider stability criteria for quite general network topologies,
applicable typically to controls where there is some prioritisation among call types.

3. Stability of monotonic controls

Many controls likely to be of practical application possess a simple monotonicity property
(see below). In this section we study stability for a wide class of such controls, giving sufficient
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conditions for stability, which, for many classes of control, are also close to being necessary
(see Remark 2, below, which further discusses the applicability of the results of this section).
We require first the following quite general lemma.

We shall say that a control b is bounded if, for all r , br(n) is bounded in n.

Lemma 1. Let b be any bounded control and, as usual, let n(·) denote the Markov process for
the corresponding network. Then, for all r ∈ R,

lim sup
t→∞

1

t

∫ t

0
br(n(u)) du ≤ κr almost surely (a.s.). (21)

Proof. For all r ∈ R, the compensated process n∗
r (·) defined by

n∗
r (t) = nr(t) − nr(0) +

∫ t

0
(br(n(u)) − κr) du

is a zero-mean martingale. Also, since the transition rates of the Markov process n(·) are
bounded, it follows that, for some constant M and for all t ≥ 0, we have E(n∗

r (t)
2) ≤ Mt .

Thus, for 1
2 < α < 1, the process (n∗

r (t)/tα)t>0 is an L2-bounded supermartingale, and so, as
t → ∞, converges almost surely to some finite random variable. It follows that

nr(t)

t
+ 1

t

∫ t

0
br(n(u)) du → κr a.s.

Since the process nr(·) is positive, (21) now follows.

Remark 1. In the case where the bounded control b is stable, the Markov process n(·) is
positive recurrent, and so we have the stronger result that, for all r ∈ R,

lim
t→∞

1

t

∫ t

0
br(n(u)) du = Eπ br = κr a.s. (22)

Here Eπ br denotes the expectation of the function br with respect to the stationary distribution π

of n(·). The first equality in (22) follows from the ergodic theorem, and the second is simply the
assertion that, under stationarity (and readily deducible from the balance equations defining π ),
the expected arrival and departure rates for calls of type r are equal.

We shall say that a bounded control b is monotonic if, for all r and for all n,

br(n) is increasing in nr (with ns fixed for all s �= r),

br (n) is decreasing in ns (with ns′ fixed for all s′ �= s) for all s �= r.

Note that, depending on the network structure, this property is natural in many applications.
For instance, for the structure of Example 4, it is possessed by all the fair-sharing controls, and
also by any other reasonable Pareto efficient control. For more complex network structures,
controls may be coupled to monotonic controls to establish stability results using the results
given below. See also Example 6, below. We further note that a related but somewhat different
definition of monotonicity is used by Bonald and Proutière (2004).

For any monotonic control b, and for each S ⊆ R (including the case where S is the empty
set ∅), define the function bS : Z

|S|
+ → R

|R|
+ by

bS
r (nS) = lim

ns→∞ for all s /∈S
br(n), r ∈ S, (23)

bS
r (nS) = lim

nr→∞ lim
ns→∞ for all s /∈S∪{r} br(n), r /∈ S, (24)
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where nS = (ns, s ∈ S) and where, in taking the limits on the right-hand side of (23) and
(24), the vector of those coordinates of n that belong to S is held fixed at nS . Note that, by
monotonicity, this function is well-defined. In particular, in (23), the order within R \ S in
which the limits are taken is irrelevant; however, in (24), the final limit to be taken must be
nr → ∞.

For any monotonic control b and any S as above, we shall say that bS is stable if the
application of the control (bS

s , s ∈ S) to calls in the network of type s ∈ S (with νs , µs , and
s ∈ S, as usual) yields a positive recurrent Markov process nS(·) = (nS

s (·), s ∈ S). (This
|S|-dimensional process may be thought of as that which results when the number of calls of
each type r /∈ S is infinite.) When bS is stable we shall let πS denote the stationary distribution
of nS(·) (or, where necessary, the probability function of this distribution); we shall further
define, for each r ∈ R,

EπS bS
r =

∑
nS∈Z

|S|
+

πS(nS)bS
r (nS) (25)

to be the expected value of bS
r under this distribution. In the case where S is the empty set ∅,

we have b∅ = (b∅
r , r ∈ R) is a vector of constants. We make the natural convention that b∅ is

always stable; the distribution π∅ is concentrated on a single point, and we have Eπ∅ b∅
r = b∅

r

for all r ∈ R.
Our main result of this section is Theorem 1, below. The first part is similar in spirit to

the results of Borovkov (1998, Chapter 8) for asymptotically spatially homogeneous Markov
processes. However, the application of those results here would require that the right-hand side
of (24) is invariant under interchange of the limits in that expression, a condition which is not in
general satisfied for our monotonic controls. Rather the monotonicity itself provides sufficient
structure to obtain the results of Theorem 1.

Theorem 1. Suppose that the control b is monotonic and that S ⊆ R is such that bS is stable.
We have the following two cases.

(i) If r /∈ S is such that
EπS bS

r > κr, (26)

then bS∪{r} is stable.

(ii) If r /∈ S is such that
EπS bS

r < κr, (27)

then bS∪{r} is unstable.

Remark 2. Given the stability of bS for some S ⊂ R (recall that, as already remarked, b∅ is
always stable), Theorem 1 gives criteria for determining the stability or otherwise of bS∪{r} for
any r /∈ S, except only in the case of equality in (26) or (27) (where the natural conjecture is that
bS∪{r} is unstable; see also the remarks at the end of Example 6). Recursive application of the
theorem thus yields sufficient conditions both for the stability and the instability of monotonic
controls. However, note that, for example, for the case in which R = {1, 2}, b{1} and b{2} may
both be unstable, while b = b{1,2} is stable, as is the case for fair-sharing controls here. In such
circumstances Theorem 1 does not settle the question of the stability of b. Rather its primary
application is to controls in which there is a sufficient hierarchy of prioritisation as to permit
the recursive application of the first part of the theorem to at least establish the stability of bS

for S = R \ {r} for some r ∈ R. The theorem then also (in general) settles the question of the
stability of b itself. For an illustration of the application of the theorem see Example 6.
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Proof of Theorem 1. Since, for given S ⊂ R and r /∈ S, the stability of bS∪{r} corresponds
to the positive recurrence of the Markov process nS∪{r}(·) defined above (in which the number
of calls of each type s /∈ S ∪ {r} is effectively held at ∞), it is sufficient to prove (i) and (ii)
for the case in which S = R \ {r ′} for some r ′, and we henceforth assume this. (The primary
advantage of doing so is that we avoid some unpleasant notational complexity.) We identify
any n ∈ Z

|R|
+ with the pair (nS, nr ′), where nS = (ns, s ∈ S). Recall that, for each such nS , we

then have bS
r ′(nS) = limnr′→∞ br ′(nS, nr ′).

First suppose that (26) holds. We need to show that b is stable. The underlying idea is
that the monotonicity of b and stability of bS ensure that the components (ns(·), s ∈ S) of
the process n(·) become and remain small, and that (26) then ensures that, except in some
finite region A, the remaining component nr ′(·) of this process is decreasing at a rate which is
bounded away from 0; thus, the process n(·) spends, in the long term, a nonzero proportion of
time within A.

It follows from (26) and the monotonicity of b that we can choose a finite set A = {n : nr ≤
n̄r , r ∈ R} ⊂ Z

|R|
+ and a positive function b̄r ′ on Z

|S|
+ such that

b̄r ′ is decreasing in each of its arguments, (28)∑
nS∈Z

R−1+

πS(nS)b̄r ′(nS) > κr ′ , (29)

br ′(n) ≥ b̄r ′(nS) for all n /∈ A. (30)

For example, given n̄r , r ∈ R, we may choose

b̄r ′(nS) = 1(ns ≤ n̄s , s ∈ S)br ′(nS, n̄r ′), nS ∈ Z
|S|
+ , (31)

where 1(·) denotes the indicator function. Condition (28) then follows from the monotonicity
of b; also, since b is nonnegative, (30) follows trivially from (31), except for n such that ns ≤ n̄s

for s ∈ S and nr ′ > n̄r ′ , in which case (30) again follows from the monotonicity of b; finally,
(29) follows from (26) and the monotone convergence theorem by choosing n̄r , r ∈ R, all
sufficiently large, since, for any nS ,

lim
n̄r→∞ for all r∈R

1(ns ≤ n̄s , s ∈ S)br ′(nS, n̄r ′) = lim
n̄r′→∞ br ′(nS, n̄r ′) = bS

r ′(nS).

It also follows from the monotonicity of the control b that we can couple the corresponding
Markov process n(·) to a process nS(·) = (nS

s (·), s ∈ S) on Z
|S|
+ with control bS in such a way

that ns(t) ≤ nS
s (t) for all t > 0 and for all s ∈ S. Also, since the process nS(·) has stationary

distribution πS , it follows from (28) that, for the function b̄r ′ defined above,

lim sup
t→∞

1

t

∫ t

0
b̄r ′(nS(u)) du ≥ lim

t→∞
1

t

∫ t

0
b̄r ′(nS(u)) du = EπS b̄r ′ , (32)

where nS(·) = (ns(·), s ∈ S) and where the final equality follows from the ergodic theorem.
It now follows from Lemma 1 that, for some M > 0,

κr ′ ≥ lim sup
t→∞

1

t

∫ t

0
br ′(n(u)) du

≥ lim sup
t→∞

1

t

∫ t

0
br ′(n(u)) 1(n(u) /∈ A) du

≥ lim sup
t→∞

1

t

∫ t

0
b̄r ′(nS(u)) 1(n(u) /∈ A) du (33)
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≥ lim sup
t→∞

1

t

∫ t

0
b̄r ′(nS(u)) du − lim

t→∞
M

t

∫ t

0
1(n(u) ∈ A) du (34)

≥ EπS b̄r ′ − lim
t→∞

M

t

∫ t

0
1(n(u) ∈ A) du, (35)

where the inequality in (33) follows from (30), the inequality in (34) follows from (28) since the
function b̄r ′ is necessarily bounded (note that, since A is finite, the limit in the final term in (34)
always exists), and the final inequality in (35) follows from (32). Thus, from (35) and (29), we
have

lim
t→∞

1

t

∫ t

0
1(n(u) ∈ A) du > 0.

Since A is finite it now follows from the ergodic theorem that the Markov process n(·) is positive
recurrent and so b is stable.

Now suppose, instead, that (27) holds. We show that the Markov process n(·) corresponding
to b is transient (and hence b is unstable). The underlying idea here is that whenever nr ′(·) is
very large, the process n(·) again behaves approximately as if it were controlled by bS , and thus,
from (27), we may expect that limt→∞ nr ′(t) = ∞ a.s. To make this rigorous we again use
the monotonicity of b to couple the process n(·) to a process n̂(·) whose control is sufficiently
close to that of bS that we may show that limt→∞ n̂r ′(t) = ∞ a.s., and for which the coupling
also ensures that limt→∞ nr ′(t) = ∞ with strictly positive probability.

Given n̄r ′ ∈ Z+ (fixed, to be chosen later), define a Markov process n̂(·) = (n̂r (·), r ∈ R)

as follows: for each s ∈ S, the component process n̂s(·) has state space Z+ as usual, while
n̂r ′(·) has state space Z; for each r ∈ R, transitions nr → nr +1 occur at rate νr as usual, while
transitions nr → nr − 1 occur at rate µrb̂r (n), where

b̂s(n) = bs(nS, n̄r ′), s ∈ S,

b̂r ′(n) = bS
r ′(nS).

Observe that the process n̂(·) has uniformly bounded transition rates which are independent of
nr ′ ∈ Z. Suppose that

n(0) = n̂(0), nr ′(0) > n̄r ′ . (36)

Define the random time T = min{t > 0 : nr ′(t) < n̄r ′ }. It follows from the monotonicity of b

that, for all n such that nr ′ ≥ n̄r ′ ,

b̂s(n) ≥ bs(n) ≥ bS
s (nS), s ∈ S, (37)

and, hence, that we may couple the processes n̂(·), n(·), and the |S|-dimensional process nS(·)
with control (bS

s , s ∈ S) in such a way that

n̂s(t) ≤ nS
s (t) for all s ∈ S and for all t ≥ 0 (38)

and
n̂s(t) ≤ ns(t) for all s ∈ S and for all 0 ≤ t ≤ T . (39)

Since nS(·) is assumed positive recurrent with stationary distribution πS , it follows, from (37)
or (38), that n̂S(·) = (n̂s(·), s ∈ S) is similarly positive recurrent with stationary distribution π̂S

say. Furthermore, as n̄r ′ → ∞, the control b̂ converges pointwise in each of its components
to bS . Hence, elementary arguments (e.g. consideration of the times of return to 0 of the
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process nS(·), coupled with the use of (38) and the ergodic theorem) show that, again as
n̄r ′ → ∞, π̂S converges in distribution to πS . Also, since bS

r ′ is bounded, it now follows,
from (27), that we may choose the constant n̄r ′ sufficiently large that

Eπ̂S
bS
r ′ < κr ′ (40)

(where, analogously to (25), Eπ̂S
bS
r ′ is the expectation of bS

r ′ with respect to π̂S).
It further follows, from the monotonicity of b and from (39), that, for all 0 ≤ t ≤ T ,

b̂r ′(n̂(t)) = bS
r ′(n̂S(t))

≥ bS
r ′(nS(t)) (41)

≥ br ′(n(t)), (42)

where (41) follows from (39) and the monotonicity of b while (42) follows from the definition
of bS and, again, the monotonicity of b. It now follows, from (42), that we may also couple the
components r ′ of the processes n̂(·) and n(·) in such a way that

n̂r ′(t) ≤ nr ′(t) for all 0 ≤ t ≤ T . (43)

As noted above, the process n̂S(·) = (n̂s(·), s ∈ S) has stationary distribution π̂S , while
the process n̂r ′(·) may be viewed as a Markov additive process modulated by the remaining
components n̂S(·) of n̂(·). From (40), the expectation of the increments of n̂r ′(·) between those
times at which n̂(·) returns to any fixed state is strictly positive. It follows, from the standard
theory of Markov additive processes, that limt→∞ n̂r ′(t) = ∞ a.s., and furthermore that, under
condition (36),

P
(
n̂r ′(t) ≥ n̄r ′ for all t ≥ 0, lim

t→∞ n̂r ′(t) = ∞
)

> 0,

and, hence, from (43), it also follows that

P
(
nr ′(t) ≥ n̄r ′ for all t ≥ 0, lim

t→∞ nr ′(t) = ∞
)

> 0.

Hence, the process n(·) is transient as required.

We illustrate the use of the above result with a simple example.

Example 6. Consider again the network of Example 2, in which R = J = 3. As previously
observed a necessary and sufficient condition for the existence of some stable control is given
by 2ν < c. Furthermore, if 3ν < c, then Proposition 1 with the Lyapunov function f given by
f (n) = ∑3

r=1 nr shows that any Pareto efficient control is stable. Suppose now that 2ν < c

and that the Pareto efficient control b is such that, for r = 1, 2, br(n) is independent of n3 and

b1(n) + b2(n) = c for all n such that max(n1, n2) > 0. (44)

Thus, in particular, calls of types 1 and 2 collectively have complete priority over calls of
type 3. Although we do not in this example require any further monotonicity conditions on
b, it follows, from the requirement of Pareto efficiency, that the control b{1,2} : Z

2+ → R
3+ is

well defined, as before, being obtained from b by letting n3 → ∞. It follows, from (44),
that the condition 2ν < c is necessary and sufficient to ensure that b{1,2} is stable. We use (a
slight modification of) Theorem 1 to investigate the stability of b. The stationary distribution
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π {1,2} on Z
2+ induced by b{1,2} is here just that of the process (n1(·), n2(·)). Furthermore,

since, from (44), n1(·) + n2(·) is Markov, with a stationary distribution which is geometric and
independent of any more detailed specification of b{1,2}, it follows that

π {1,2}(0, 0) = 1 − 2ν

c
.

It follows, from (1), (44), and the Pareto efficiency of b, that

b
{1,2}
3 (0, 0) = c, b

{1,2}
3 (n1, 0) = 0 for all n1 ≥ 1, and

b
{1,2}
3 (0, n2) = 0 for all n2 ≥ 1.

Thus, we have

Eπ {1,2} b
{1,2}
3 =

∑
(n1,n2)∈Z

2+

π {1,2}(n1, n2)b
{1,2}
3 (n1, n2) ≥ c − 2ν, (45)

with equality if and only if b
{1,2}
3 (n1, n2) = 0 for all (n1, n2) such that min(n1, n2) ≥ 1. But

this latter condition holds if and only if, for all (n1, n2) such that min(n1, n2) ≥ 1, we have
min(b

{1,2}
1 (n1, n2), b

{1,2}
2 (n1, n2)) = 0, i.e. in the case of the control considered in Example 2

in which maximum resource is always allocated to calls of one type, and in which we have
already observed that we have stability if and only if 3ν < c. Otherwise we have strict inequality
in (45).

Now note that, although b does not here satisfy all the conditions for monotonicity given
earlier, the assumption that b1(n) and b2(n) are independent of n3 ensures that Theorem 1 con-
tinues to apply, indeed in a slightly improved form, to show that the condition Eπ {1,2} b

{1,2}
3 > ν

is necessary and sufficient for the stability of b. (For the sufficiency, note that the proof of
part (i) of the theorem, with S = {1, 2} and r ′ = 3, goes through as before, except that the
coupling between n(·) and nS(·) is now obtained with equality, and so we no longer require (28)
in order to obtain (32). Similar obvious simplifications apply to the proof of part (ii), which
here becomes a fairly standard argument and in particular delivers null recurrence—and hence
instability—in the case Eπ {1,2} b

{1,2}
3 = ν.)

Suppose now that c and b are held fixed and that ν is allowed to vary. The obvious coupling
argument shows that if b is stable for any ν then it is also stable for any ν′ < ν. The above
adaptation of Theorem 1, together with (45), shows that there is some critical parameter λ

(depending on the detailed specification of b{1,2} and hence π {1,2}) such that 1
3 ≤ λ ≤ 1

2 and
that b is stable if ν < λc and unstable if ν > λc. For the control of Example 2, we already
know that λ = 1

3 ; otherwise for the case in which ν = c/3 we have strict inequality in (45) and
hence stability; simple continuity arguments now give λ > 1

3 in this case.
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